PNP Power Silicon Transistor

Features

- Available in JAN, JANTX and JANTXV per MIL-PRF-19500/508
- TO-3 Package
- Designed for Power Amplifier and Medium Speed Switching Applications

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I _C = -50 mA dc, 2N6437 I _C = -50 mA dc, 2N6438	V _{(BR)CEO}	V dc	-100 -120	_
Collector - Emitter Cutoff Current	V _{CE} = -50 V dc, 2N6437 V _{CE} = -60 V dc, 2N6438	I _{CEO}	µA dc	_	-50
Collector - Emitter Cutoff Current	V _{CE} = -100 V dc, V _{BE} = +1.5 V dc, 2N6437 V _{CE} = -120 V dc, V _{BE} = +1.5 V dc, 2N6438	I _{CEX1}	µA dc	_	-5.0
Collector - Base Cutoff Current	V _{CB} = -120 V dc, 2N6437 V _{CB} = -140 V dc, 2N6438	I _{CBO}	µA dc	_	-10
Emitter - Base Cutoff Current	V _{EB} = -6 V dc	I _{EBO}	µA dc		-100
Base - Emitter Voltage (saturated)	I _C = -10 A dc, I _B = -1.0A dc	$V_{\text{BE(sat)}}$	V dc	_	-1.8
Collector-Emitter Voltage (saturated)	I_{C} = -10 A dc, I_{B} = -1.0 A dc I_{C} = -25 A dc, I_{B} = -2.5 A dc	V _{CE(sat)1} V _{CE(sat)2}	V dc	_	-1.0 -1.8
	V_{CE} = -2 V dc, I _C =5 A dc	h_{FE1}		40	
Forward Current Transfer Ratio	V_{CE} = -2 V dc, I_C = -10 A dc	h_{FE2}	-	30	120
	V_{CE} = -2 V dc, I_C = -25 A dc	h _{FE3}		12	
Collector - Emitter Cutoff Current	T _A = +150°C V _{CE} = -100 V dc, V _{BE} = +1.5 V dc, 2N6437 V _{CE} = -120 V dc, V _{BE} = +1.5 V dc, 2N6438		mA dc	_	-1.0
Forward - Current Transfer Ratio	$T_A = -55^{\circ}C$ $V_{CE} = -2V$ dc, $I_C = -10$ A dc	h _{FE4}		10	

1

Rev. V1

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Power Silicon Transistor

Rev. V1

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter		Test Conditions	Symbol	Units	Min.	Max.
Turn-On Time		V_{CC} = -80 V dc, I _C = -10 A dc, I _{B1} = -1.0 A dc	t _{on}	μs	_	0.5
Turn-Off Time		V_{CC} = -80 V dc, I _C = -10 A dc, I _{B1} = I _{B2} = -1.0 A dc	t _{off}	μs	_	1.25
Storage Time		V_{CC} = -80 V dc, I _C = -10 A dc, I _{B1} = I _{B2} = -1.0 A dc	ts	μs	_	1.0
Dynamic Charact	teristics					
Magnitude of Common-Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio		V_{CE} = -10 V dc, I _C = -1 A dc, f = 10 MHz	h _{fe}	-	4.0	12
Output Capacitance (Open Circuit)		V_{CB} = -10 V dc; I _E = 0, 0.1 MHz ≤ f ≤ 1 MHz	C _{obo}	pF	_	700
Safe Operating A	Area Continuous					
DC Tests: $T_c = +25^{\circ}C$, I Cycle, t = 1.0 s						
Test 1:	V_{CE} = -8 V dc, I_{C} = -25 A dc (Both device types)					
Test 2:	V _{CE} = -14 V dc, I _C = -14 A dc (Both device types)					
Test 3:	V_{CE} = -100 V dc, I _C = -100 mA dc 2N6437 V_{CE} = -120 Vdc, I _C = -83 mA dc 2N6438					

Rev. V1

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N6437 2N6438	V _{CEO}	-100 V dc -120 V dc
Collector - Base Voltage 2N6437 2N6438	V _{CBO}	-120 V dc -140 V dc
Emitter - Base Voltage	V _{EBO}	-6 V dc
Base Current	I _B	-10 A dc
Collector Current	Ic	-25 A dc
Total Power Dissipation $T_{C} = +25^{\circ}C$ $T_{C} = +100^{\circ}C$	P _T ⁽¹⁾	200 W 112 W
Operating & Storage Temperature Range	T _{op} , T _{stg}	-65°C to +200°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.875°C/W

1. Between T_c = +25°C and T_c = +200°C, linear derating factor (average) = 1.14 W/°C.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Power Silicon Transistor

Rev. V1

Outline Drawing (TO-3)

FIGURE 1. Physical dimensions (TO-204 similar to TO-3).

4

PNP Power Silicon Transistor

Rev. V1

Outline Drawing (TO-3)

Ltr	Dimensions				Notes
	Inches		Millir	Millimeters	
	Min	Max	Min	Max	
CD		.875		22.23	
СН	.250	.360	6.35	9.14	
HR	.495	.525	12.57	13.33	4
HR ₁	.131	.188	3.33	4.78	4
нт	.060	.135	1.52	3.43	
LD	.038	.043	0.97	1.09	4, 6
LL	.312	.500	7.92	12.7	
L1		.050		1.27	6
MHD	.151	1.65	3.83	41.91	4
MHS	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	3
PS ₁	.205	.225	5.21	5.72	3
S ₁	.655	.675	16.64	17.15	
Notes	1, 2, 5, 7 1		1, 2	, 5, 7	

NOTES:

1. Dimensions are in inches.

Millimeters are given for general information only.
These dimensions should be measured at points .050 inch (1.27 mm) +.005 inch (0.13 mm)

- -.000 inch (0.00 mm) below seating plane. Measurement will be made at the seating plane. 4. Two places.
- 5. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- Lead diameter shall not exceed twice LD within L1.
- 7. Lead designation, shall be as follows:
- In accordance with ASME Y14.5M, diameters are equivalent to \u03e6x symbology.

Lead number	Bipolar transistor
1	Emitter
2	Base
Case	Collector

5

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

PNP Power Silicon Transistor

Rev. V1

FIGURE 3. Maximum safe operating area (continuous dc).

6

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Power Silicon Transistor

Rev. V1

FIGURE 4 Safe operating area for switching between saturation and cutoff (unclamped inductive load).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

7

PNP Power Silicon Transistor

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCI-DENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURA-CY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

8

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.