
COMPLIANT

Vishay Semiconductors

Optocoupler, Phototransistor Output, Single Channel, Half Pitch Mini-Flat Package

FEATURES

- Low profile package (half pitch)
- AC isolation test voltage 3750 V_{RMS}
- · Low coupling capacitance of typical 0.3 pF
- · Current transfer ratio (CTR) selected into groups
- · Low temperature coefficient of CTR
- Wide ambient temperature range
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

The TCMT111X series consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4 pin package.

APPLICATIONS

- Programmable logic controllers
- Modems
- · Answering machines
- · General applications

AGENCY APPROVALS

- UL 1577
- cUL
- DIN EN 60747-5-5 (VDE 0884-5)
- CQC
- BSI
- FIMKO

ORE	DERING	INFORM	MATION						
	т	С	M	Т	1	1	1	#	SSOP-4
	PART NUMBER						≥ 5 mm		

AGENCY	CTR (%)							
CERTIFIED/PACKAGE	5 mA	10 mA	5 mA					
UL, cUL, BSI, VDE	50 to 600	100 to 200	100 to 300	80 to 160	130 to 260	200 to 400		
SSOP-4	TCMT1110	TCMT1113	TCMT1116	TCMT1117	TCMT1118	TCMT1119		

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
Reverse voltage		V_R	6	V				
Forward current		I _F	50	mA				
Forward surge current	t _P ≤ 10 μs	I _{FSM}	1.5	А				
Power dissipation		P _{diss}	80	mW				
Junction temperature		Tj	125	°C				

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
OUTPUT									
Collector emitter voltage		V _{CEO}	70	V					
Emitter collector voltage		V _{ECO}	7	V					
Collector current		I _C	50	mA					
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA					
Power dissipation		P _{diss}	150	mW					
Junction temperature		Tj	125	°C					
COUPLER									
Total power dissipation		P _{tot}	230	mW					
Operating ambient temperature range		T _{amb}	-40 to +110	°C					
Storage temperature range		T _{stg}	-40 to +125	°C					
Soldering temperature (1)		T _{sld}	260	°C					

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Wave soldering three cycles are allowed. Also refer to "Assembly Instructions" (www.vishay.com/doc?80054).

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
INPUT									
Forward voltage	I _F = 5 mA	V _F	-	1.08	1.4	V			
Junction capacitance	$V_R = 0$, $f = 1$ MHz	Cj	-	8	-	pF			
OUTPUT									
Collector emitter voltage	I _C = 100 μA	V _{CEO}	70	-	-	V			
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7	-	-	V			
Collector dark current	$V_{CE} = 20 \text{ V}, I_F = 0$	I _{CEO}	-	-	100	nA			
COUPLER									
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}	-	0.1	0.3	V			
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c	-	100	-	kHz			
Coupling capacitance	f = 1 MHz	C _k	-	0.3	-	pF			

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	TCMT1110	CTR	50	-	600	%
	V _{CE} = 5 V, I _F = 10 mA	TCMT1113	CTR	100	-	200	%
I _C /I _E		TCMT1114	CTR	160	-	320	%
IC/IF		TCMT1117	CTR	80	-	160	%
	$V_{CE} = 5 \text{ V}, I_{F} = 5 \text{ mA}$	TCMT1118	CTR	130	-	260	160 %
		TCMT1119	CTR	200	-	400	%

SWITCHING CHAR	SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Delay time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 1)	t _d	-	4	-	μs		
Rise time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 1)	t _r	-	5.5	-	μs		
Fall time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 1)	t _f	-	7	-	μs		
Storage time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 1)	ts	-	1.5	-	μs		
Turn-on time	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$ (see figure 1)	t _{on}	-	9.5	-	μs		
Turn-off time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 1)	t _{off}	-	8	-	μs		
Turn-on time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$ (see figure 2)	t _{on}	-	3	-	μs		
Turn-off time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$ (see figure 2)	t _{off}	-	20	-	μs		

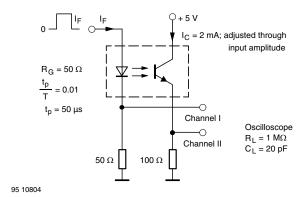


Fig. 1 - Test Circuit, Non-Saturated Operation

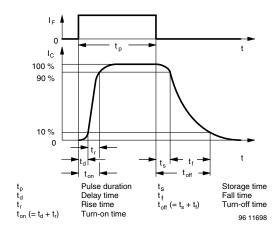


Fig. 3 - Switching Times

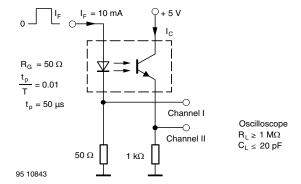


Fig. 2 - Test Circuit, Saturated Operation

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Climatic classification (according to IEC 68 part 1)			55 / 110 / 21				
Comparative tracking index		CTI	175				
Maximum rated withstanding isolation voltage	40 % to 60 % RH, AC test of 1 min	V _{ISO}	3750	V _{RMS}			
Maximum transient isolation voltage		V _{IOTM}	6000	V			
Maximum repetitive peak isolation voltage		V_{IORM}	707	V			
Insulation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹	Ω			
Isolation resistance (under fault conditions)	$V_{IO} = 500 \text{ V}, T_{amb} = T_{SI}$	R _{IO}	10 ⁹	Ω			
Output safety power		P _{SO}	350	mW			
Input safety current		I _{SI}	200	mA			
Input safety temperature		T _{SI}	175	°C			
Apparent charge test voltage (method A)	V_{IORM} x 1.6 = V_{PR} , type and sample test t_{m} = 60 s, partial discharge < 5 pC	V_{PR}	1132	V _{peak}			
Apparent charge test voltage (method B)	V_{IORM} x 1.875 = V_{PR} , 100 % production test with t_m = 1 s, partial discharge < 5 pC	V_{PR}	1326	V _{peak}			
Creepage distance			≥ 5	mm			
Clearance distance			≥ 5	mm			
Insulation thickness		DTI	≥ 0.4	mm			
Environment (pollution degree in accordance to DI	N VDE 0109)		2				

Note

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

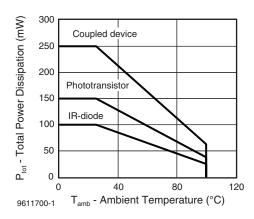


Fig. 4 - Total Power Dissipation vs. Ambient Temperature

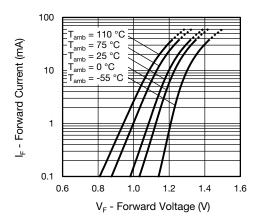


Fig. 5 - Forward Voltage vs. Forward Current

[•] As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

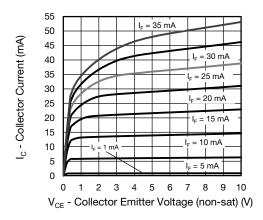


Fig. 6 - Collector Current vs. Collector Emitter Voltage

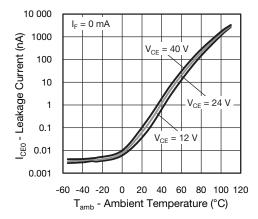


Fig. 7 - Leakage Current vs. Ambient Temperature

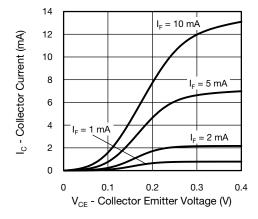


Fig. 8 - Collector Current vs. Collector Emitter Voltage

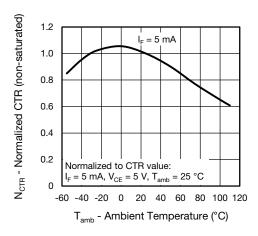


Fig. 9 - Normalized Current Transfer Ratio (non-saturated) vs.

Ambient Temperature

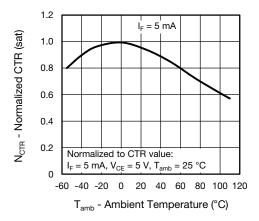


Fig. 10 - Normalized Current Transfer Ratio (saturated) vs.
Ambient Temperature

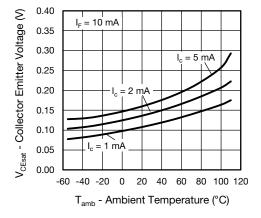


Fig. 11 - Collector Emitter Voltage vs. Ambient Temperature

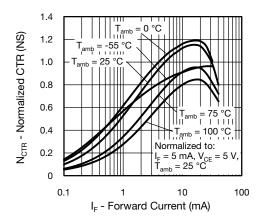


Fig. 12 - Normalized CTR (non-saturated) vs. Forward Current

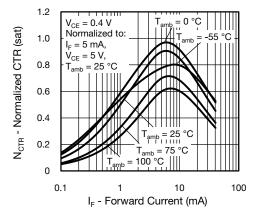


Fig. 13 - Normalized CTR (saturated) vs. Forward Current

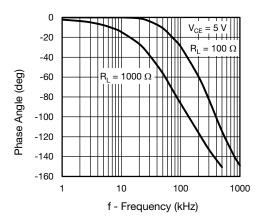


Fig. 14 - F_{CTR} vs. Phase Angle

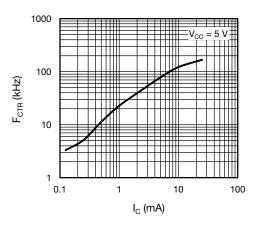
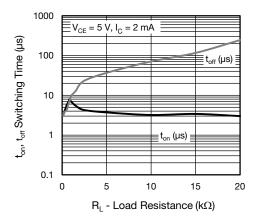
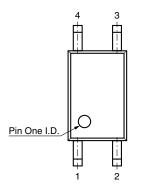
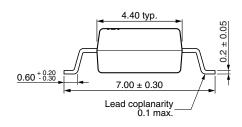
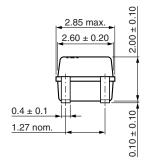
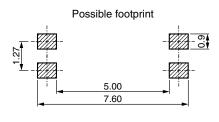


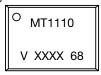
Fig. 15 - F_{CTR} vs. Collector Current


Fig. 16 - Switching Time vs. Load Resistance



PACKAGE DIMENSIONS in millimeters



PACKAGE MARKING (example of TCMT1110)

Note

• XXXX = LMC (lot marking code)

PACKAGING INFORMATION (TAPE AND REEL) in millimeters

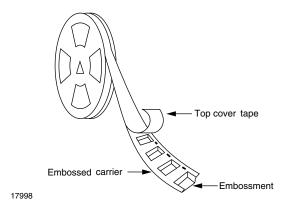


Fig. 17 - Tape and Reel Shipping Medium

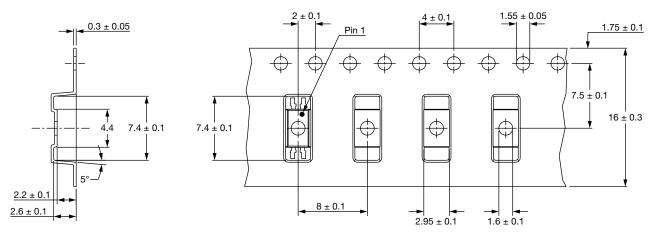


Fig. 18 - Tape and Reel Packing (3000 parts per reel)

SOLDER PROFILES

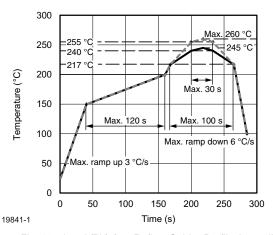


Fig. 19 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.