

High-Bandwidth, Low Voltage, Dual SPDT Analog Switches

DESCRIPTION

The DG2519E is monolithic CMOS dual single-pole / double-throw (SPDT) analog switches. It is specifically designed for low-voltage, high bandwidth applications.

The DG2519E on-resistance, matching and flatness are guaranteed over the entire analog voltage range. Wide dynamic performance is achieved with typical at -63 dB for both cross-talk and off-isolation at 1 MHz.

Both SPDT's operate with independent control logic, conduct equally well in both directions and block signals up to the power supply level when off. Break-before-make is guaranteed.

With fast switching speeds, low on-resistance, high bandwidth, and low charge injection, the DG2519E are ideally suited for audio and video switching with high linearity.

Built on Vishay Siliconix's low voltage CMOS technology, the DG2519E contain an epitaxial layer which prevents latch-up

FEATURES

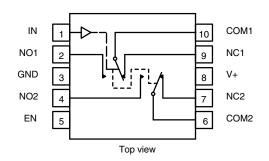
- Single supply (1.8 V to 5.5 V)
- Low on-resistance R_{ON} : 2.5 Ω

MSOP-10 and DFN-10 package

Material categorization: for definitions of FREE compliance please see www.vishay.com/doc?99912

RoHS COMPLIANT

HALOGEN


BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- · Low-voltage logic compatible
- · High bandwidth

APPLICATIONS

- Cellular phones
- · Speaker headset switching
- · Audio and video signal routing
- PCMCIA cards
- · Low-voltage data acquisition
- ATE

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE							
LOGIC	EN	NC1 and NC2	NO1 and NO2				
0	1	ON	OFF				
1	1	OFF	ON				
0	0	OFF	OFF				
1	0	OFF	OFF				

ORDERING INFORMATION						
TEMP. RANGE	PACKAGE	PART NUMBER				
-40 °C to +85 °C	MSOP-10	DG2519EDQ-T1-GE3				
	DFN-10	DG2519EDN-T1-GE4				

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Reference V+ to GND		-0.3 to +6	V			
IN, COM, NC, NO ^a		-0.3 to (V+ + 0.3)	V			
Continuous current (any terminal)		± 50	mA			
Peak current (pulsed at 1 ms, 10 % dut	y cycle)	± 200	IIIA			
Storage temperature (D suffix)		-65 to +150	°C			
Power dissipation (packages) ^b	MSOP-10 ^c	320	mW			
Fower dissipation (packages)	DFN-10 ^d	1191	IIIVV			
ESD / HBM EIA / JESD22-A114-A		7.5k	V			
ESD / CDM EIA / JESD22-C101-A		1.5k	V			
Latch up	JESD78	300	mA			

Notes

- a. Signals on NC, NO, COM, IN, or EN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 4 mW/°C above 70 °C
- d. Derate 14.9 mW/°C above 70 °C

Vishay Siliconix

Parameter Pa	SPECIFICATIONS (V+ = 3 V)								
Name			TEST CONDITIONS				_		
Analog Switch Analog Signal range VanaLog VanaL	PARAMETER	SYMBOL			TEMP. ^a				UNIT
Analog signal range d VANALOG V+ = 1.8 V, VNCNO = 0.4 V / V+, INCNO = 8 mA Full 0 0 0 0 1 1 1 1 1 1	Analog Switch		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-INIT		IVIIIV.	1115.	IVIAA.	
Prain-source on-resistance Probability		VANALOG			Full	0	_	V+	V
Drain-source on-resistance Position of Position	a 13 1 3 a a 31	ANALOG			Room	_	7		
No.			$V+ = 1.8 \text{ V}, V_{NC/NO} = 0.4 \text{ V} / V+, I_{NC}$	$_{\text{NO}} = 8 \text{ mA}$		-	-		
On-resistance matching AR _{OS(on)} V+ = 2.7 V, V _{COM} = 0.8 V / 1.4 V / 1.8 V, Room - 0.02 0.3 Full - - 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Drain-source on-resistance	R _{DS(on)}			Room	-	4.6		
On-resistance matching On-resistance flatness d.f. On-resista			$V+ = 2.7 \text{ V}, V_{COM} = 0.8 \text{ V} / 1.8 \text{ V}, I_{CO}$	$_{DM} = 10 \text{ mA}$	Full	-	-	6.5	
No.	_	_				-	0.02	0.3	Ω
On-resistance fitness d. f. One fitness d	On-resistance matching	$\Delta R_{DS(on)}$	$V_{+} = 2.7 \text{ V} \text{ V}_{20M} = 0.8 \text{ V} / 1.4 \text{ V}$	/18V	Full	-	-	0.6	
On-resistance flatness d. 1 Off leakage current g off leakage c				/ 1.0 v ,	Room	-	0.62	1.1	
Off leakage current g I _{NC/NO(off)} V ₊ = 3.6 V, V _{NO/NO} = 1 V / 3.2 V, V _{COM} = 3.2 V / 1 V, V _{EN} = 0 V Room	On-resistance flatness d, f	$R_{flat(on)}$				-	-	1.5	
Off leakage current 9 COM off leakage current 9 COM off leakage current 9 IcoM(off) IcoM(off) VcoM = 3.2 V / 1 V, V _{EN} = 0 V Full -5 -5 5 5 5 5 5 5 5							0.01		
COM off leakage current 9 COM off leakage current 9 COM off leakage current 9 COM off leakage	Off leakage current ^g	I _{NC/NO(off)}	V+ = 3.6 V Vyong = 1 V / 3	2 V		-5		5	
COM off leakage current 9 COM(off)							0.01		
Channel-on leakage current g CoM(on) C	COM off leakage current ^g	I _{COM(off)}					-		nA
No No No No No No No No	Channel-on leakage						0.01		
Digital Control		I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{COM} = V_{NC/NO} = 1 \text{ V} / 3.2 \text{ V}$				-		
Input current d Input current d Input current d Input high voltage d Vinh Vinh Full 1.5 0.4 Ving Ving Vinh Full 1.5 0.4 Ving	Digital Control								
Input high voltage d V _{INH} Full 1.5 - - V _I Input low voltage d V _{INL} Full - - 0.4 V _I Input low voltage d V _{INL} Full - - 0.4 V _I Input low voltage d V _{INL} Full - - 0.4 V _I Input low voltage d V _{INL} Full - - 0.4 V _I Input low voltage d V _{INL} Full - - 0.4 V _I Input low voltage d V _{INL} V _{INL} Input low voltage d V _{INL} V _{INL} Input low voltage d V _{INL}		I _{INL} or I _{INH}			Full	-1	-	1	μA
Input low voltage d ViNL Full - - 0.4 Vint Digital input capacitance d CiN Room - 3 - pF	Input high voltage ^d				Full	1.5	-	-	·
Digital input capacitance d CiN Room - 3 - pF						-	-	0.4	V
Dynamic Characteristics Turn-on time toN A 5 5 0 5 0 5 0 6 0 0 0 0 0 0 0 0 0 0 0 0	Digital input capacitance d				Room	-	3	-	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic Characteristics						l	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T !!				Room	-	21	45	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-on time	t _{ON}			Full	-	-	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T (()] ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000	Room	-	11	35	
	Turn-off time	toff	$V_{NC/NO} = 3 \text{ V}, C_L = 35 \text{ pt}, R_L = 100 \text{ pt}$	300 Ω	Full	-	-	45	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Room	3	13	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Вгеак-ретоге-таке тіте ч	тввм			Full	2	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge injection ^d	Q _{INJ}	C _L = 1 nF, V _{qen} = 1.5 V, R _{qen} =	: 0 Ω	Room	-	-10.2	-	рС
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bandwidth ^d		C _L = 5 pF (set up capacitan	ice)	Room	-	222	-	MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O" : 1 :: d	0.155		-	Room	-	-63	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oπ-isolation ^a	OIRR	$H_L = 50 \Omega$, $G_L = 5 pH$	f = 10 MHz	Room	-	-22	-	1 <u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Observation des la constitución de		D 5000 5 5	f = 1 MHz	Room	-	-65	-	aB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cnannel-to-channel crosstalk a	X _{TALK}	$H_L = 50 \Omega, G_L = 5 pH$	f = 10 MHz	Room	-	-40	-	
		C _{NO(off)}			Room	-	7	-	
	NO, NC Off capacitance d				Room	-	7	-	1 _
Power Supply V+ Room - 24 - Power Supply range V+ 2.7 - 3.3 V		, ,			-	24	-	pF	
Power Supply Power supply range V+ 2.7 - 3.3 V	Channel-on capacitance ^a				Room	-	24	-	
117 3	Power Supply	. ,							
Power supply current d I+ V+ = 2.7 V, V_{IN} = 0 V or 2.7 V Full 1 μ A	Power supply range	V+				2.7	-	3.3	V
	Power supply current d	l+	V+ = 2.7 V, V _{IN} = 0 V or 2.7	7 V	Full	-	-	1	μA

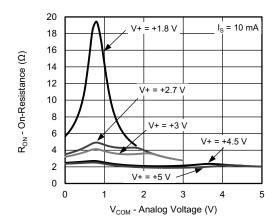
Notes

- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = V+ voltage to perform proper function
- f. Crosstalk measured between channels
- g. Guarantee by 5 V testing

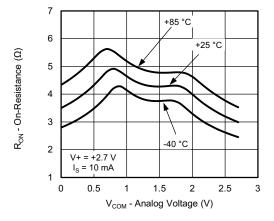
E25-0259-Rev. B, 05-May-2025

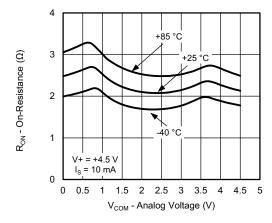
Vishay Siliconix

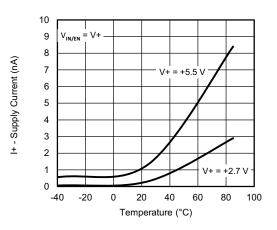
SPECIFICATIONS (V+ = 5 V)								
PARAMETER	TEST CONDITIONS SYMBOL OTHERWISE UNLESS SPECIFIED TEMP. a -40 °C to +85		5 °C	UNIT				
		$V+ = 5 V, \pm 10 \%, V_{IN/ENL} = 0.5 V, V_{II}$	$V+ = 5 V$, $\pm 10 \%$, $V_{IN/ENL} = 0.5 V$, $V_{IN/ENH} = 2 V^e$		MIN. c	TYP. b	MAX. c	
Analog Switch								
Analog signal ranged	V _{ANALOG}			Full	0	-	V+	V
Drain-source on-resistance	R _{DS(on)}	$V + = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 3.5 \text{ V}; I_{C}$	_{OM} = 10 mA	Room	-	2.5	3.1	
	20(011)			Full	-	-	4	
On-resistance matching	$\Delta R_{DS(on)}$	V 45VV 00V/05V		Room Full	-	0.01	0.4	Ω
		$V+ = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 2.5 \text{ V} / 3.5 \text{ V},$ $I_{COM} = 10 \text{ mA}$		Room	-	0.61	1	
On-resistance flatness d, f	R _{flat(on)}	ICOM = 10 IIIA		Full		0.61	1.5	
				Room	-2	0.16	2	
Off leakage current ^g	I _{NC/NO(off)}	$V+ = 5.5 \text{ V}, V_{NC/NO} = 1 \text{ V} / 4$	1 5 V	Full	-10	-	10	
		$V_{COM} = 4.5 \text{ V} / 1 \text{ V}, V_{EN} =$	0 V	Room	-2	0.20	2	
COM off leakage current ^g	I _{COM(off)}	, LIV		Full	-10	-	10	nA
0		V 55VV V		Room	-2	0.20	2	
Channel-on leakage current ^g	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{COM} = V_{NC/NO} = 1 \text{ V} / 4.5 \text{ V}$		Full	-10	-	10	
		V+ = 0 V, V _{COM} = 5.5 V, NC/NO open		Full	-	0.01	5	μA
Power down leakage ^d	I _{PD}	V+ = 0 V, V _{NC/NO} = 5.5 V, COM, open		Full	=	0.01	3	mA
Digital Control								
Input current ^d	I _{INL} or I _{INH}				-1	-	1	μA
Input high voltage ^d	V_{INH}			Full	2	-	-	V
Input low voltage d	V_{INL}				-	-	0.5	· ·
Digital input capacitance d	C _{IN}			Room	-	3	-	pF
Dynamic Characteristics				T _		T		
Turn-on time	t _{ON}			Room	-	14	40	
		-		Full	-	-	43	」
Turn-off time	t _{OFF}	$V_{NC/NO} = 3 \text{ V, } C_L = 35 \text{ pf, } R_L = 10 \text{ pf, } R_L = $	= 300 Ω	Room	-	7	33	ns
		-		Full	3	- 8	35	
Break-before-make time d	t _{BBM}			Room Full	2	0	-	
Propagation delay d	tpd	V+ = 5 V, no R _L		Room	-	325		ps
Charge injection d	Q _{INJ}	$C_L = 1 \text{ nF}, V_{qen} = 2.5 \text{ V}, R_{qen}$	= 0.0	Room	_	-14	_	pС
Bandwidth ^d	BW	$C_L = 5 \text{ pF (set up capacita}$		Room	_	217	_	MHz
			f = 1 MHz	Room	_	-63	-	1411.12
Off-isolation d	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	f = 10 MHz	Room	_	-22	-	
Channel-to-channel			f = 1 MHz	Room	-	-63	-	dB
crosstalk d	X_{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$	f = 10 MHz	Room	-	-40	-	
NO NO Off conscitored d		1 10 1111		Room	-	7	-	
NO, NC Off capacitance ^d	C _{NC(off)}	V ₁ = 5 V ± 4 MU=		Room	-	7	-	рF
hannel-On capacitance d C _{NO(on)}		V+ = 5 V, f = 1 MHz		Room	-	24	-	۲
·	C _{NC(on)}			Room	-	24	-	
Power Supply								
Power supply range	V+				4.5	-	5.5	V
Power supply current ^d	I+	V+ = 5.5 V, V _{IN} = 0 V or 5.5 V		Full	-	-	1	μΑ

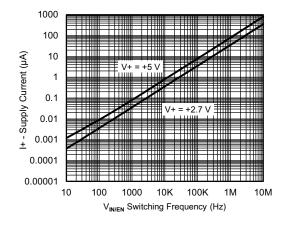

Notes

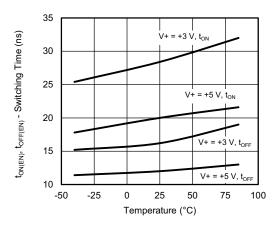
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min and max values
- g. Guaranteed by 5 V testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

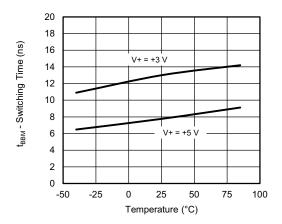

R_{ON} vs. V_{COM} and Single Supply Voltage


R_{ON} vs. Analog Voltage and Temperature

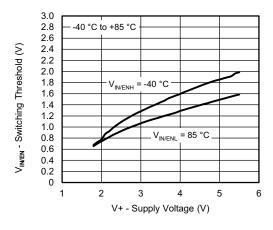

R_{ON} vs. Analog Voltage and Temperature

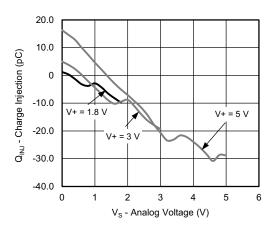
Supply Current vs. Temperature

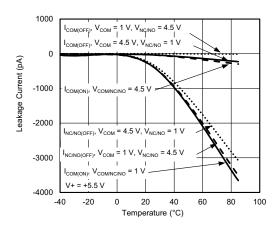
Positive Supply Current vs. Switching Frequency

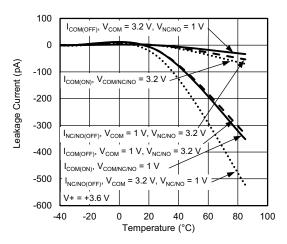


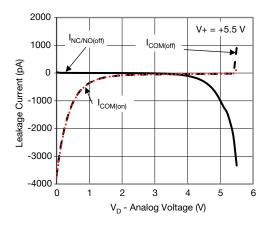
Switching Time vs. Temperature


For technical questions, contact: analogswitchter

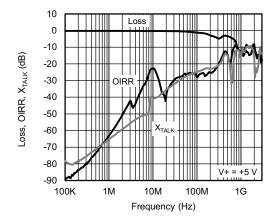

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

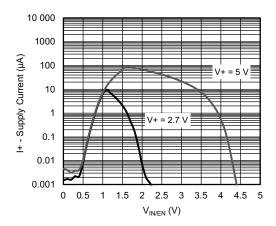

Switching Time vs. Temperature


Switching Threshold vs. Supply Voltage

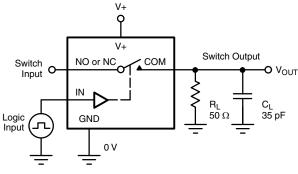

Charge Injection vs. Source Voltage

Leakage Current vs. Temperature

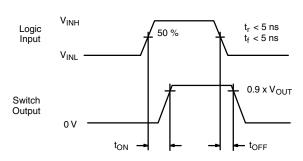

Leakage Current vs. Temperature


Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Loss, OIRR, X_{TALK} vs. Frequency


Positive Supply Current vs. Logic Voltage

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

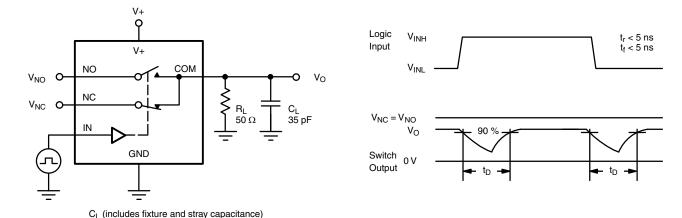
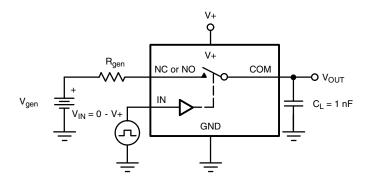
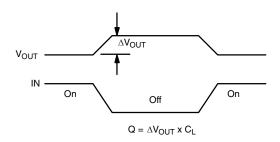
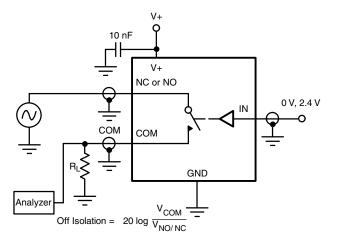
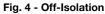




Fig. 2 - Break-Before-Make Interval


TEST CIRCUITS



IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

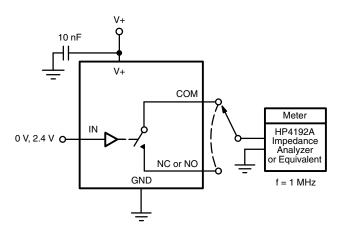


Fig. 5 - Channel Off/On Capacitance

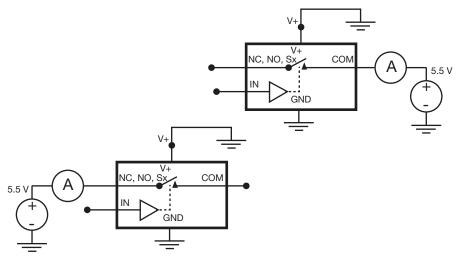


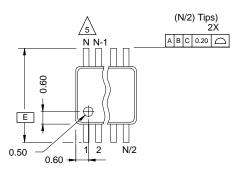
Fig. 6 - Source / Drain Power Down Leakage

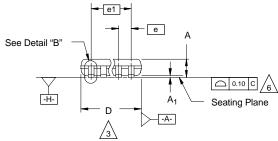
www.vishay.com

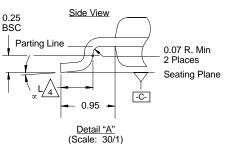
Vishay Siliconix

PRODUCT SUMMARY		
Part number	DG2519E	DG2519E
Status code	2	2
Configuration	SPDT x 2	SPDT x 2
Single supply min. (V)	1.8	1.8
Single supply max. (V)	5.5	5.5
Dual supply min. (V)	-	-
Dual supply max. (V)	-	-
On-resistance (Ω)	2.5	2.5
Charge injection (pC)	-14	-14
Source on capacitance (pF)	24	24
Source off capacitance (pF)	7	7
Leakage switch on typ. (nA)	0.2	0.2
Leakage switch off max. (nA)	2	2
-3 dB bandwidth (MHz)	217	217
Package	DFN-10	MSOP-10
Functional circuit / applications	Multi Purpose, instrumentation, medical and healthcare, portable	Multi Purpose, instrumentation, medical and healthcare, portable
Interface	Binary	Binary
Single supply operation	Yes	Yes
Dual supply operation	-	-
Turn on time max. (ns)	14	14
Crosstalk and off isolation (dB)	48	48

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg278595.






MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

Top View

NOTES:

. Die thickness allowable is 0.203 ± 0.0127.

2. Dimensioning and tolerances per ANSI.Y14.5M-1994.

3.

Dimensions "D" and "E $_1$ " do not include mold flash or protrusions, and are measured at Datum plane $\boxed{-H_2}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate.

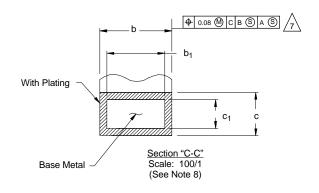
Terminal positions are shown for reference only.

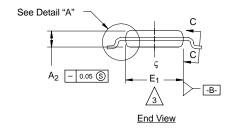
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

9. Controlling dimension: millimeters.

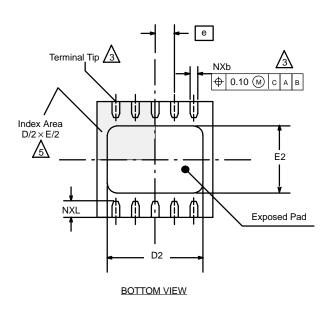

10. This part is compliant with JEDEC registration MO-187, variation AA and BA.



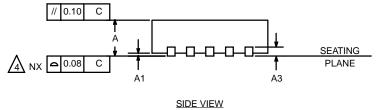
Datums —A— and —B— to be determined Datum plane —H—.

2 Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 10L


	MI						
Dim	Min	Nom	Max	Note			
Α	-	-	1.10				
A ₁	0.05	0.10	0.15				
A ₂	0.75	0.85	0.95				
b	0.17	-	0.27	8			
b ₁	0.17	0.20	0.23	8			
С	0.13	- 0.23					
c ₁	0.13	0.13 0.15 0.18					
D		3.00 BSC					
Е		4.90 BSC					
E ₁	2.90	3.00	3.10	3			
е		0.50 BSC					
e ₁		2.00 BSC					
L	0.40	0.55	0.70	4			
N		10					
œ	0°	4°	6°				
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867							


Document Number: 71245


12-Jul-02

DFN-10 LEAD (3 X 3)

NOTES:

1. All dimensions are in millimeters and inches.

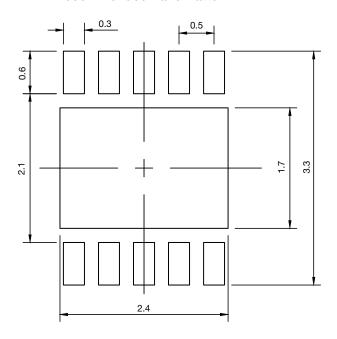
N is the total number of terminals.

Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip. $\,$

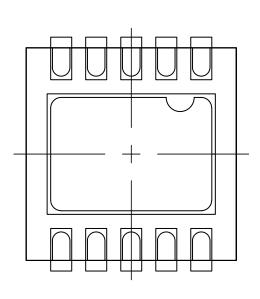
Coplanarity applies to the exposed heat sink slug as well as the

The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

	MILLIMETERS INCHES							
Dim	Min	Nom	Max	Min	Nom	Max		
Α	0.80	0.90	1.00	0.031	0.035	0.039		
A 1	0.00	0.02	0.05	0.000	0.001	0.002		
А3		0.20 BSC			0.008 BSC			
b	0.18	0.23	0.30	0.007 0.009 0.012				
D	3.00 BSC			0.118 BSC				
D2	2.20	2.38	2.48	0.087 0.094 0.0				
Е		3.00 BSC			0.118 BSC			
E2	1.49	1.64	1.74	0.059	0.065	0.069		
е	0.50 BSC			0.020 BSC				
L	0.30	0.40	0.50	0.012	0.016	0.020		
*Use millimeters as the primary measurement.								
ECN: S-42	2134—Rev. A	, 29-Nov-04	•	•		•		


DWG: 5943

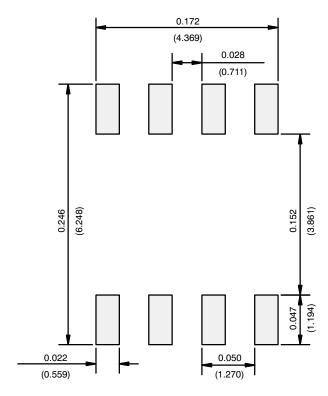
Document Number: 73181 www.vishay.com 29-Nov-04



Recommended Minimum PAD for DFN10 3 mm x 3 mm

Recommended Land Pattern

Recommended Land Pattern vs. Case Outline


Note: Dimension are in millimeters

ECN: S22-0379-Rev. A, 02-May-2022

DWG: 3008

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.