6 A, 33 m Ω , 2.8 V to 22 V, eFuse With Programmable Current Limit, and Programmable OVP #### **DESCRIPTION** The SIP32434A and SIP32434B are single channel eFuses protect both power sources and downstream circuitry from excessive inrush currents, overloads, short circuits, and overvoltage faults. They provide increased controllability and reliability with simplified designs with minimal external components. V_{IN} overvoltage protection and undervoltage lockout threshold levels can be set with an external resistor network. VIN inrush current can be set with a soft start capacitor. The output current limit can be set by a resistor connected to I_{LIM} pin. I_{LIM} pin voltage can also serve as switch current reporting. Upon switch-off due to latchable faults, the SIP32434A will latch the power switch off and the PGD will remain low. The switch can restart by resetting the EN or $V_{\rm IN}$. The SIP32434B will auto retry if there is no OTP or OVP fault. The retry delay time is 32 times the soft start time set by the CSS. The switch is characterized for operation over a junction temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C. #### **FEATURES** - 2.8 V to 22 V operation voltage - "28 V max. DC tolerance on VIN - 33 mΩ typical switch resistance - 0.5 A to 6 A current limit setting range - Current limit accuracy of ± 7 % - Fast short circuit protection response - OCP triggering without overhead current - Programmable turn-on slew rate - Adjustable OVP (and fixed 24 V OVP at V_{IN}) - Adjustable UVLO - Over-temperature protection - PGD: power good indicator output - Compact TDFN10 3 mm x 3 mm package - Active reverse blocking feature available with SIP32433 - Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u> #### **APPLICATIONS** - Industrial - · IoT and smart home - Medical and healthcare equipment - Network and telecom equipment - Data storage, solid state drives - Computing - PLC - Lighting - · Gaming consoles #### TYPICAL APPLICATION CIRCUIT | ORDERING INFORMATION | | | | | | | | | | |----------------------|------------------|-------------------------|-------------------------------|--------|-----------------|-------------------|--|--|--| | PART NUMBER | OCP RESPONSE | $R_{DS(on}$ $(m\Omega)$ | TRUE REVERSE CURRENT BLOCKING | REPORT | MARKING
CODE | PACKAGE | | | | | SIP32434ADN-T1E4 | Latch | 33 | No | PG | 2434A | DFN10 3 mm x 3 mm | | | | | SIP32434BDN-T1E4 | Auto-retry | 33 | No | PG | 2434B | DFN10 3 mm x 3 mm | | | | | SIP32434AEVB | Evaluation board | | | | | | | | | | SIP32434BEVB | | Evaluation board | | | | | | | | #### Note • For AEC-Q100 qualified automotive applications, please refer to SIPQ32434ADN-T1E4 and SIPQ32434BDN-T1E4 | ABSOLUTE MAXIMUM RATINGS | | | | | | | |--|------------------|---|------|--|--|--| | PARAMETER | CONDITION | LIMIT | UNIT | | | | | Input voltage (V _{IN}) | Reference to GND | -0.3 to +28 | | | | | | Output voltage (V _{OUT}) | Reference to GND | -0.3 to (V _{IN} + 0.3) or 28,
whichever comes first | | | | | | , | | -5 V for +5 μs | | | | | | EN voltage | Reference to GND | -0.3 to +28 | V | | | | | OVP | Reference to GND | -0.3 to +6.0 | | | | | | SS | Reference to GND | -0.3 to +6.0 | | | | | | I _{LIM} | | -0.3 to +6.0 | | | | | | PGD | | -0.3 to +6.0 | | | | | | Maximum continuous switch current | SIP32434 | 6 | Α | | | | | Thermal resistance (thJA) | | 44.8 | °C/W | | | | | ESD rating | HBM | ± 2 | 14/ | | | | | ESD rating | CDM | ± 0.75 | kV | | | | | Latch up current (V _{IN} and V _{OUT}) | | 200 | mA | | | | | MSL rating | | MSL1 | | | | | | Temperature | | | | | | | | Operating junction temperature | | -40 to 150 | | | | | | Maximum operating junction temperature | | +150 | °C | | | | | Storage temperature | | -65 to +150 | | | | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. | RECOMMENDED OPERATING RANGE | | | | | | | | |----------------------------------|-------------|------|--|--|--|--|--| | ELECTRICAL | LIMIT | UNIT | | | | | | | Input voltage (V _{IN}) | 3 to 22 | V | | | | | | | Operating junction temperature | -40 to +125 | °C | | | | | | | Parameter Par | ELECTRICAL SPECIFICATIONS | | | | | | | | | |---|--|-----------------------|--|-------|--------|-------|------|--|--| | Ven(P) = 2.4 V, COUT = 0.1 μF, R _{LIM} = 4.1 kΩ MIN. TYP. MAX. | | | TEST CONDITIONS UNLESS SPECIFIED | | LIMITS | | | | | | V _{IN} max. DC tolerance V _{IN/max.}) V _{IN poperation voltage - - 28 V V_{IN} operation voltage V_{IN} Operating input voltage range 2.8 - 22 V Quiescent current I_{QiOM} EN = 1.8 V, V_{IN} = 2.8 V to 28 V, EN = 0 V, T_A = 25 °C - 0.8 5 µA OVP switch-off current I_{QiOMP} V_{IN} = 2.8 V to 28 V, EN = 0 V, T_A = 25 °C - 0.8 5 µA Vin ULVO V_{IN} = 2.8 V to 28 V, EN = 2.4 V, OVP = 1.4 V - 1 - - 7 50 µA Weitch V_{OUT} leakage I_{UVLO, IN} V_{IN} = 2.3 V -500 - +500 nA Switch V_{OUT} leakage I_{UVLO, IN} V_{IN} = 2.3 V -500 - +500 nA Switch V_{OUT} leakage I_{UVLO, IN} V_{IN} = 2.3 V -500 - +500 nA OVP brysteresis OVP Brysteresis OVP_{HST} 45 105 140 mV OVP leakage I_{OVP} V_{IN} = 12 V, OVP Fishing, T_A = 25 °C} | PARAMETER | SYMBOL | | MIN. | TYP. | MAX. | UNIT | | | | V _{IN} operation voltage V _{IN} Operating input voltage range 2.8 - 22 V Quiescent current I _{Q(ON)} EN = 1.8 V, V _{IN} = 2.8 V to 28 V, EV QUT open - 230 340 pA Shutdown current I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 0 V, T _A = 25 °C - 0.8 5 pA OVP switch-off current I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 0 V, T _A = 25 °C - 0.8 5 pA OVP switch-off current I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 0 V, T _A = 25 °C - 1 1 - Switch V _{OUT} leakage I _{UNLO} DUT V _{IN} = 2.3 V -500 - +500 nA Switch V _{OUT} leakage I _{UNLO} DUT V _{IN} = 2.3 V -500 - +500 nA OVP threshold V _{OVP} V _{IN} = 12 V, OVP rising, T _A = 25 °C 1.14 1.2 1.26 V OVP physteresis OVP HST 45 105 140 mV OVP leakage I _{OVP} V _{OVP} = 1.2 V on the pin, T _A = 25 °C - 40 | Power Supply | | | | | | | | | | V _{IN} operation voltage V _{IN} Departing input voltage range 2.8 - 22 v Quiescent current I _{Q(ON)} EN = 1.8 V, V _{IN} = 2.8 V to 28 V, EN = 0.0 V, T _A = 25°C - 0.8 5 μA OVP switch-off current I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 0.4 V, OVP = 1.4 V - 1 - - 230 340 μA V _{IN} ULO I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 0.4 V, OVP = 1.4 V - 1 - - 1 - - 27 50 nA - Switch O _{QUI} leakage I _{UVLO, IN} - - 27 50 nA - 90 nA - 27 50 nA - 27 50 nA - 27 50 nA - 90 nA - 27 50 nA - 27 50 nA - 1.26 V - 27 50 nA - 1.26 V - - - - - | V _{IN} max. DC tolerance | V _{IN(max.)} | | 1 | - | 28 | V | | | | Shutdown current | V _{IN} operation voltage | V_{IN} | Operating input voltage range | 2.8 | - | 22 | V | | | | OVP switch-off current I _{Q(OVP)} V _{IN} = 2.8 V to 28 V, EN = 2.4 V, OVP = 1.4 V - 1 - V _{IN} UIVO Switch V _{IN} leakage I _{UVLO IN} V _{IN} = 2.3 V -500 - +500 nA Switch V _{IN} leakage I _{UVLO IN} V _{IN} = 2.3 V - 27 50 μA Overvoltage Protection UVD Protection VIN = 12 V, OVP rising, T _A = 25 °C 1.14 1.2 1.26 V OVP hysteresis OVP _{HST} 45 105 140 mV OVP leakage I _{OVP} V _{OVP} = 1.2 V on the pin, T _A = 25 °C - 40 100 nA V _{IN} pin internal fixed OVP IN _{OVP} V _{OVP} = 1.2 V on the pin, T _A = 25 °C - 40 100 nA V _{IN} pin internal fixed OVP IN _{OVP} V _{EN} rising - 1.25 - V EN / UVLO V _{UVP} V _{EN} falling - 1.25 - V EN / UVLO leakage V _{UVP} V _{EN} falling - 1.05 - + L L< | Quiescent current | I _{Q(ON)} | | 1 | 230 | 340 | | | | | V _{IN} ULVO Switch V _{QUT} leakage I _{UVLO} IN V _{IN} = 2.3 V -500 - +500 nA Switch V _{IN} leakage I _{UVLO} IIN V _{IN} = 2.3 V -500 - +500 µA Overvoltage Protection OVP threshold V _{OVP} V _{IN} = 12 V, OVP rising, T _A = 25 °C 1.14 1.2 1.26 V OVP bysteresis OVP _{HST} 45 105 140 mV OVP leakage I _{OVP} V _{OVP} = 1.2 V on the pin, T _A = 25 °C - 40 100 nA V _{IN} pin internal fixed OVP IN _{OVP} T _A = 25 °C 23 24 25.6 V EN JUVLO V _{IN} pin internal fixed OVP IN _{OVP} V _{IN} rising - 1.05 - V EN off threshold V _{UVPR} V _{EN} falling - 1.05 - V EN / UVLO leakage V _{UVPR} V _{EN} falling - 1.05 - V Soft start bias current I _{SS} V _{EN} falling - 5 - <td>Shutdown current</td> <td>$I_{Q(SD)}$</td> <td></td> <td>1</td> <td>0.8</td> <td>5</td> <td>μΑ</td> | Shutdown current | $I_{Q(SD)}$ | | 1 | 0.8 | 5 | μΑ | | | | Switch Vout leakage Iuvlo out Vin = 2.3 V -500 - +500 nA | OVP switch-off current | I _{Q(OVP)} | $V_{IN} = 2.8 \text{ V to } 28 \text{ V}, \text{ EN} = 2.4 \text{ V}, \text{ OVP} = 1.4 \text{ V}$ | 1 | 1 | - | | | | | Switch V _{IN} leakage | | | | | | | | | | | | Switch V _{OUT} leakage | I _{UVLO_OUT} | V _{IN} = 2.3 V | -500 | - | +500 | nA | | | | | Switch V _{IN} leakage | I _{UVLO_IN} | | - | 27 | 50 | μΑ | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Overvoltage Protection | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | OVP threshold | V _{OVP} | V_{IN} = 12 V, OVP rising, T_A = 25 °C | 1.14 | 1.2 | 1.26 | V | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | OVP hysteresis | OVP _{HST} | | 45 | 105 | 140 | mV | | | | | OVP leakage | I _{OVP} | $V_{OVP} = 1.2 \text{ V}$ on the pin, $T_A = 25 \text{ °C}$ | - | 40 | 100 | nA | | | | $ \begin{array}{ c c c c c c }\hline EN \ on \ threshold & V_{UVPR} & V_{EN} \ rising & - & 1.25 & - & V\\ \hline EN \ off \ threshold & V_{UVPF} & V_{EN} \ falling & - & 1.05 & - & \\ \hline EN \ / \ UVLO \ leakage & V_{EN} = 1.2 \ V & -0.25 & - & +0.25 & \mu A\\ \hline Soft \ start \ bias \ current & I_{SS} & & & - & 5 & - & \mu A\\ \hline \textbf{Overcurrent Protection} & & & & & & - & 5 & - & \mu A\\ \hline \textbf{Overcurrent Protection} & & & & & & & - & 5 & - & \mu A\\ \hline \textbf{Current } \ limit \ voltage \ threshold & V_{OCP} & Voltage \ that \ triggers \ the \ OCP \ shown \ on \ I_{LIM} \ pin & - & 0.6 & - & VCu \\ \hline \textbf{Current } \ limit \ accuracy & & & & V_{IN} - V_{OUT} = 1 \ V, \ R_{LIM} = 2.06 \ k\Omega & 5.58 & 6 & 6.42 \\ \hline \textbf{V}_{IN} - V_{OUT} = 1 \ V, \ R_{LIM} = 3.53 \ k\Omega & 3.22 & 3.5 & 3.78 \\ \hline \textbf{V}_{IN} - V_{OUT} = 1 \ V, \ R_{LIM} = 3.53 \ k\Omega & 3.22 & 3.5 & 3.78 \\ \hline \textbf{V}_{IN} - V_{OUT} = 1 \ V, \ R_{LIM} = 24.72 \ k\Omega & 0.43 & 0.5 & 0.58 \\ \hline \textbf{Current } \ limit \ setting \ range & & & & & & & & & & & & & & & & & & &$ | V _{IN} pin internal fixed OVP | | T _A = 25 °C | 23 | 24 | 25.6 | V | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | EN / UVLO | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | EN on threshold | V_{UVPR} | V _{EN} rising | - | 1.25 | - | V | | | | Soft start bias current I _{SS} - 5 - μA Overcurrent Protection Current limit voltage threshold V _{OCP} Voltage that triggers the OCP shown on I _{LIM} pin - 0.6 - VCu Current limit accuracy IOCP V _{IN} - V _{OUT} = 1 V, R _{LIM} = 2.06 kΩ 5.58 6 6.42 | EN off threshold | V_{UVPF} | V _{EN} falling | - | 1.05 | - |] | | | | | EN / UVLO leakage | | V _{EN} = 1.2 V | -0.25 | - | +0.25 | μΑ | | | | | Soft start bias current | I _{SS} | | - | 5 | - | μΑ | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Overcurrent Protection | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Current limit voltage threshold | V _{OCP} | | - | 0.6 | - | VCu | | | | $ \frac{I_{OCP}}{V_{IN} - V_{OUT} = 1 \text{ V}, R_{LIM} = 8.24 \text{ k}\Omega} = \frac{1.32}{0.43} = \frac{1.5}{0.58} = \frac{1.68}{0.58} $ A $ \frac{V_{IN} - V_{OUT} = 1 \text{ V}, R_{LIM} = 24.72 \text{ k}\Omega}{V_{IN} - V_{OUT} = 1 \text{ V}, R_{LIM} = 24.72 \text{ k}\Omega} = \frac{0.43}{0.5} = \frac{0.58}{0.58} \frac{0.58}{0.59} \frac{0.58}{0.59}$ | | | $V_{IN} - V_{OUT} = 1 \text{ V}, R_{LIM} = 2.06 \text{ k}\Omega$ | 5.58 | 6 | 6.42 | | | | | $ \frac{V_{\text{IN}} - V_{\text{OUT}} = 1 \text{ V, R}_{\text{LIM}} = 8.24 \text{ k}\Omega}{V_{\text{IN}} - V_{\text{OUT}} = 1 \text{ V, R}_{\text{LIM}} = 24.72 \text{ k}\Omega} & 0.43 & 0.5 & 0.58 \\ \hline Current limit setting range & Minimum R_{\text{LIM}} = 1.74 \text{ k}\Omega & 0.5 & - & 7.1 \\ \hline Current limit hold-up time & t_{\text{ILIM}} & Current limiting timeout, if no OTP & 3 & 6 & 9 & ms \\ \hline \textbf{Power Switch} \\ \hline ON resistance & R_{DS(ON)} & V_{\text{IN}} = 5 \text{ V to } 22 \text{ V, I}_{\text{OUT}} = 1 \text{ A, T}_{\text{J}} = 25 ^{\circ}\text{C} & - & 33 & 41 \\ \hline V_{\text{IN}} = 5 \text{ V to } 22 \text{ V, I}_{\text{OUT}} = 1 \text{ A, T}_{\text{J}} = 85 ^{\circ}\text{C} & - & - & 48 \\ \hline \textbf{PGD, Power Good} \\ \hline PGD pull-down resistance & R_{PG} & V_{\text{IN}} = 5 \text{ V, output pin} = 0.1 \text{ V} & - & 5.2 & 10 & \Omega \\ \hline \end{tabular}$ | Current limit accurrent | 1 . | V_{IN} - V_{OUT} = 1 V, R_{LIM} = 3.53 k Ω | 3.22 | 3.5 | 3.78 | | | | | | Current limit accuracy | IOCP | | | 1.5 | 1.68 | Α | | | | | | | $V_{IN} - V_{OUT} = 1 \text{ V}, R_{LIM} = 24.72 \text{ k}\Omega$ | 0.43 | 0.5 | 0.58 | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Current limit setting range | | Minimum $R_{LIM} = 1.74 kΩ$ | 0.5 | - | 7.1 | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Current limit hold-up time | t _{ILIM} | Current limiting timeout, if no OTP | 3 | 6 | 9 | ms | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Power Switch | | - | | • | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ON registance | В | $V_{IN} = 5 \text{ V to } 22 \text{ V}, I_{OUT} = 1 \text{ A}, T_{J} = 25 \text{ °C}$ | - | 33 | 41 | | | | | PGD pull-down resistance R_{PG} $V_{IN} = 5 \text{ V}$, output pin = 0.1 V - 5.2 10 Ω | ON resistance | HDS(ON) | | - | - | 48 | mr7 | | | | | PGD, Power Good | | | | | | | | | | | PGD pull-down resistance | R_{PG} | $V_{IN} = 5 \text{ V}$, output pin = 0.1 V | - | 5.2 | 10 | Ω | | | | | | I _{PG} | Biased with 5 V _{DC} | - | 0.01 | 1 | μΑ | | | | SWITCHING CHARACTERISTICS | | | | | | | | | |---------------------------|----------------------|---|--------|------|------|------|--|--| | | | TEST CONDITIONS UNLESS SPECIFIED | LIMITS | | | | | | | PARAMETER | SYMBOL | $V_{IN} = 12 \text{ V}, T_J = -40 \text{ °C to } +125 \text{ °C}, \ V_{EN(H)} = 2.4 \text{ V}, C_{OUT} = 0.1 \text{ μF}, R_{LIM} = 4.1 \text{ $k\Omega$}$ | MIN. | TYP. | MAX. | UNIT | | | | EN / UVLO | | | | | | | | | | Switch turn-on delay time | T _{ON_DLY} | From EN / UVLO voltage, V_{UVPR} to V_{OUT} reaches 10 % V_{IN} , R_L = 10 Ω , C_L = 10 μF , C_{SS} open | - | 220 | - | μs | | | | Shutdown delay | T _{OFF_DLY} | From EN / UVLO low to V_{OUT} = 0.9 x V_{IN} , R_L = 10 Ω , C_L = 10 μ F, C_{SS} open | - | 10 | - | | | | | OVP Timing | | | | | | | | | | OVP off time | t _{OVP} | R_L = 100 Ω , C_L = 0 μF, OVP steps from 1 V to 1.4 V; measured from OVP pin voltage crossing 1.2 V threshold to V_{OUT} = 0.9 x V_{IN} | - | 0.3 | 1 | | | | | Internal OVP off time | t _{OVP_INT} | R_L = 100 $Ω$, C_L = 0 $μF$, V_{IN} steps from 22 V to 26 V; measured from V_{IN} pin voltage crossing 24 V threshold to V_{OUT} = 0.9 x V_{IN} | - | 1.5 | - | μs | | | | Flag reporting delay | | PGD pull up to 5 V through a 100 kΩ;
delay time from OVP pin voltage step
to PGD is below 0.5 V | - | - | 2 | | | | #### www.vishay.com | SWITCHING CHARACTERISTICS | | | | | | | | | |---------------------------------|--------------------|--|--------|------|------|------|--|--| | | | TEST CONDITIONS UNLESS SPECIFIED | LIMITS | | | | | | | PARAMETER | SYMBOL | $V_{IN} = 12 \text{ V, } T_J = -40 \text{ °C to } +125 \text{ °C,}$
$V_{EN(H)} = 2.4 \text{ V, } C_{OUT} = 0.1 \text{ µF, } R_{LIM} = 4.1 \text{ k}\Omega$ | MIN. | TYP. | MAX. | UNIT | | | | Overcurrent protection | | | | | | | | | | Moderate overcurrent protection | t _{OCP} | Load current is 120 % of current limit threshold | I | 1.1 | - | μs | | | | Soft Start Control | | | | | | | | | | Output rise up time | | $V_{IN} = 12 \text{ V}, R_L = 10 \Omega, C_L = 10 \mu\text{F}, V_{OUT} \text{ from} $ 10 % to 90 % V_{IN}, C_{SS} open | - | 560 | - | μs | | | | | t _R | $V_{IN} = 12 \text{ V}, \text{ R}_{L} = 10 \ \Omega, \text{ C}_{L} = 10 \ \mu\text{F}, \text{ V}_{OUT} \text{ from} \\ 10 \ \% \text{ to } 90 \ \% \text{ V}_{IN}, \text{ C}_{SS} = 22 \text{ nF}$ | - | 4.7 | - | ms | | | | SS charge current | | | - | 5 | - | μΑ | | | | Auto Retry | | | | | | | | | | Auto retry cycle | RTY _{cnt} | Delay time of restart after all faults are removed; this is defined as the number of cycles of soft start time set by C _{SS} | - | 32 | - | | | | | Thermal Shutdown | | | | | | | | | | Thermal shutdown | | Temperature increases | ı | 165 | = | °C | | | | Thermal shutdown hysteresis | | | - | 45 | - | °C | | | #### **PACKAGE OUTLINE** DFN10, pin 1 dot marking is on top of the device Fig. 2 - Pin Out Drawing (top view) | PIN DESCRI | PTION | | |-------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PIN # | NAME | FUNCTION | | 1, 2 | V _{IN} | Power switch input pins; two pins are fused inside the package | | 3 | SS | A capacitor from this pin to GND sets output voltage slew rate | | 4 | EN / UVLO | Active high switch control input; V _{THL} < 0.3 V, V _{THH} > 1.4 V | | 5 | I _{LIM} / I _{MON} | A resistor from this pin to GND sets the overload and short-circuit current limit; the pin can be used for current reporting, referring to the voltage developed over the current limit setting resistor | | 6 | GND | Ground | | 7 | OVP | Input for setting the programmable overvoltage protection threshold. An overvoltage event turns-off the internal FET and asserts FLT to indicate the overvoltage fault | | 8 | PGD | Open drain output, when V_{OUT} is \geq 95 % V_{IN} , and none of the following faults are triggered: OT, OC, OV | | 9, 10 | V _{OUT} | Power switch output pins; two pins are fused inside the package | | Exposed pad | GND | The package's central exposed pad must be connected to the ground plane; optimal PCB thermal design will enhance device performance | #### **FUNCTIONAL BLOCK DIAGRAM AND TRUTH TABLE** | TRUTH TABLE | | |-------------|--------| | EN | SWITCH | | 1 | ON | | 0 | OFF | Fig. 3 - Device Block Diagram Fig. 4 - Quiescent Current vs. Input Fig. 5 - Quiescent Current vs. Temperature Fig. 6 - Shutdown Current vs. Input Fig. 7 - Switch Off Current vs. Input Fig. 8 - On Resistance vs. Input Fig. 9 - Shutdown Current vs. Temperature Fig. 10 - Switch Off Current vs. Temperature Fig. 11 - On Resistance vs. Temperature Fig. 12 - Soft Start Current vs. Input Voltage VIN Fig. 13 - Threshold Voltage vs. Input Voltage V_{IN} Fig. 14 - Soft Start Current vs. Temperature Fig. 15 - EN Current vs. EN Voltage Fig. 16 - Enable Resistance vs. Temperature Fig. 17 - Rise Time vs. Temperature Fig. 18 - Turn On Delay Time vs. Temperature Fig. 19 - Turn Off Delay Time vs. Temperature Fig. 20 - OVP Voltage vs. Temperature #### TYPICAL CHARACTERISTICS Fig. 21 - Turn On by EN V_{IN} = 12 V, R_L = 6 Ω , C_L = 220 μ F, C_{SS} = 22 nF, R_{LIM} = 1.74 $k\Omega$ Fig. 24 - Turn On by Hot-Plug of VIN V_{IN} = 12 V, R $_{\text{L}}$ = 6 $\Omega,$ C $_{\text{L}}$ = 220 $\mu\text{F},$ C $_{\text{SS}}$ = 133 nF, R $_{\text{LIM}}$ = 1.74 k Ω EN Voltage Divider Resistors, 1 M Ω and 127 k Ω Fig. 22 - Turn Off by EN V_{IN} = 12 V, R_L = 6 Ω , C_L = 220 μ F, C_{SS} = 22 nF, R_{LIM} = 1.74 $k\Omega$ Fig. 25 - Turn On by V_{IN} When EN is 3 V V_{IN} = 12 V, R_L = 6 Ω , C_L = 220 μ F, C_{SS} = 133 nF, R_{LIM} = 1.74 $k\Omega$ Fig. 23 - Turn On by V_{IN} V_{IN} = 12 V, R_L = 6 Ω, C_L = 220 μF, C_{SS} = 133 nF, R_{LIM} = 1.74 kΩ EN Voltage Divider Resistors, 1 MΩ and 127 kΩ Fig. 26 - Turn On by EN Into Resistive Load $\mbox{V}_{\mbox{\footnotesize{IN}}}$ = 12 V, $\mbox{R}_{\mbox{\footnotesize{L}}}$ = 6 $\Omega,$ $\mbox{C}_{\mbox{\footnotesize{SS}}}$ = 133 nF, $\mbox{R}_{\mbox{\footnotesize{LIM}}}$ = 1.74 k Ω Fig. 27 - Turn On by EN Into Capacitive Load V_{IN} = 12 V, C_L = 220 μ F, C_{SS} = 47 nF, R_{LIM} = 1.74 k Ω Fig. 30 - Turn On by EN Into OCP Load V_{IN} = 12 V, R_L = 2 Ω , C_L = 220 μ F, C_{SS} = 133 nF, R_{LIM} = 1.74 $k\Omega$ Fig. 28 - Turn On Into Output Short V_{IN} = 12 V, C_{SS} = 133 nF, I_{LIM} = 1.74 $k\Omega$ Fig. 31 - Output Short With a 2 Ω Load V_{IN} = 12 V, R_L = 2 Ω , C_{SS} = 133 nF, R_{LIM} = 1.74 k Ω Fig. 29 - Turn On Into Output Short, Auto-Retry ${\rm V_{IN}}$ = 12 V, ${\rm C_{SS}}$ = 133 ${\rm \mu F}$, ${\rm R_{LIM}}$ = 1.74 $k\Omega$ Fig. 32 - Over Current Protection Increase Load Current Slowly $V_{IN} = 12 \ V, \ C_L = 220 \ \mu F, \ C_{SS} = 133 \ nF, \ R_{LIM} = 1.74 \ k\Omega$ www.vishay.com Fig. 33 - Over Voltage Protection R_L = 12 Ω , C_L = 100 μ F, C_{SS} = 27 nF, R_{LIM} = 1.74 k Ω , OVP Set to 15.6 V #### **OPERATION** The SIP32434A and SIP32434B are 33 m Ω switches designed to operate in the 2.8 V to 22 V range. The V_{IN} maximum DC tolerance is 28 V. The devices start their operation by checking the V_{IN} , V_{OUT} , OVP, and EN / UVLO pins. When the voltages are within the operation ranges, the PGD open drain switch is off. The PGD is high through an external pull high resistor. A high level on the EN / UVLO pin turns on the soft start current source charging CSS and enables internal MOSFET gate driver control the V_{OUT} to follow SS voltage at 9 times ratio. In case of OCP during soft start, the switch current will be regulated to the set current limit level. After a successful turn-on sequence, the device now actively monitors its load current, input voltage, and protects the load from harmful over-current, and over-voltage conditions. A built-in thermal sense circuit will detect junction over temperature and shut down the switch for safety. #### SWITCH ON / OFF, AND UNDER-VOLTAGE LOCKOUT PROTECTION - UVLO EN / UVLO pin controls the on / off of the power switch. When EN / UVLO is at a logic high the switch is on. When EN / UVLO is at a logic low, the switch is off. The SIP32434A and SIP32434B implement under-voltage protection on the EN / UVLO to turn off the output. It is a user-defined under-voltage protection setting to flexibly select the proper minimum applied voltage for the downstream load or the device's proper operation. The diagram shows how a resistor divider from supply to GND can be used to set the UVLO set point for a given voltage supply The resistors must be sized large enough to minimize the constant leakage from supply to ground through the resistor divider network. At the same time, keep the current through the resistor network sufficiently larger than the leakage current on the EN / UVLO pin to minimize the error in the resistor divider ratio. $$R_{EN1} = \frac{R_{EN2}(V_{IN} - V_{UVPR})}{V_{UVPR}}$$ Where V_{UVPR} is 1.25 V. UVLO turn off delay (T_{OFF DLY}) is typically 550 µs and turn on delay T_{ON DLY} is typically 500 µs. Fig. 35 - Switching Times #### **INRUSH CURRENT, AND OVER-CURRENT PROTECTION** The SIP32434A and SIP32434B incorporate two protections against over-current: - Adjustable slew rate (SR) for inrush current control - · Adjustable over-current protection / active current limit to protect against overload conditions The over-current protection (OCP) is active also during soft start. The over-current protection circuit controls the switch impedance to limit the current to the level programmed by the R_{SET} resistor. If the over-current condition persists for more than 6 ms (typ.), the switch shuts off and alert the drain FLG is asserted, pulling the pin to GND. #### **SLEW RATE CONTROL** An inrush current happens when the switch turns on into a large output capacitance. If the inrush current is not controlled, it can damage the input connectors and / or cause the system power supply to droop, leading to unexpected restarts elsewhere in the system. The SIP32434A and SIP32434B provide integrated output slew rate control to manage the inrush current during start-up. This is achieved by forcing the V_{OUT} to follow the voltage on a soft start capacitor. A constant current source of 5 μ A charges the C_{SS} , generating a linear ramp up voltage on C_{SS} . $$V_{OUT} = 9 \times V_{SS}$$ The inrush current is proportional to the load capacitance and rising slew rate. The following equations can be used to calculate the C_{SS} and slew rate required to limit the inrush current (I_{INRUSH}) for a given load capacitance (C_{OUT}): $$SR (V/ms) = \frac{I_{INRUSH} (mA)}{C_{OUT} (\mu F)}$$ $$SR = \frac{I_{SS}}{C_{SS}} \times 9$$ $$T_{SS} = \frac{V_{IN}}{SR} = V_{IN} \times \frac{C_{OUT} (\mu F)}{I_{INRUSH} (mA)}$$ Inrush current should be controlled well below 20 % of set current limit, and within the device SOA. The fastest output slew rate is achieved by leaving the soft start pin open. PGD is pulled through a resistor to an external voltage source Fig. 36 #### **CURRENT LIMIT SETTING** The SIP32434A and SIP32434B actively monitor the current flow through the switch and provide a quick response to over-current conditions by actively regulating the current to a set limit. The current limit is set by connecting a resistor between the I_{LIM} pin and GND. R_{SET} can be calculated by the following formula for a desired current limit: $$I_{LIM} = \frac{V_{OCP}}{R_{SET}} \times 20 600$$ V_{OCP} is 0.6 V. When the load current exceeds the threshold (I_{LIM}), the parts respond within 1 μ s (typ.) to turn off the switch and then regulate the switch gate voltage to limit the output current to the set I_{LIM} level. During this brief period before the over-current protection circuit is engaged, the parts will see a surge current, especially under a severe output short condition. The magnitude of the surge current developed during the period when the over-current protection is not engaged is determined by impedance in the loop from the input current source to ground and the response time. This impedance is the sum total of the current source impedance, the path resistance and inductance, and the load impedance. If the over-current condition persists for more than 6 ms / typ., the switch shuts off. When V_{OUT} falls below 95 % of V_{IN} , the PGD is pulled low. The device will exit current limiting when the load current falls below I_{LIM} before the end of the current limit period. The control circuit will increase the gate drive in the same manner as the soft start when the switch exits from the current limit mode. The I_{LIMIT} / I_{MON} pin can also be used for current reporting. The output path should be of high impedance to prevent any disruption to the current limit circuitry. The current limit mode could result in excessive power on the switch, which increases the T_J quickly. The SIP32434A and SIP32434B have OTP, providing an enhanced level of production. Once the device is off due to OCP or OTP faults, the SIP32434A stays in the latch-off state and the SIP32434B auto-retries after 32 times of the programmed soft start time. They can be reset by toggling $V_{\rm IN}$ or EN / UVLO. PGD is pulled through a resistor to an external voltage source Fig. 37 - Over-Current Protection PGD is pulled through a resistor to an external voltage source Fig. 38 - Turn On Into Over-Current Load #### **OVER-VOLTAGE PROTECTION (OVP)** The SIP32434A and SIP32434B implement overvoltage protection (OVP) on both the V_{IN} and OVP pins to protect the output load in the event of an input over-voltage. When the input exceeds the over-voltage protection thresholds $V_{OVP(R)}$ or the IN_{OVP}, which is typically 24 V, the device turns off the output within t_{OVP} , while the open drain PGD asserts in the meantime. As long as an over-voltage condition is present on the input, the device stays disabled with the output turned off. Over-voltage is a non-latchable fault. Once the input voltage returns to the normal operating range, the device attempts to start up normally. OVP voltage divider resistors total resistance should not be over 2.5 M Ω . Fig. 40 - Over-Voltage Protection #### **OTP, OVER-TEMPERATURE PROTECTION** Over-temperature protection turns off the power switch when the die temperature reaches the OTP threshold of 165 °C. The hysteresis is 45 °C. When the die temperature drops below 120 °C, it is allowed to turn on again. #### **PGD, POWER GOOD REPORTING** PGD is an open drain output. Connect an external pull-up resistor to 3.3 V or 5 V.. It is asserted low when V_{OUT} is below 95 % of V_{IN} , an over-current, over-voltage, or over-temperature fault condition occurs. #### INPUT CAPACITOR A $2.2 \mu F$ or larger C_{IN} is recommended. It should be placed as physically close to the device's input pins and ground to be effective to minimize transients on the input. Ceramic capacitors are recommended over tantalum because of their ability to withstand input current surges from low impedance sources such as batteries. For hot-plug applications, where input path inductance is negligible, this input capacitor can be minimized or eliminated. #### **OUTPUT CAPACITOR** The SIP32433A and SIP32433B do not require an output capacitor for proper operation. Still, a proper value C_{OUT} is recommended to accommodate load transient per circuit design requirements. There are no ESR or capacitor type requirements. Protection #### **LAYOUT GUIDELINES** The SIP32434A and SIP32434B are protection switches designed to maintain a constant output load current upon over-current fault. Optimized layout with efficient heat sinking is critical. It is recommended to put as much copper as possible to the devices' central exposed pad which is connected to ground. Connect all ground planes with all possible thermal VIAs. The circuit setting components should be laid close to their connection pins. The components include current limit setting resistor, soft start setting capacitor, and resistors connected to EN / UVLO and OVP pins. Protection devices such as input TVS or output Schottky diodes must be located close the pins to be protected and routed with short traces to reduce inductance. Below is a layout example. Fig. 41 ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000 www.vishay.com # Vishay Siliconix | PRODUCT SUMMARY | | | | | | | |----------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--| | Part number | SIP32434A | SIP32434B | | | | | | Description | 6 A, 33 m Ω , 2.8 V to 22 V, programmable OVP and current limit, latch-off on fault | 6 A, 33 m Ω , 2.8 V to 22 V, programmable OVP and current limit, auto retry on fault | | | | | | Configuration | Single | Single | | | | | | Slew rate time (µs) | Adjustable | Adjustable | | | | | | On delay time (µs) | 190 | 190 | | | | | | Input voltage min. (V) | 2.8 | 2.8 | | | | | | Input voltage max. (V) | 28 | 28 | | | | | | On-resistance at input voltage min. (mΩ) | 33 | 33 | | | | | | On-resistance at input voltage max. (mΩ) | 33 | 33 | | | | | | Quiescent current at input voltage min. (μA) | 180 | 180 | | | | | | Quiescent current at input voltage max. (µA) | 250 | 250 | | | | | | Output discharge (yes / no) | N | N | | | | | | Reverse blocking (yes / no) | N | N | | | | | | Continuous current (A) | 6 | 6 | | | | | | Package type | DFN33-10L | DFN33-10L | | | | | | Package size (W, L, H) (mm) | 3.0 x 3.0 x 0.9 | 3.0 x 3.0 x 0.9 | | | | | | Status code | 2 | 2 | | | | | | Product type | Slew rate, current limit | Slew rate, current limit | | | | | | Applications | Computers, consumer, industrial, healthcare, networking, portable | Computers, consumer, industrial, healthcare, networking, portable | | | | | Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63147. #### **DFN-10 LEAD (3 X 3)** #### NOTES: 1. All dimensions are in millimeters and inches. N is the total number of terminals. Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip. $\,$ Coplanarity applies to the exposed heat sink slug as well as the The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated. | | МІ | LLIMETE | RS | INCHES | | | | |----------------------------------------------|--------------------------------|----------|------|-----------|-----------|-------|--| | Dim | Min | Nom | Max | Min | Nom | Max | | | Α | 0.80 | 0.90 | 1.00 | 0.031 | 0.035 | 0.039 | | | A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 | | | А3 | | 0.20 BSC | | | 0.008 BSC | | | | b | 0.18 | 0.23 | 0.30 | 0.007 | 0.009 | 0.012 | | | D | | 3.00 BSC | | 0.118 BSC | | | | | D2 | 2.20 | 2.38 | 2.48 | 0.087 | 0.094 | 0.098 | | | E | | 3.00 BSC | | | 0.118 BSC | | | | E2 | 1.49 | 1.64 | 1.74 | 0.059 | 0.065 | 0.069 | | | е | 0.50 BSC 0.020 BSC | | | | | | | | L | 0.30 | 0.40 | 0.50 | 0.012 | 0.016 | 0.020 | | | *Use millimeters as the primary measurement. | | | | | | | | | ECN: S-42 | ECN: S-42134—Rev. A, 29-Nov-04 | | | | | | | DWG: 5943 Document Number: 73181 www.vishay.com 29-Nov-04 # Recommended Minimum PAD for DFN10 3 mm x 3 mm #### **Recommended Land Pattern** #### Recommended Land Pattern vs. Case Outline Note: Dimension are in millimeters ECN: S22-0379-Rev. A, 02-May-2022 DWG: 3008 ## **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.