

Vishay High Power Products

Schottky Diode, 0.5 A

SOD-123

PRODUCT SUMMARY				
I _{F(AV)}	0.5 A			
V _R	20 V			
V _F at 0.5 A at 25 °C	0.440 V			
I _{RM}	7 mA at 100 °C			

FEATURES

- · Surface mountable
- Very low forward voltage drop
- · Extremely fast switching
- · Negligible switching losses
- Guard ring for enhanced ruggedness and long term reliability
- Compliant to RoHS directive 2002/95/EC
- · Designed and qualified for industrial level

DESCRIPTION

This Schottky diode is ideally suited for low voltage, high frequency operation, as freewheeling and polarity protection. Small size of the package allows proper use in application where compact size is critical, fitting also the GSM and PCMCIA requirement.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _F	DC	0.5	A	
V _{RRM}		20	V	
I _{FSM}	t _p = 10 ms sine	6.5	A	
V _F	0.5 Apk, T _J = 100 °C	0.36	V	
T _J	Range	- 65 to 150	°C	

VOLTAGE RATINGS				
PARAMETER	SYMBOL	MBR0520PbF	UNITS	
Maximum DC reverse voltage	V_{R}	20	V	
Maximum working peak reverse voltage	V_{RWM}	20	V	

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS VALUES UNITS		UNITS	
Maximum average forward current	I _F	DC, T _L = 129 °C		0.5	
Maximum peak one cycle	1	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	5.5	Α
non-repetitive surge current at 25 °C	repetitive surge current at 25 °C		rated V _{RRM} applied	6.5	

Document Number: 94281 Revision: 04-Jun-09

MBR0520PbF

Vishay High Power Products Schottky Diode, 0.5 A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
	V _{FM} ⁽¹⁾	0.1 A	T _J = 25 °C	0.373	V
Maximum forward voltage drop		0.5 A		0.440	
Maximum forward voltage drop		0.1 A	T _J = 100 °C	0.260	
		0.5 A		0.360	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = 10 V	40	μΑ
		T _J = 100 °C		3	mA
		T _J = 25 °C	V _B = 20 V	150	μΑ
		T _J = 100 °C	V _R = 20 V	7	mA
Maximum junction capacitance	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) $T_J = 25 ^{\circ}C$		pF	
Maximum voltage rate of change	dV/dt	Rated V _R 10 000 V/µs		V/μs	

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 65 to 150	°C
Maximum thermal resistance, junction to lead	R _{thJL}	Mounted on PC board FR4 with minimum pad size	150	°C/W
Maximum thermal resistance, junction to ambient	R _{thJA}	1" square pad size (1 x 0.5" for each lead) on FR4 board	200	*C/VV
Approximate weight			0.012	g
Marking device		Case style SOD-123	A <u>Y</u> V	VLC

Note

(1) $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

Schottky Diode, 0.5 A Vishay High Power Products

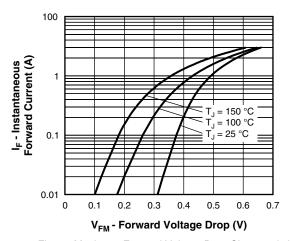


Fig. 1 - Maximum Forward Voltage Drop Characteristics

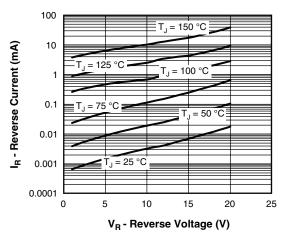


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

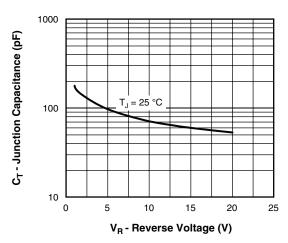


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

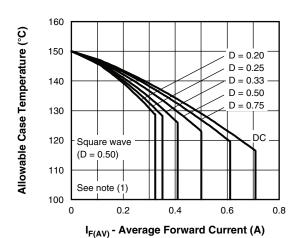


Fig. 4 - Maximum Allowable Case Temperature vs.
Average Forward Current

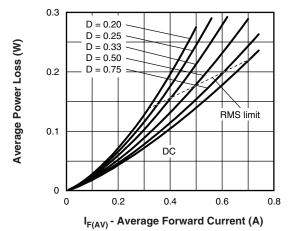
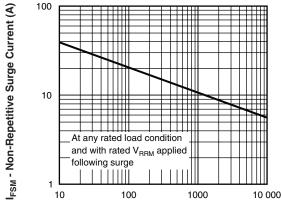



Fig. 5 - Forward Power Loss Characteristics

t_p - Square Wave Pulse Duration (μs)

Fig. 6 - Maximum Non-Repetitive Surge Current

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R$ (1 - D); I_R (1 - D)

MBR0520PbF

Vishay High Power Products Schottky Diode, 0.5 A

ORDERING INFORMATION TABLE				
DEVICE	PACKAGE	MARKING	BASE QUANTITY	DELIVERY MODE
MBR0520	SOD-123	A <u>Y</u> WLC	3000	Tape and reel

LINKS TO RELATED DOCUMENTS			
Dimensions <u>www.vishay.com/doc?95053</u>			
Part marking information	www.vishay.com/doc?95338		
Packaging information	www.vishay.com/doc?95061		

Document Number: 94281 Revision: 04-Jun-09

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08