

Vishay Semiconductors formerly General Semiconductor

Schottky Diodes

MiniMELF (SOD-80C)

Dimensions in inches and (millimeters)

Features

- For general purpose applications
- The LL103A, B, C series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications. Other applications are click suppression, efficient full wave bridges in telephone subsets, and blocking diodes in rechargeable low voltage battery systems.
- This diode is also available in the DO-35 case with type designation SD103A, B, C and in the SOD-123 case with type designation SD103AW, SD103BW, SD103CW.

Mechanical Data

Case: MiniMELF Glass Case (SOD-80C)

Weight: approx. 0.05g Cathode Band Color: Green Packaging Codes/Options:

D1/10K per 13" reel (8mm tape), 20K/box D2/2.5K per 7" reel (8mm tape), 20K/box

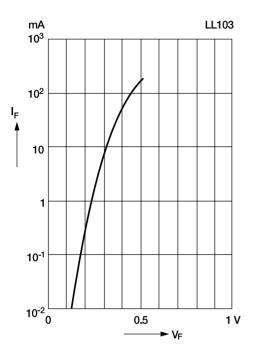
Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Symbol	Value	Unit
Peak Inverse Voltage	LL103A LL103B LL103C	VRRM	40 30 20	V
Power Dissipation (Infinite Heatsink)		Ptot	400 ⁽¹⁾	mW
Single Cycle Surge 60-Hz Sine Wave		IFSM	15	А
Thermal Resistance Junciton to Ambient		RеJA	300 ⁽¹⁾	°CW
Junction Temperature		Tj	125	°C
Storage Temperature Range		Ts	-55 to +150	°C

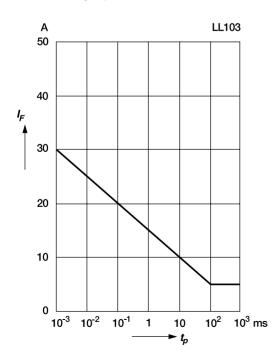
Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Test Condition	Min	Тур	Max	Unit
Leakage Current	LL103A LL103B LL103C	lR	V _R = 30V V _R = 20V V _R = 10V			5 5 5	μА
Forward Voltage Drop		VF	IF = 20mA IF = 200mA	_	_	0.37 0.6	V
Junction Capacitance		C _{tot}	V _R = 0V, f = 1MHz	_	50	_	pF
Reverse Recovery Time		t _{rr}	IF = IR = 50mA to 200mA, recover to 0.1IR	_	_	10	ns

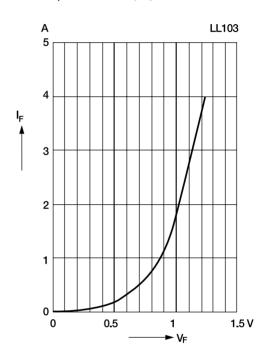
Note: (1) Valid provided that electrodes are kept at ambient temperature.


LL103A thru LL103C

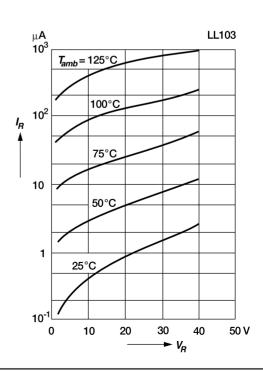
Vishay Semiconductors formerly General Semiconductor


Characteristic Curves (TA = 25°C unless otherwise noted)

Typical variation of fwd. current vs. fwd. voltage for primary conduction through the Schottky barrier

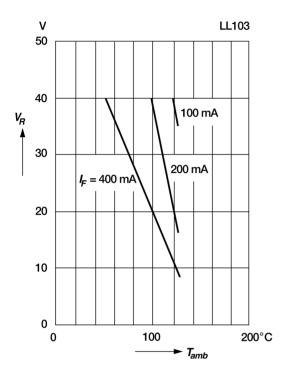


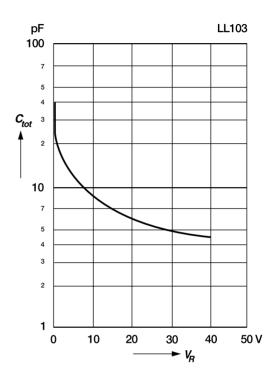
Typical non repetitive forward surge current versus pulse width


Rectangular pulse

Typical high current forward conduction curve t_p =300 ms, duty cycle =2%

Typical variation of reverse current at various temperatures




Vishay Semiconductors formerly General Semiconductor

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Blocking voltage deration versus temperature at various average forward currents

Typical capacitance versus reverse voltage

