VS-T40HFL, VS-T70HFL, VS-T85HFL Series

Fast Recovery Diodes (T-Modules), 40 A, 70 A, 85 A

FEATURES
- Fast recovery time characteristics
- Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- Standard JEDEC® package
- Simplified mechanical designs, rapid assembly
- Large creepage distances
- UL E78996 approved
- Designed and qualified for industrial level

DESCRIPTION

The series of T-modules uses fast recovery power diodes in a single diode configuration. The semiconductors are electrically isolated from the metal base, allowing common heatsink and compact assemblies to be built. These single diode modules can be used in conjunction with the thyristor modules as a freewheel diode. Application includes self-commutated inverters, DC choppers, motor control, inductive heating and electronic welders. These modules are intended for those applications where very fast recovery characteristics are required and for general power switching applications.

PRIMARY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>T40HFL</th>
<th>T70HFL</th>
<th>T85HFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{F(AV)}$</td>
<td>40 A</td>
<td>70 A</td>
<td>85 A</td>
</tr>
<tr>
<td>T_C</td>
<td>70 A</td>
<td>70 A</td>
<td>70 A</td>
</tr>
<tr>
<td>$I_{F(RMS)}$</td>
<td>63 A</td>
<td>110 A</td>
<td>133 A</td>
</tr>
<tr>
<td>I_{FSM}</td>
<td>475 A</td>
<td>830 A</td>
<td>1300 A</td>
</tr>
<tr>
<td>I_{Pt}</td>
<td>1130 A</td>
<td>3460 A</td>
<td>8550 A</td>
</tr>
<tr>
<td>V_{RRM}</td>
<td>Range</td>
<td>100 to 1000 V</td>
<td></td>
</tr>
<tr>
<td>t_{tr}</td>
<td>Range</td>
<td>200 to 1000 ns</td>
<td></td>
</tr>
<tr>
<td>T_J</td>
<td>Range</td>
<td>-40 to +125 °C</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>VOLTAGE CODE</th>
<th>t_{tr} CODE</th>
<th>$V_{RMM, MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE}$</th>
<th>$V_{RSM, MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE}$</th>
<th>$I_{FMM, MAXIMUM AT T_J = 25 °C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS_T40HFL..</td>
<td>S02, S05, S10</td>
<td>200</td>
<td>150</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>VS_T70HFL..</td>
<td>S02, S05, S10</td>
<td>400</td>
<td>500</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>VS_T85HFL..</td>
<td>S05, S10</td>
<td>800</td>
<td>900</td>
<td>1100</td>
<td></td>
</tr>
</tbody>
</table>
FORWARD CONDUCTION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>VALUES</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum average forward current at case temperature</td>
<td>$I_{F(AV)}$</td>
<td>180° conduction, half sine wave</td>
<td>T40HFL: 40°C, 70°C, 85°C; T70HFL: 70°C, T85HFL</td>
<td>A</td>
</tr>
<tr>
<td>Maximum RMS forward current</td>
<td>$I_{(RMS)}$</td>
<td></td>
<td>T40HFL: 63 A, 110 A, 133 A; T70HFL: 70 A, 110 A, 133 A; T85HFL: 70 A, 110 A, 133 A</td>
<td>A</td>
</tr>
<tr>
<td>Maximum peak, one-cycle forward, non-repetitive surge current</td>
<td>I_{FSM}</td>
<td>t = 10 ms, t = 8.3 ms, No voltage reapplied</td>
<td>T40HFL: 475 A, 500 A, 400 A; T70HFL: 830 A, 870 A, 700 A; T85HFL: 1300 A, 1370 A, 1100 A</td>
<td>A</td>
</tr>
<tr>
<td>Maximum I^2t for fusing</td>
<td>I^2t_1</td>
<td>t = 10 ms, No voltage reapplied</td>
<td>T40HFL: 1130 A, 1030 A, 800 A; T70HFL: 3460 A, 3160 A, 2450 A; T85HFL: 8550 A, 7810 A, 6050 A</td>
<td>A²s</td>
</tr>
<tr>
<td>Maximum I^2t for fusing</td>
<td>I^2t_2</td>
<td>t = 0.1 ms to 10 ms, no voltage reapplied</td>
<td>T40HFL: 11300 A, 10300 A, 8000 A; T70HFL: 34600 A, 31600 A, 24500 A; T85HFL: 85500 A, 78100 A, 60500 A</td>
<td>A²s</td>
</tr>
<tr>
<td>Low level value of threshold voltage</td>
<td>$V_{F(TOH1)}$</td>
<td>TJ = 25 °C, (16.7 % x π x $I_{F(AV)}$ x I < π x $I_{F(AV)}$</td>
<td>T40HFL: 0.82 V, 0.87 V, 0.84 V; T70HFL: 0.82 V, 0.87 V, 0.84 V; T85HFL: 0.82 V, 0.87 V, 0.84 V</td>
<td>V</td>
</tr>
<tr>
<td>High level value of threshold voltage</td>
<td>$V_{F(TOH2)}$</td>
<td>TJ = 25 °C, (I > π x $I_{F(AV)}$</td>
<td>T40HFL: 0.84 mΩ, 0.90 mΩ, 0.86 mΩ; T70HFL: 0.84 mΩ, 0.90 mΩ, 0.86 mΩ; T85HFL: 0.84 mΩ, 0.90 mΩ, 0.86 mΩ</td>
<td>mΩ</td>
</tr>
<tr>
<td>Low level value of forward slope resistance</td>
<td>r_{1f}</td>
<td>TJ = 25 °C, (16.7 % x π x $I_{F(AV)}$ x I < π x $I_{F(AV)}$</td>
<td>T40HFL: 7.0 mΩ, 2.77 mΩ, 2.15 mΩ; T70HFL: 7.0 mΩ, 2.77 mΩ, 2.15 mΩ; T85HFL: 7.0 mΩ, 2.77 mΩ, 2.15 mΩ</td>
<td>mΩ</td>
</tr>
<tr>
<td>High level value of forward slope resistance</td>
<td>r_{2f}</td>
<td>TJ = 25 °C, (I > π x $I_{F(AV)}$</td>
<td>T40HFL: 6.8 mΩ, 2.67 mΩ, 2.07 mΩ; T70HFL: 6.8 mΩ, 2.67 mΩ, 2.07 mΩ; T85HFL: 6.8 mΩ, 2.67 mΩ, 2.07 mΩ</td>
<td>mΩ</td>
</tr>
<tr>
<td>Maximum forward voltage drop</td>
<td>V_{FM}</td>
<td>$I_{FM} = \pi x I_{F(AV)}$, TJ = 25 °C, $t_p = 400 \mu s$ square wave, Average power = $V_{F(TOH1)} x I_{F(AV)} + r_{1f} x (I_{F(RMS)})^2$</td>
<td>T40HFL: 1.60 V, 1.73 V, 1.55 V; T70HFL: 1.60 V, 1.73 V, 1.55 V; T85HFL: 1.60 V, 1.73 V, 1.55 V</td>
<td>V</td>
</tr>
</tbody>
</table>

REVERSE RECOVERY CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS (1)</th>
<th>T40HFL</th>
<th>T70HFL</th>
<th>T85HFL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum reverse recovery time</td>
<td>t_{rr}</td>
<td>TJ = 25 °C, $-\frac{dl_{F}}{dt} = 100 A/\mu s$</td>
<td>S02: 70 ns, 110 ns, 270 ns; S05: 70 ns, 110 ns, 270 ns; S10: 80 ns, 120 ns, 290 ns</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum reverse recovery charge</td>
<td>Q_{rr}</td>
<td>TJ = 25 °C, $-\frac{dl_{F}}{dt} = 100 A/\mu s$</td>
<td>S02: 0.25 μC, 0.4 μC, 1.35 μC; S05: 0.25 μC, 0.4 μC, 1.35 μC; S10: 0.3 μC, 0.6 μC, 1.6 μC</td>
<td>μC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

(1) Tested on LEM 300 A diodometer tester

BLOCKING

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>T40HFL</th>
<th>T70HFL</th>
<th>T85HFL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum peak reverse leakage current</td>
<td>I_{BRM}</td>
<td>TJ = 125 °C</td>
<td>20 mA</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS isolation voltage</td>
<td>V_{ISOL}</td>
<td>50 Hz, circuit to base, all terminals shorted, TJ = 25 °C, t = 1 s</td>
<td>3500 V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS

Junction operating temperature range T_J -40 to +125 °C

Storage temperature range T_{Stg} -40 to +150 °C

Maximum internal thermal resistance, junction to case per module

- T40HFL R_{thJC} DC operation 0.85 K/W
- T70HFL 0.53
- T85HFL 0.46

Thermal resistance, case to heatsink per module

- R_{thCS} Mounting surface, flat, smooth and greased 0.2

Mounting torque ± 10 %

- base to heatsink Non-lubricated threads M3.5 mounting screws 1.3 ± 10 % N
- busbar to terminal MS screws terminals 3 ± 10 %

Approximate weight

- See dimensions - link at the end of datasheet 54 g
- 19 oz.

Case style

- D-55 (T-module)

Note

(1) A mounting compound is recommended and the torque should be rechecked after a period of about 3 hours to allow for the spread of the compound.

ΔR CONDUCTION

<table>
<thead>
<tr>
<th>DEVICES</th>
<th>SINUSOIDAL CONDUCTION AT T_J MAXIMUM</th>
<th>RECTANGULAR CONDUCTION AT T_J MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T40HFL</td>
<td>0.06 0.08 0.10 0.14 0.24 0.05 0.08 0.10 0.15 0.24</td>
<td>K/W</td>
</tr>
<tr>
<td>T70HFL</td>
<td>0.05 0.06 0.08 0.11 0.19 0.04 0.06 0.08 0.12 0.19</td>
<td></td>
</tr>
<tr>
<td>T85HFL</td>
<td>0.04 0.05 0.06 0.09 0.15 0.03 0.05 0.07 0.09 0.015</td>
<td></td>
</tr>
</tbody>
</table>

Note

- The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC.
Fig. 9 - Forward Power Loss Characteristics

Fig. 10 - Forward Power Loss Characteristics

Fig. 11 - Forward Power Loss Characteristics

Fig. 12 - Forward Power Loss Characteristics

Fig. 13 - Maximum Non-Repetitive Surge Current

Fig. 14 - Maximum Non-Repetitive Surge Current
Fig. 15 - Maximum Non-Repetitive Surge Current

Fig. 16 - Maximum Non-Repetitive Surge Current

Fig. 17 - Maximum Non-Repetitive Surge Current

Fig. 18 - Maximum Non-Repetitive Surge Current

Fig. 19 - Recovery Time Characteristics

Fig. 20 - Recovery Charge Characteristics
Fig. 21 - Recovery Current Characteristics

Fig. 22 - Recovery Time Characteristics

Fig. 23 - Recovery Charge Characteristics

Fig. 24 - Recovery Current Characteristics

Fig. 25 - Recovery Time Characteristics

Fig. 26 - Recovery Charge Characteristics
Fig. 27 - Recovery Current Characteristics

Fig. 28 - Recovery Time Characteristics

Fig. 29 - Recovery Charge Characteristics

Fig. 30 - Recovery Current Characteristics

Fig. 31 - Recovery Time Characteristics

Fig. 32 - Recovery Charge Characteristics
Fig. 33 - Recovery Current Characteristics

Fig. 34 - Recovery Time Characteristics

Fig. 35 - Recovery Charge Characteristics

Fig. 36 - Recovery Current Characteristics

Fig. 37 - Frequency Characteristics
Fig. 38 - Frequency Characteristics

Fig. 39 - Maximum Forward Energy Power Loss Characteristics

Fig. 40 - Frequency Characteristics
Fig. 41 - Frequency Characteristics

Fig. 42 - Maximum Forward Energy Power Loss Characteristics

Fig. 43 - Frequency Characteristics
Fig. 44 - Frequency Characteristics

Fig. 45 - Maximum Forward Energy Power Loss Characteristics

Fig. 46 - Forward Voltage Drop Characteristics

Fig. 47 - Forward Voltage Drop Characteristics
VS-T40HFL, VS-T70HFL, VS-T85HFL Series

Vishay Semiconductors

Fig. 48 - Forward Voltage Drop Characteristics

Fig. 49 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

<table>
<thead>
<tr>
<th>Device code</th>
<th>VS-</th>
<th>T</th>
<th>40</th>
<th>HFL</th>
<th>100</th>
<th>S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

1. Vishay Semiconductors product
2. Module type
3. Current rating
4. Fast recovery diode
5. Voltage code x 10 = V_{RRM}
6. t_{rr} code

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40 = 40 A (average)</td>
<td>70 = 70 A (average)</td>
<td>85 = 85 A (average)</td>
<td>S02 = 200 ns</td>
<td>S05 = 500 ns</td>
<td>S10 = 1000 ns</td>
<td></td>
</tr>
</tbody>
</table>

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
CIRCUIT CONFIGURATION

<table>
<thead>
<tr>
<th>CIRCUIT</th>
<th>CIRCUIT CONFIGURATION CODE</th>
<th>CIRCUIT DRAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>HFL</td>
<td></td>
</tr>
</tbody>
</table>

LINKS TO RELATED DOCUMENTS

D-55 T-Module Diode Standard and Fast Recovery

DIMENSIONS in millimeters (inches)

Note
• 1 = Anode
• 2 = Cathode
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.