
IRFI620G

Vishay Siliconix

Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V)	200)
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.80
Q _g max. (nC)	14	
Q _{gs} (nC)	3.0	
Q _{gd} (nC)	7.9	
Configuration	Sing	le

FEATURES

- Isolated package
- High voltage Isolation = 2.5 kV_{RMS} (t = 60 s; f = 60 Hz)
- Sink to lead creepage distance = 4.8 mm
- Dynamic dV/dt rating
- · Low thermal resistance
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 FULLPAK eliminates the need for additional insulating hardware in commercial-industrial applications. The molding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The FULLPAK is mounted to a heatsink using a single clip or by a single screw fixing.

ORDERING INFORMATION	
Package	TO-220 FULLPAK
Lead (Pb)-free	IRFI620GPbF

PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-source voltage		V _{DS}	200	v		
Gate-source voltage			V _{GS}	± 20	V	
Continuous drain aurrent	V _{GS} at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$	1	4.1		
Continuous drain current V _{GS} a		T _C = 100 °C	ID	2.6	А	
Pulsed drain current ^a		I _{DM}	16	1		
Linear derating factor				0.24	W/°C	
Single pulse avalanche energy ^b		E _{AS}	100	mJ		
Repetitive avalanche current ^a			I _{AR}	4.1	А	
Repetitive avalanche energy ^a			E _{AR}	3.0	mJ	
Maximum power dissipation $T_{\rm C} = 25 ^{\circ}{\rm C}$		PD	30	W		
Peak diode recovery dV/dt ^c		dV/dt	5.0	V/ns		
erating junction and storage temperature range		T _J , T _{stg}	-55 to +150			
Soldering recommendations (peak temperature) ^d	For	10 s	-	300	°C	
Mounting torgue	Mounting torque M3 screw			0.6	Nm	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 8.9 mH, R_g = 25 Ω , I_{AS} = 4.1 A (see fig. 12)

c. $I_{SD} \le 5.2$ A, dl/dt ≤ 95 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C

d. 1.6 mm from case

S21-0973-Rev. C, 11-Oct-2021

COMPLIANT

www.vishay.com

Vishay Siliconix

PARAMETERSYMBOLTYP.MAX.UNITMaximum junction-to-case (drain)Rehuk-65 $^{\circ}$ C/WMaximum junction-to-case (drain)Rehuk-4.1 $^{\circ}$ C/WSPECIFICATIONS (T_j = 25 °C, unless otherwise noted)PARAMETERSYMBOLTEST CONDITIONSMIN.TYP.MAX.UNITStaticDrain-source breakdown votageV _{DS} V _{DS} = 0 V, I _D = 250 µA2.0VV/CGate-source threshold votageV _{DS} V _{DS} = 0 V, I _D = 250 µA2.0-4.0VV/CGate-source laskageIoSSV _{DS} = 0 V, V _{DS} = 0 V250µAZero gate votage drain currentIbSSV _{DS} = 100 V, V _{DS} = 0 V, V _{DS} = 0 V, V _{DS} = 0 V, V _{DS} = 100 V, V _{DS} = 0 V, V _{DS} = 100 V, V _{DS} = 0 V, V _{DS} = 0 V, V _{DS} = 100 V, I _D = 2.5 A b-0.800.Drain-source on-state resistanceRp _{Slow} V _{DS} = 50 V, I _D = 2.5 A b1.5-SDynamic-V _{DS} = 20 V, V _{DS} = 100 VIb = 2.5 A b-1.60.5Drain to sink capacitanceC _{ess} V _{DS} = 100 V, Ib = 2.5 A b-1.60.5Drain to sink capacitanceC _{ess} V _{DS} = 100 V, Ib = 4.8 A, V _{DS} = 160 V, Se = 160 V, Se = 100 V, Ib = 4.8 A, Se = 160 V, Se = 100 V, Ib = 4.8 A, Se = 100 V, Ib = 100 V,	THERMAL RESISTANCE RAT	NGS							
Maximum junction-to-case (drain) R_{hulc} - 4.1 C/W SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) Framework Min. TYP. MAX. UNT Static Train-source breakdown voltage V _{DS} V _{OS} = 0 V, I _D = 250 µA 200 - V Gate-source breakdown voltage V _{DS} V _{DS} = 1 mA - 0.29 - V/VC Gate-source breakdown voltage V _{DS} V _{DS} = 250 µA 2.00 - 4.0 V Gate-source leakage Icose V _{DS} = 00V, V _{DS} = 250 µA 2.00 - 2.7 4.0 V Care gate voltage drain current Icose V _{DS} = 20V - - ±100 nA Drain-source on-state resistance Rosem V _{DS} = 100 V I _D = 2.5 A ^b - - 0.80 Ω Drain to sink capacitance C _{Gase} V _{DS} = 10 V I _D = 4.8 A, V _{DS} = 160 V, See fig. 6 and 13 ^b - - 110 - 113 - Catal gate charge Q _{Qg} C _{Gase}	PARAMETER	SYMBOL	ТҮР		MAX.			UNIT	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-ambient	R _{thJA}	-		65			0000	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)		-		4.1			°C/W	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			•						
	SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$, u	unless otherw	ise noted)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TES	T CONDITI	IONS	MIN.	TYP.	MAX.	UNIT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Drain-ssource breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	50 µA	200	-	-	V
	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	I _D = 1 mA	-	0.29	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 2	250 μA	2.0	-	4.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source leakage		,	$V_{GS} = \pm 20$	V	-	-	± 100	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7		V _{DS} =	= 200 V, V _{GS}	_s = 0 V	-	-	25	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gate voltage drain current	IDSS	V _{DS} = 160 V	′, V _{GS} = 0 V	, T _J = 125 °C	-	-	250	μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D :	= 2.5 A ^b	-	-	0.80	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward transconductance		V _{DS} =	50 V, I _D = 2	2.5 A ^b	1.5	-	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}	$V_{DS} = 25 V,$		-	260	-	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output capacitance				-	100	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reverse transfer capacitance				-	30	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain to sink capacitance			f = 1.0 MHz	Z	-	12	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qq				-	-	14	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{qs}	V _{GS} = 10 V			-	-	3.0	nC
$\begin{array}{c c c c c c c } \hline Turn-on delay time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-drain charge	÷		See ng	J. O and 15	-	-	7.9	
$ \begin{array}{c c c c c c c c c c } \hline Rise time & t_r & V_{DD} = 100 V, I_D = 4.8 A, \\ R_g = 18 \Omega, R_D = 20 \Omega, \\ see fig. 10^{b} & - & 113 & - \\ \hline & 113 & - & 113 & - \\ \hline & 113 & - & 113 & - & 113 \\ \hline & 113 & - & 113 & - & 113 \\ \hline & 113 & - & 113 & - & 113 \\ \hline & 113 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 113 & 1 & - & 113 & - & 113 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & 111 & 111 & 111 \\ \hline & 111 & 111 & $	Turn-on delay time					-	7.2	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time					-	22	-	
$\begin{tabular}{ c c c c c } \hline Fall time & t_f & & & & & & & & & & & & & & & & & & &$	Turn-off delay time	t _{d(off)}				-	19	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall time			000 lig. 10		-	13	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate input resistance	R _q	f = 1	MHz, open	drain	0.8	-	3.5	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Internal drain inductance			Between lead,		-	4.5	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Internal source inductance	L _S			-	7.5	-	nH	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characteristi	cs	•						
Pulsed diode forward current aIIIIIIBody diode voltageVVT25 °C, I4.1 A, VV16Body diode reverse recovery time t_{rr} T25 °C, I54.1 A, V1.8VBody diode reverse recovery time t_{rr} T25 °C, I5-150300nsBody diode reverse recovery charge Q_{rr} T-1.8 μ C	Continuous source-drain diode current	I _S	showing the	showing the		-	-	4.1	Δ
$ \begin{array}{c c} Body \ diode \ reverse \ recovery \ time & t_{rr} \\ Body \ diode \ reverse \ recovery \ charge & Q_{rr} \end{array} \begin{array}{c c} T_J = 25 \ ^\circ C, \ I_F = 4.8 \ A, \ dI/dt = 100 \ A/\mu s^{b} \\ \hline - & 0.91 \end{array} \begin{array}{c c} - & 150 & 300 \\ \hline - & 0.91 \end{array} \begin{array}{c c} ns \\ \mu C \end{array} $	Pulsed diode forward current ^a	I _{SM}	p - n junction	diode		-	-	16	
Body diode reverse recovery charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = 4.8 \ A$, $dl/dt = 100 \ A/\mu s^{-1}$ -0.911.8 μC	Body diode voltage	V _{SD}	T _J = 25 °C	, I _S = 4.1 Ā,	$V_{GS} = 0 V^{b}$	-	-	1.8	V
Body diode reverse recovery charge Q _{rr} - 0.91 1.8 µC	Body diode reverse recovery time	t _{rr}	T 25 °C I	- 48 414	dt – 100 A/us b	-	150	300	ns
Forward turn-on time ton Intrinsic turn-on time is negligible (turn-on is dominated by L _S and L _D)	Body diode reverse recovery charge	Q _{rr}	$I_{\rm J} = 23$ 0, $I_{\rm F}$	– 4.0 A, U/	αι – 100 Αγμδ ^ο	-	0.91	1.8	μC
	Forward turn-on time	t _{on}	Intrinsic tu	rn-on time	is negligible (turn	-on is dor	ninated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width $\leq 300~\mu s;~duty~cycle \leq 2~\%$

2

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

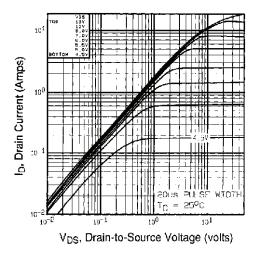


Fig. 1 - Typical Output Characteristics, $T_C = 25 \ ^{\circ}C$

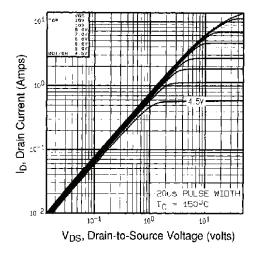


Fig. 2 - Typical Output Characteristics, $T_C = 150$ °C

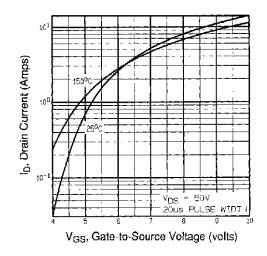


Fig. 3 - Typical Transfer Characteristics

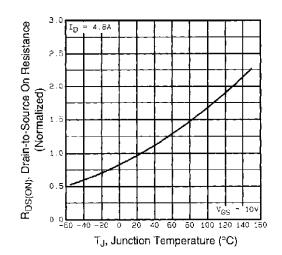


Fig. 4 - Normalized On-Resistance vs. Temperature

3

IRFI620G

Vishay Siliconix

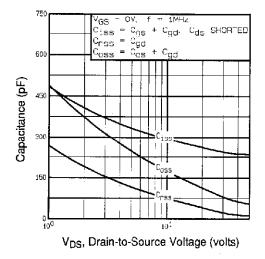


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

20

16

12

8

0

V_{GS}, Gate-to-Source Voltage (volts)

п

4. RA

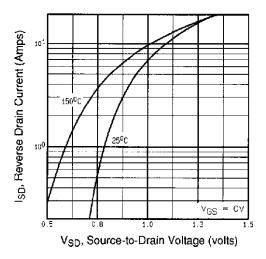


Fig. 7 - Typical Source-Drain Diode Forward Voltage

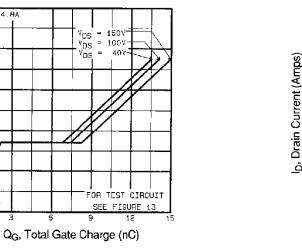


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

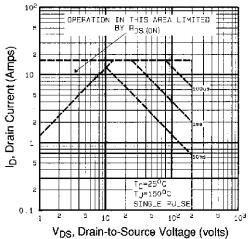


Fig. 8 - Maximum Safe Operating Area

IRFI620G

Vishay Siliconix

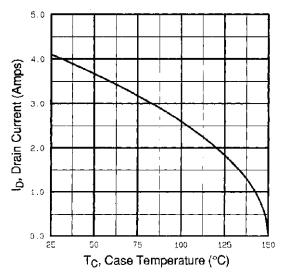


Fig. 9 - Maximum Drain Current vs. Case Temperature

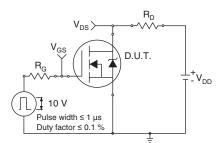


Fig. 10a - Switching Time Test Circuit

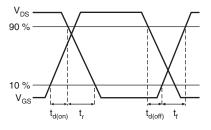
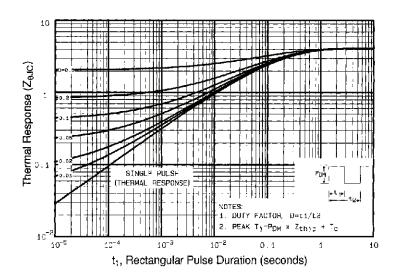



Fig. 10b - Switching Time Waveforms

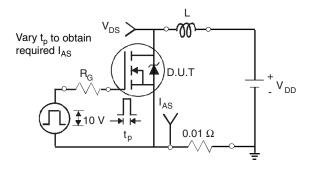
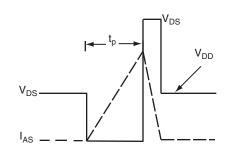
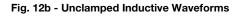




Fig. 12a - Unclamped Inductive Test Circuit

Document Number: 91146

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

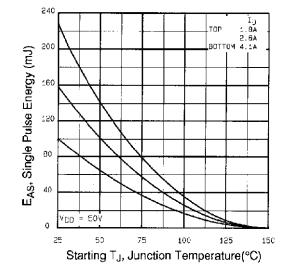


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

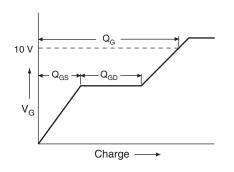


Fig. 13a - Basic Gate Charge Waveform

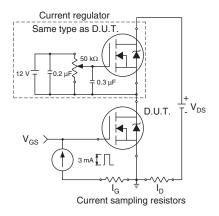
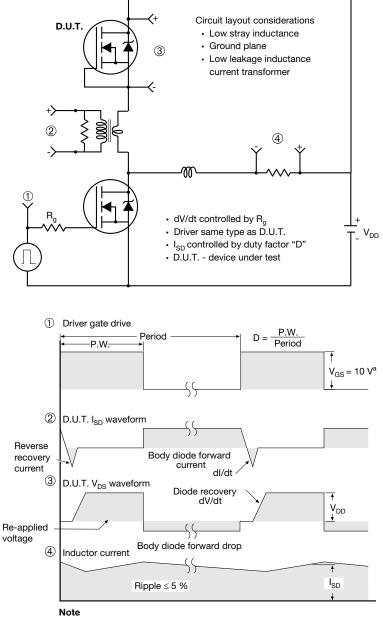
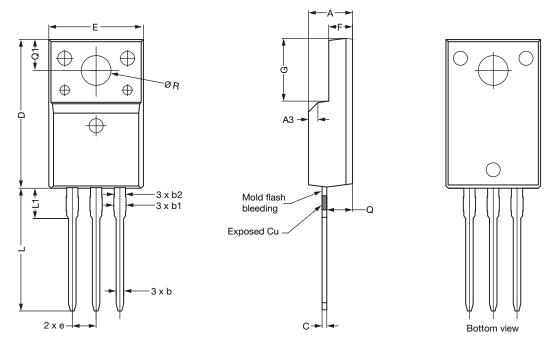



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

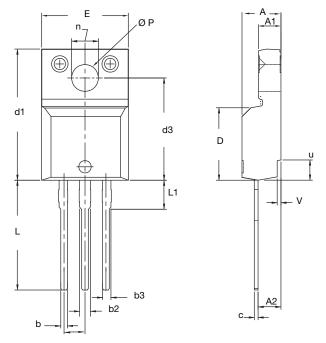

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91146.

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TO-220 FULLPAK (High Voltage)

OPTION 1: FACILITY CODE = 9

		MILLIMETERS	
DIM.	MIN.	NOM.	MAX.
A	4.60	4.70	4.80
b	0.70	0.80	0.91
b1	1.20	1.30	1.47
b2	1.10	1.20	1.30
С	0.45	0.50	0.63
D	15.80	15.87	15.97
е		2.54 BSC	
E	10.00	10.10	10.30
F	2.44	2.54	2.64
G	6.50	6.70	6.90
L	12.90	13.10	13.30
L1	3.13	3.23	3.33
Q	2.65	2.75	2.85
Q1	3.20	3.30	3.40
ØR	3.08	3.18	3.28


Notes

- 1. To be used only for process drawing
- 2. These dimensions apply to all TO-220 FULLPAK leadframe versions 3 leads
- 3. All critical dimensions should C meet $C_{pk} > 1.33$
- 4. All dimensions include burrs and plating thickness
- 5. No chipping or package damage
 6. Facility code will be the 1st character located at the 2nd row of the unit marking

1

OPTION 2: FACILITY CODE = Y

MILLIMETERS		IETERS	INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.570	4.830	0.180	0.190	
A1	2.570	2.830	0.101	0.111	
A2	2.510	2.850	0.099	0.112	
b	0.622	0.890	0.024	0.035	
b2	1.229	1.400	0.048	0.055	
b3	1.229	1.400	0.048	0.055	
С	0.440	0.629	0.017	0.025	
D	8.650	9.800	0.341	0.386	
d1	15.88	16.120	0.622	0.635	
d3	12.300	12.920	0.484	0.509	
E	10.360	10.630	0.408	0.419	
е	2.54	BSC	0.100) BSC	
L	13.200	13.730	0.520	0.541	
L1	3.100	3.500	0.122	0.138	
n	6.050	6.150	0.238	0.242	
ØP	3.050	3.450	0.120	0.136	
u	2.400	2.500	0.094	0.098	
V	0.400	0.500	0.016	0.020	

DWG: 5972

Notes

1. To be used only for process drawing

2. These dimensions apply to all TO-220 FULLPAK leadframe versions 3 leads

3. All critical dimensions should C meet $C_{pk} > 1.33$

4. All dimensions include burrs and plating thickness

5. No chipping or package damage
6. Facility code will be the 1st character located at the 2nd row of the unit marking

2

Document Number: 91359

For technical questions, contact: hvmos.techsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.