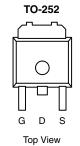
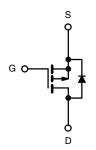


P-Channel 60 V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^d	Q _g (Typ)	
- 60	0.060 at V _{GS} = - 10 V	- 19	26	
- 60	0.077 at V _{GS} = - 4.5 V	- 16.8	20	


FEATURES

- Halogen-free According to IEC 61249-2-21 **Definition**
- TrenchFET® Power MOSFET
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC



APPLICATIONS

- · High Side Switch for Full Bridge Converter
- · DC/DC Converter for LCD Display

Drain Connected to Tab

P-Channel MOSFET

Ordering Information:	SUD19P06-60-E3	(Lead (Pb)-free)

SUD19P06-60-GE3 (Lead (Pb)-free and Halogen free)

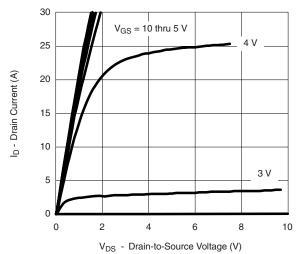
ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, unless otherwise note)					
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	- 60		
Gate-Source Voltage		V_{GS}	± 20	- V	
Continuous Drain Current (T _{.I} = 150 °C)	T _C = 25 °C	I-	- 18.3		
Continuous Diain Current (1) = 150°C)	T _C = 125 °C	l _D	- 8.19	^	
Pulsed Drain Current		I _{DM}	- 30	A	
Avalanche Current, Single Pulse	L = 0.1 mH	I _{AS}	- 22		
Repetitive Avalanche Energy, Single Pulse ^a	L = 0.1 IIIIA	E _{AS}	24.2	mJ	
Dawar Dissination	T _C = 25 °C	P _D	38.5 ^c	W	
Power Dissipation	T _A = 25 °C	r D	2.3 ^{b, c}	l vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Marian and Landing to Ambient	t ≤ 10 s	R_{thJA}	17	21	
Maximum Junction-to-Ambient ^b	Steady State	' 'thJA	45	55	°C/W
Maximum Junction-to-Case		R_{thJC}	2.7	3.25	

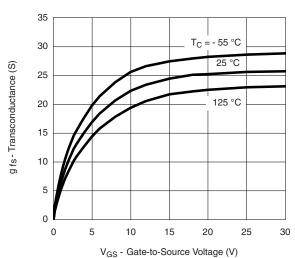
Notes:

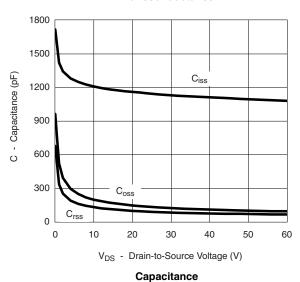
- a. Duty cycle \leq 1 %.
- b. When mounted on 1" square PCB (FR-4 material).
- c. See SOA curve for voltage derating.
- d. Based up on $T_C = 25$ °C.

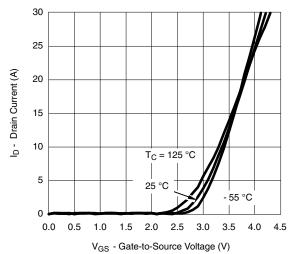
Document Number: 69253 S11-2132 Rev. B, 31-Oct-11


Parameter	Symbol	Test Conditions	Min .	Тур.	Max.	Unit
Static						
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	- 60			V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 1		- 3	V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA
		V _{DS} = - 60 V, V _{GS} = 0 V			- 1	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			- 50	μΑ
		$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 150 ^{\circ} \text{ C}$			- 125	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	- 30			Α
		V _{GS} = - 10 V, I _D = - 10 A		0.048	0.060	Ω
Dunin Course On State Besistance	B	$V_{GS} = -10 \text{ V}, I_D = -10 \text{ A}, T_J = 125 \text{ °C}$			0.102	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 10 V, I _D = - 10 A, T _J = 150 °C			0.120	
		$V_{GS} = -4.5 \text{ V}, I_D = -5 \text{ A}$		0.061	0.077	
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 10 A		22		S
Dynamic ^b						
Input Capacitance	C _{iss}			1140	1710	
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = -25 \text{ V}, f = 1 \text{ MHz}$		130		pF
Reverse Transfer Capacitance	C _{rss}			90		
Total Gate Charge ^c	Qg			26	40	
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = -30 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -10 \text{ A}$		4.5		nC
Gate-Drain Charge ^c	Q _{gd}			7		
Gate Resistance	R _g	f = 1 MHz		7		Ω
Turn-On Delay Time ^c	t _{d(on)}			8	15	
Rise Time ^c	t _r	$V_{DD} = -30 \text{ V, R}_{L} = 3 \Omega$		9	15	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong -19 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 2.5 \Omega$		65	100	ns
Fall Time ^c	t _f	1		30	45	
Drain-Source Body Diode and Charact	eristics (T _C = 2	5 °C) ^b				
Continuous Current	I _S				- 30	
Pulsed Current	I _{SM}				- 30	Α
Forward Voltage ^a	V _{SD}	I _F = - 19 A, V _{GS} = 0 V		- 1	- 1.5	V
Reverse Recovery Time	t _{rr}	I _F = - 19 A, di/dt = 100 A/μs		41	61	ns

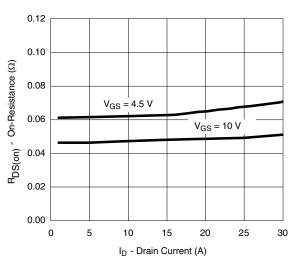
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

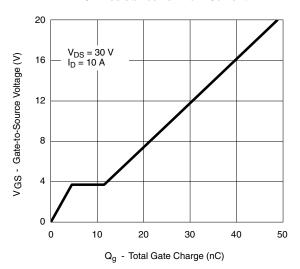

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



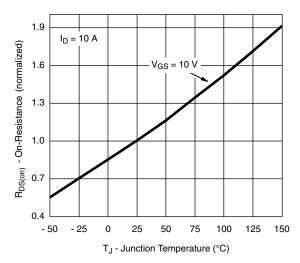
Output Characteristics



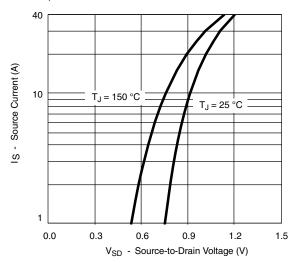
Transconductance



Transfer Characteristics

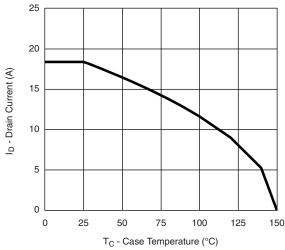


On-Resistance vs. Drain Current

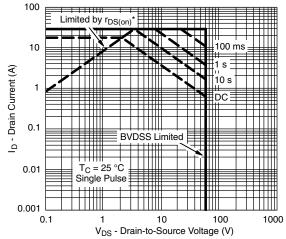


Gate Charge

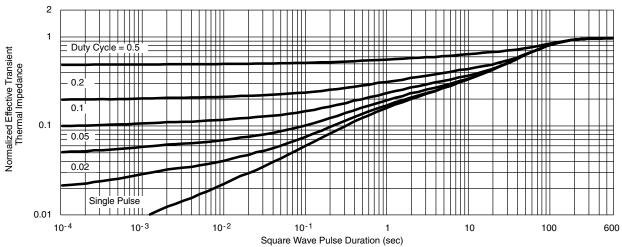
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



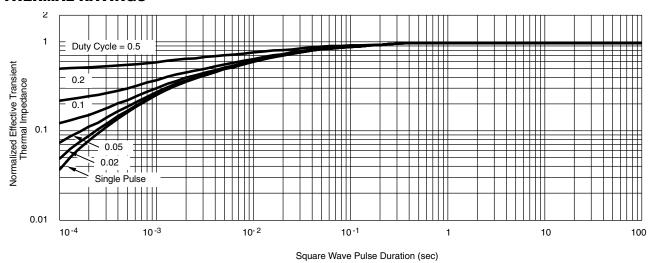
On-Resistance vs. Junction Temperature



Source-Drain Diode Forward Voltage

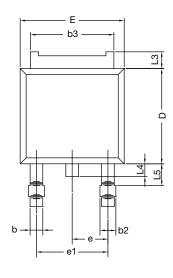

THERMAL RATINGS

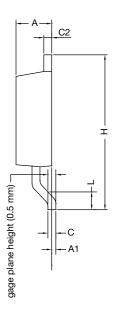
Maximum Drain Current vs. Case Temperature

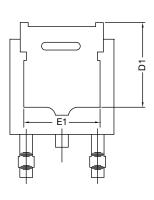

 * V_{GS} > minimum V_{GS} at which $r_{DS(on)}$ is specified Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Ambient

THERMAL RATINGS

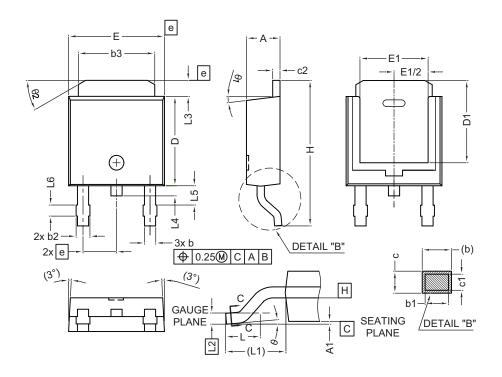

Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69253.



TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y


	MILLIMETERS		
DIM.	MIN.	MAX.	
А	2.18	2.38	
A1	-	0.127	
b	0.64	0.88	
b2	0.76	1.14	
b3	4.95	5.46	
С	0.46	0.61	
C2	0.46	0.89	
D	5.97	6.22	
D1	4.10	-	
Е	6.35	6.73	
E1	4.32	=	
Н	9.40	10.41	
е	2.28 BSC		
e1	4.56 BSC		
L	1.40	1.78	
L3	0.89	1.27	
L4	-	1.02	
L5	1.01	1.52	

Note

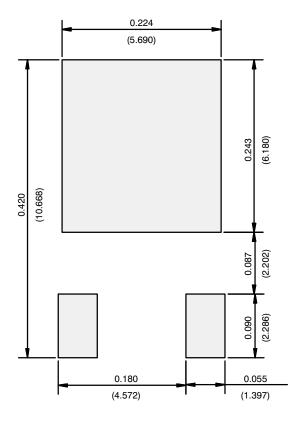
• Dimension L3 is for reference only

VERSION 2: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
Α	2.18	2.39	
A1	-	0.13	
b	0.65	0.89	
b1	0.64	0.79	
b2	0.76	1.13	
b3	4.95	5.46	
С	0.46	0.61	
c1	0.41	0.56	
c2	0.46	0.60	
D	5.97	6.22	
D1	5.21	=	
Е	6.35	6.73	
E1	4.32	=	
е	2.29 BSC		
Н	9.94	10.34	

	MILLIMETERS		
DIM.	MIN.	MAX.	
L	1.50	1.78	
L1	2.74	ref.	
L2	0.51	BSC	
L3	0.89	1.27	
L4	-	1.02	
L5	1.14	1.49	
L6	0.65	0.85	
θ	0°	10°	
θ1	0°	15°	
θ2	25°	35°	

Notes


- Dimensioning and tolerance confirm to ASME Y14.5M-1994
- All dimensions are in millimeters. Angles are in degrees
- Heat sink side flash is max. 0.8 mm
- · Radius on terminal is optional

ECN: E19-0649-Rev. Q, 16-Dec-2019

DWG: 5347

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.