DG9232E, DG9233E, DG9234E

1 pC Charge Injection, 100 pA Leakage, +5 V / +3 V, Dual SPST Analog Switches

DESCRIPTION

The DG9232E, DG9233E, and DG9234E are monolithic CMOS switches designed for precision signal switching. The 17 Ω low voltage parts feature low charge injection, leakage, parasitic capacitance, and fast switching.

The DG9232E, DG9233E, and DG9234E can switch both analog and digital signals. Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG9232E, DG9233E, and DG9234E contain two independent single pole single throw (SPST) switches. Switch-1 and switch-2 are normally closed for the DG9232E and normally open for the DG9233E. For the DG9234E, switch-1 is normally open and switch-2 is normally closed with a break-before-make switching timing.

The DG9232E, DG9233E, and DG9234E offer 1 nW typical power consumption and 8 kV ESD/HBM, 1 kV ESD/CDM tolerance. They are the ideal switches for use in low voltage instruments and healthcare devices, fitting the circuits of low voltage ADC and DAC, sample and hold, analog front end gain control, and signal path control. The DG9232E, DG9233E, and DG9234E are available in 8-lead MSOP and SOIC packages.

BENEFITS

- · Low charge injection and leakage
- Low parasitic capacitance
- Fast switching speed
- High ESD tolerance

FEATURES

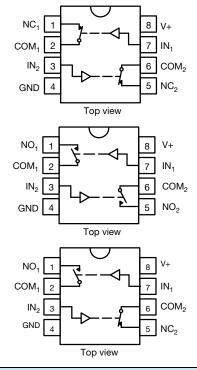
- 1 pC charge injection
- Guaranteed 100 pA maximum switch on leakage at 25 °C
 R
- 3.8 pF switch off and 7.8 pF switch on capacitances
- +2.7 V to +5 V single supply operation
- Low on-resistance $R_{DS(on)}$: 17 Ω / typ. at 5 V
- t_{ON}: 32 ns, t_{OFF}: 10 ns switching time
- Typical power consumption: 1 nW
- Over voltage tolerant TTL / CMOS compatible
- ESD (HBM): 8000 V, ESD (CDM): 1000 V
- Latch-up current: > 300 mA (JESD78)
- Available in MSOP-8 and SOIC-8
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

APPLICATIONS

- Automatic test equipment
- · Process control and automation
- Data acquisition systems
- Meters and instruments
- · Medical and healthcare systems
- Communication systems
- Sample-and-hold systems
- Relay replacements
- Battery powered systems


1

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

www.vishay.com

SHA

TRUTH TABLE - DG9232E				
LOGIC SWITCH				
0	On			
1	Off			

Logic "0" \leq 0.8 V

Logic "1" \ge 2.4 V

TRUTH TABLE - DG9233E				
LOGIC	SWITCH			
0	Off			
1	On			
Logic "0" < 0.8 V	•			

Logic "1" ≥ 2.4 V

TRUTH TABLE - DG9234E				
LOGIC	SWITCH-1	SWITCH-2		
0	Off	On		
1	On	Off		

Logic "0" \leq 0.8 V Logic "1" \geq 2.4 V

ORDERING INFORMATION					
TEMPERATURE RANGE	CONFIGURATION	PACKAGE	PART NUMBER	MINIMUM ORDER / PACKAGE QUANTITY	
		8-pin MSOP	DG9232EDQ-T1-GE3	Tape and reel 2500 units	
	DG9232E DG9233E	8-pin SOIC	DG9232EDY-T1-GE3	Tape and reel 2500 units	
		8-pin SOIC	DG9232EDY-GE3	Tube 500 units	
10.00 1 05.00		8-pin MSOP	DG9233EDQ-T1-GE3	Tape and reel 2500 units	
-40 °C to +85 °C lead (Pb)-free		8-pin SOIC	DG9233EDY-T1-GE3	Tape and reel 2500 units	
		8-pin SOIC	DG9233EDY-GE3	Tube 500 units	
		8-pin MSOP	DG9234EDQ-T1-GE3	Tape and reel 2500 units	
	DG9234E	8-pin SOIC	DG9234EDY-T1-GE3	Tape and reel 2500 units	
		8-pin SOIC	DG9234EDY-GE3	Tube 500 units	

ABSOLUTE MAXIMUM RATINGS				
PARAMETER		LIMIT	UNIT	
Reference V+ to GND		-0.3 to +6	V	
IN, COM, NC, NO ^a		-0.3 to (V+ + 0.3)	v	
Continuous current (any terminal)		± 20	mA	
Peak current (pulsed at 1 ms, 10 % duty cycle)		± 40	IIIA	
ESD (HBM) (MIL-STD-883, method 3015)		> 8000	V	
ESD (CDM) (ANSI / ESDA / JEDEC [®] JS-002)		> 1000	V	
Latch up current, per JESD78		300	mA	
Storage temperature	D suffix	-65 to +125	°C	
Power dissipation (packages) ^b	8-pin narrow body SOIC ^c	400	mW	

Notes

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC board.

c. Derate 6.5 mW/°C above 70 °C.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

www.vishay.com

DG9232E, DG9233E, DG9234E

Vishay Siliconix

SPECIFICATIONS (V+ = 3	3 V)						
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED	TEMP. ^a		SUFFIX °C to +8		UNIT
		V+ = 3 V, \pm 10 %, V_{IN} = 0.8 V or 2.4 V $^{\rm e}$		MIN. ^c	TYP. ^b	MAX. ^c	
Analog Switch							
Analog signal range ^d	V _{ANALOG}		Full	0	-	3	V
Drain-source on-resistance	Brach	$V_{NO} \text{ or } V_{NC} = 1.5 \text{ V}, \text{ V} + = 2.7 \text{ V}$	Room	-	35	50	
	R _{DS(on)}	$I_{COM} = 5 \text{ mA}$	Full	-	35	65	
R _{DS(on)} match ^d	$\Delta R_{DS(on)}$	V_{NO} or $V_{NC} = 1.5 V$	Room	-	0.4	2	Ω
R _{DS(on)} flatness ^d	R _{DS(on)} flatness	V_{NO} or V_{NC} = 1 V and 2 V	Room	-	4	8	
NO or NC off leakage current ^g	hanser	V_{NO} or $V_{NC} = 1 \text{ V/2 V}$, $V_{COM} = 2 \text{ V/1 V}$	Room	-100	5	100	
NO OF NO OF leakage current 9	I _{NO/NC(off)}	$v_{\rm NO}$ or $v_{\rm NC} = 1$ $v/2$ v , $v_{\rm COM} = 2$ $v/1$ v	Full	-5000	5	5000	
COM off leakage current ^g		$V_{COM} = 1 \text{ V/2 V}, V_{NO} \text{ or } V_{NC} = 2 \text{ V/1 V}$	Room	-100	5	100	nA
CON ON leakage current 9	I _{COM(off)}	$v_{\rm COM} = 1$ $v/2$ v , $v_{\rm NO}$ of $v_{\rm NC} = 2$ $v/1$ v	Full	-5000	5	5000	рА
Channel-on leakage current ^g	lanu y	$V_{COM} = V_{NO}$ or $V_{NC} = 1 \text{ V/2 V}$	Room	-200	5	200	pA
Channel-Onleakage current 3	COM(on)	$V_{COM} = V_{NO} \text{ or } V_{NC} = 1 \text{ V/2 V}$	Full	-10 000	5	10 000	
Digital Control							-
Input current	$I_{\rm INL}$ or $I_{\rm INH}$		Full	-	0.001	-	μA
Dynamic Characteristics							
Turn-on time	t _{ON}		Room	-	43	120	
	UN	V_{NO} or $V_{NC} = 1.5 V$	Full	-	-	200	ns
Turn-off time	t _{OFF}		Room	-	16	50	115
	"OFF		Full	-	-	120	
Charge injection ^d	Q _{INJ}	C_L = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room	-	-0.28	-	рС
Off-isolation	OIRR	$R_{L} = 50 \Omega, C_{L} = 5 pF, f = 1 MHz$	Room	-	-80	-	dB
Crosstalk	X _{TALK}	$H_{L} = 30.32, 0L = 3.01, 1 = 1.0012$	Room	-	-108	-	uD
NC and NO capacitance	C _{S(off)}		Room	-	4	-	
Channel-on capacitance	C _{COM(on)}	f = 1 MHz	Room	-	8	-	pF
COM-off capacitance	C _{COM(off)}		Room	-	4	-	
Power Supply							
Positive supply range	V+			2.7	-	5.5	V
Power supply current	I+	V+ = 3.3 V, V_{IN} = 0 V or 3.3 V		0.0003	-	1	μA

Notes

a. Room = 25 °C, full = as determined by the operating suffix.

b. Typical values are for design aid only, not guaranteed nor subject to production testing.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Guarantee by design, nor subjected to production test.

e. V_{IN} = input voltage to perform proper function.

f. Difference of min. and max. values.

g. Guaranteed by 5 V leakage tests, not production tested.

3

www.vishay.com

DG9232E, DG9233E, DG9234E

Vishay Siliconix

Analog Switch $V_{+} = 5 V, \pm 10 \%, V_{IN} = 0.8 V or 2.4 V^{\circ}$ Analog signal range dVANALOGDrain-source on-resistance $R_{DS(on)}$ $R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5 V, V_{+} = 4.5 V$ $I_{COM} = 5 mA$ $R_{DS(on)}$ match d $\Delta R_{DS(on)}$ $R_{DS(on)}$ flatness d $R_{DS(on)}$ $R_{DS(on)}$ flatness V_{NO} or $V_{NC} = 1 V/4 V, V_{COM} = 4 V/1 V$ $R_{DS(on)}$ flatness V_{NO} or $V_{NC} = 1 V/4 V, V_{COM} = 4 V/1 V$ $R_{DS(on)}$ flatness $V_{OOM} = 1 V/4 V, V_{OOM} = 4 V/1 V$ $R_{DS(on)}$ flatness $V_{COM} = 1 V/4 V, V_{NO}$ or $V_{NC} = 4 V/1 V$ $R_{DS(on)}$ flatness $V_{COM} = V_{NO}$ or $V_{NC} = 1 V/4 V$ $R_{DS(on)}$ flatness $V_{COM} = V_{NO}$ or $V_{NC} = 1 V/4 V$ $R_{DS(on)}$ flatnes $V_{COM} = V_{NO}$ or $V_{NC} = 1 V/4 V$ $R_{DS(on)}$ flatnes $V_{COM} = V_{NO}$ or $V_{NC} = 1 V/4 V$ $R_{DS(on)}$ flatnes $V_{COM} = V_{NO}$ or $V_{NC} = 3 V$ $R_{DS(on)}$ flatnes V_{NO} or $V_{NC} = 5 P, f, f = 1 MHz$ $R_{DS(on)}$ flatnes $R_{L} = 50 \Omega, C_L = 5 pF, f = 1 MHz$ $R_{DS(on)$					
Analog SwitchImage: CharacteristicsVanaLOGImage: CharacteristicsDrain-source on-resistance $R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5$ V, $V_{+} = 4.5$ V $I_{COM} = 5$ mAF $I_{COM} = 5$ mARDS(on) match d $ARDS(on)$ V_{NO} or $V_{NC} = 3.5$ VFRDS(on) flatness d $R_{DS(on)}$ V_{NO} or $V_{NC} = 1$ V, 2 V, and 3 VFNO or NC off leakage current g $I_{NO/NC(off)}$ V_{NO} or $V_{NC} = 1$ V/4 V, $V_{COM} = 4$ V/1 VFCOM off leakage current $I_{COM(off)}$ $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFChannel-on leakage current $I_{COM(on)}$ $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFDigital Control $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFInput current I_{INL} or I_{INH} $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 1$ V/4 VFDynamic Characteristics V_{NO} or $V_{NC} = 3$ VFTurn-off time t_{OFF} V_{NO} or $V_{NC} = 3$ VFOff-isolationOIRR $R_L = 50$ Ω , $C_L = 5$ pF, f = 1 MHzFNC and NO capacitance $C_{(off)}$ $F = 1$ MHzFCoM-off capacitance $C_{D(off)}$ $F = 1$ MHzFPower SupplyFFF	TEMP. ^a	P. ª ⁻	D SUFFI 40 °C to +8		UNIT
Analog signal range dVANALOGImage: Characteristic stance $R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5$ V, V+ = 4.5 V $I_{COM} = 5$ mAF $R_{DS(on)}$ match d $\Delta R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5$ VF $R_{DS(on)}$ flatness d $R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5$ VF $R_{DS(on)}$ flatness d $R_{DS(on)}$ V_{NO} or $V_{NC} = 1$ V, 2 V, and 3 VFNO or NC off leakage current g $I_{NO/NC(off)}$ V_{NO} or $V_{NC} = 1$ V/4 V, $V_{COM} = 4$ V/1 VFCOM off leakage current $I_{COM(off)}$ $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFChannel-on leakage current $I_{COM(off)}$ $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFDigital ControlInput current I_{INL} or I_{INH} TDynamic CharacteristicsTurn-on time t_{OFF} V_{NO} or $V_{NC} = 3$ VFCharge injection d Q_{INJ} $C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ ΩFOff-isolationOIRR $R_L = 50$ Ω, $C_L = 5$ pF, f = 1 MHzFNC and NO capacitance $C_{(off)}$ f = 1 MHzFCoM-off capacitance $C_{D(off)}$ f = 1 MHzFPower SupplyFFF		MIN.	c TYP. b	MAX. °	_
$\begin{array}{c c c c c c c } \hline Prover Surve on-resistance & $P_{DS(on)}$ & $V_{NO} \mbox{ or } V_{NC} = 3.5 \mbox{ V}, V + = 4.5 I_{COM} = 5 \mbox{ mA}$ & $P_{DS(on)}$ \\ \hline $R_{DS(on)} \mbox{ flatness} d & $AR_{DS(on)}$ & $V_{NO} \mbox{ or } V_{NC} = 1 \mbox{ V}, 2 \mbox{ V}, and 3 \mbox{ V}$ & $P_{DS(on)}$ \\ \hline $R_{DS(on)} \mbox{ flatness} d & $P_{DS(on)}$ \\ \hline $R_{DS(on)} \mbox{ flatness} d & $P_{DS(on)}$ \\ \hline $R_{DS(on)} \mbox{ flatness} d & $P_{NO} \mbox{ or } V_{NC} = 1 \mbox{ V}, 2 \mbox{ V}, and 3 \mbox{ V}$ & $P_{PS(on)} \mbox{ flatness} d & $V_{NO} \mbox{ or } V_{NC} = 1 \mbox{ V}, 2 \mbox{ V}, and 3 \mbox{ V}$ & $P_{PS(on)} d & $V_{NO} \mbox{ or } V_{NC} = 1 V_{V} V_{COM} = 4 V/1 \mbox{ V}$ & $V_{COM} = 4 V/1 V_{COM} = 4 V/1 V_{COM} = 4 V/1 V_{COM} = 4 V/1 V_{NO} \mbox{ or } V_{NC} = 4 V/1 V_{NO} \mbox{ or } V_{NC} = 1 V_{NO} \mbox{ or } V_{NC} = 4 V/1 V_{COM} = 4 V/1 V_{COM} = 4 V/1 V_{NO} \mbox{ or } V_{NC} = 4 V/1 V_{NO} V_{NC} = 1 V_{NO} \mbox{ or } V_{NC} = 4 V/1 V_{NO} V_{NC} = 1 V_{NO} V_{NC} = 3 V_{NO} V_{NO} V_{NC} = 3 V_{NO} V_{NO} V_{NO} V_{NO} V_{NC} = 3 V_{NO} V_{NO} V_{NO} V_{NC} = 3 V_{NO} V_{NO} V_{NO} V_{NC} = 3 V_{NO} V_{NC} S V_{NO} V_{NO} V_{NO} V_{NO} V_{NO} V_{NC} S V_{NO} V_{NO} $					
$\begin{array}{c c c c c c c } \hline Drain-source on-resistance & R_{DS(on)} & V_{NO} or V_{NC} = 1 & V & V & V_{I_{COM}} = 5 & mA & V_{I_{COM}} = 1 & V_{I_{COM}} = 1 & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I_{COM}} = 1 & V_{I_{COM}} = 4 & V_{I_{I_{COM}}} & V_{I_{COM}} = 1 & V_{I$	Full	ll 0	-	5	V
RDS(on) match d $\Delta R_{DS(on)}$ V_{NO} or $V_{NC} = 3.5$ VFR_DS(on) flatness d $R_{DS(on)}$ flatness V_{NO} or $V_{NC} = 1$ V, 2 V, and 3 VFNO or NC off leakage current g $I_{NO/NC(off)}$ V_{NO} or $V_{NC} = 1$ V/4 V, $V_{COM} = 4$ V/1 VFCOM off leakage current $I_{COM(off)}$ $V_{COM} = 1$ V/4 V, $V_{OOM} = 4$ V/1 VFChannel-on leakage current $I_{COM(off)}$ $V_{COM} = 1$ V/4 V, V_{NO} or $V_{NC} = 4$ V/1 VFDigital Control $V_{COM} = V_{NO}$ or $V_{NC} = 1$ V/4 VFInput current I_{INL} or I_{INH} $V_{COM} = V_{NO}$ or $V_{NC} = 1$ V/4 VFDynamic Characteristics V_{NO} or $V_{NC} = 3$ VFTurn-on time t_{ON} V_{NO} or $V_{NC} = 3$ VFCharge injection d $OIRR$ $R_L = 50 \ \Omega$, $C_L = 5$ pF, $f = 1$ MHzFNC and NO capacitance $C_{O(off)}$ $F = 1$ MHzFCom-off capacitance $C_{D(onf)}$ $F = 1$ MHzFPower Supply $F = 1$ MHzF	Room Full		17	25 35	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Room		0.4	2	Ω
NO or NC off leakage current 9IIIVNO or VNC = 1 V/4 V, VVIICOM off leakage currentIIICOM(off)VVVIIIChannel-on leakage currentIIIVIIIIIIDigital ControlII <td>Room</td> <td>om -</td> <td>3.5</td> <td>6</td> <td></td>	Room	om -	3.5	6	
COM off leakage currentICOM(off)VCOM = 1 V/4 V, VNO or VNC = 4 V/1 VFChannel-on leakage currentICOM(off)VCOM = VNO or VNC = 1 V/4 VFDigital ControlInput currentInput currentINHDynamic CharacteristicsTurn-on time t_{ON} V_{NO} or $V_{NC} = 3 V$ FTurn-off time t_{OFF} $V_{CL} = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 \Omega$ FOff-isolationOIRR $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz$ FNC and NO capacitance $C_{D(off)}$ f = 1 MHzFPower SupplyFFF	Room	om -100) 10	100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Full	ll -500	0 10	5000	
Channel-on leakage currentIIIIDigital ControlInput currentInput currentInput currentUrn-on timetorTurn-on timetortorCharge injection dOIRRCrosstalkXTALKNC and NO capacitanceCollerCollerCollerPower Supply	Room	om -100) 10	100	n ^
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Full	ll -500	0 10	5000	рА
Digital ControlInput currentInv. or Inv.Dynamic CharacteristicsTurn-on time t_{ON} Turn-off time t_{OFF} Charge injection dQINJOff-isolationOIRRCrosstalk X_{TALK} NC and NO capacitance $C_{D(on)}$ COM-off capacitance $C_{D(off)}$ Power SupplyF	Room	om -200) -	200	
Input current I _{INL} or I _{INH} Dynamic Characteristics Turn-on time t_{ON} V_{NO} or $V_{NC} = 3 V$ F Turn-off time t_{OFF} V_{NO} or $V_{NC} = 3 V$ F Charge injection ^d QINJ $C_L = 1 \text{ nF}, V_{GEN} = 0 V, R_{GEN} = 0 \Omega$ F Off-isolation OIRR $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$ F NC and NO capacitance $C_{(off)}$ f = 1 MHz F Composition $C_{D(on)}$ f = 1 MHz F Power Supply F F F	Full	ll -10 00	- 00	10 000	
Dynamic Characteristics Image: Number of the second s					
$\begin{tabular}{ c c c c c c } \hline Turn-on time & t_{ON} & & & & & & & & & & & & & & & & & & &$	Full	II -	0.001	-	μA
$\begin{tabular}{ c c c c c c } \hline Turn-on time & t_{ON} & & & & & & & & & & & & & & & & & & &$					
Turn-off time t_{OFF} $V_{NO} \text{ or } V_{NC} = 3 \text{ V}$ FCharge injection d Q_{INJ} $C_L = 1 \text{ nF}, \text{ V}_{GEN} = 0 \text{ V}, \text{ R}_{GEN} = 0 \Omega$ FOff-isolationOIRR $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$ FCrosstalk X_{TALK} $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$ FNC and NO capacitance $C_{(off)}$ $f = 1 \text{ MHz}$ FCOM-off capacitance $C_{D(off)}$ $f = 1 \text{ MHz}$ FPower Supply	Room	om -	32	75	
Turn-off time t_{OFF} FCharge injection d Q_{INJ} $C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega$ FOff-isolationOIRR $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$ FCrosstalk X_{TALK} $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$ FNC and NO capacitance $C_{(off)}$ $f = 1 \text{ MHz}$ FCoM-off capacitance $C_{D(on)}$ $f = 1 \text{ MHz}$ FPower Supply	Full	II -	-	150	ns
$\begin{array}{ c c c c c c } \hline Charge injection ^{d} & Q_{INJ} & C_{L} = 1 \text{ nF}, \text{V}_{\text{GEN}} = 0 \text{ V}, \text{R}_{\text{GEN}} = 0 \Omega & \text{F} \\ \hline Off-\text{isolation} & OIRR & \\ \hline Crosstalk & X_{TALK} & R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, \text{f} = 1 \text{MHz} & \hline \text{F} \\ \hline \text{R} \\ NC \text{ and NO capacitance} & C_{(off)} \\ \hline Channel-on capacitance & C_{D(on)} \\ \hline COM-off \text{ capacitance} & C_{D(off)} & f = 1 \text{MHz} & \hline \text{F} \\ \hline \text{Power Supply} & \hline \end{array}$	Room	om -	10	50	110
$\begin{array}{c c} \hline Off-isolation & OIRR \\ \hline Crosstalk & X_{TALK} & R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz & F \\ \hline F \\ \hline NC \ and \ NO \ capacitance & C_{(off)} \\ \hline Channel-on \ capacitance & C_{D(on)} \\ \hline COM-off \ capacitance & C_{D(off)} \\ \hline F \\ \hline Power \ Supply & \hline \end{array}$	Full	11 -	-	100	
$\begin{tabular}{ c c c c c c } \hline Crosstalk & X_{TALK} & R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz & F \ \hline \\ \hline NC \ and \ NO \ capacitance & C_{(off)} & f = 1 \ MHz & F \ \hline \\ \hline Channel-on \ capacitance & C_{D(on)} & f = 1 \ MHz & F \ \hline \\ \hline COM-off \ capacitance & C_{D(off)} & F \ \hline \\ \hline Power \ Supply & \hline \\ \hline \end{tabular}$	Room	om -	-0.78	-	рС
Crosstalk X_{TALK} $Table f$ F NC and NO capacitance $C_{(off)}$ F Channel-on capacitance $C_{D(on)}$ $f = 1 \text{ MHz}$ COM-off capacitance $C_{D(off)}$ F Power Supply F	Room	om -	-80	-	dB
Channel-on capacitance $C_{D(on)}$ f = 1 MHz F COM-off capacitance $C_{D(off)}$ F Power Supply	Room	om -	-108	-	ub
COM-off capacitance C _{D(off)} F Power Supply	Room	om -	3.8	-	
Power Supply	Room	om -	7.8	-	pF
	Room	om -	3.8	-	
Positive supply range V+					
		2.7	-	5.5	V
Power supply current I+ V+ = 5.5 V, V_{IN} = 0 V or 5.5 V		-	-	1	μA

Notes

a. Room = 25 °C, full = as determined by the operating suffix.

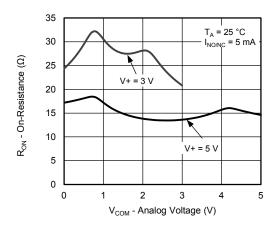
b. Typical values are for design aid only, not guaranteed nor subject to production testing.

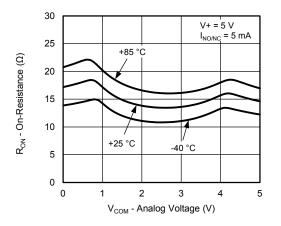
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Guarantee by design, nor subjected to production test.

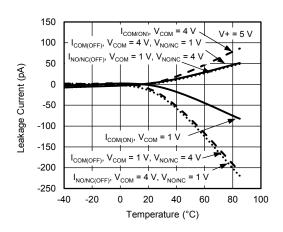
e. V_{IN} = input voltage to perform proper function.

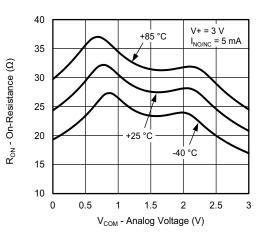
f. Difference of min. and max. values.

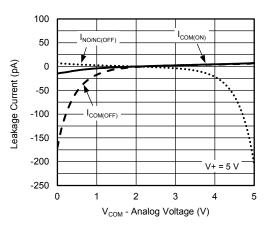

4

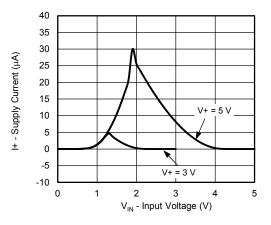

DG9232E, DG9233E, DG9234E

Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


On-Resistance vs. Analog Voltage


On-Resistance vs. Analog Voltage


Leakage Current vs. Temperature

On-Resistance vs. Analog Voltage

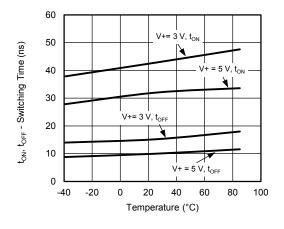
Leakage Current vs. Analog Voltage

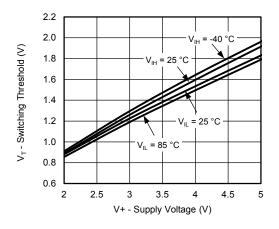
Supply Current vs. Input Voltage

S16-1451-Rev. A, 25-Jul-16

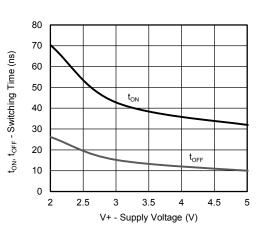
5

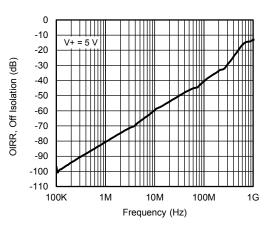
Document Number: 75165

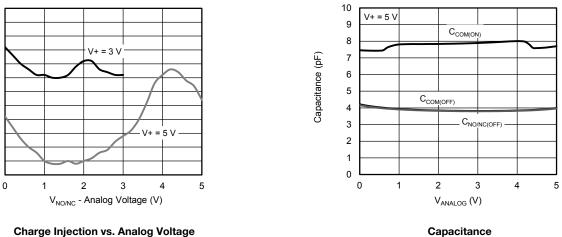

For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


DG9232E, DG9233E, DG9234E

Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Switching Time vs. Temperature


Switching Threshold vs. Supply Voltage

Switching Time vs. Supply Voltage

OIRR, Off Isolation vs. Frequency

Capacitance

S16-1451-Rev. A, 25-Jul-16

0

-0.1

-0.2

-0.3

-0.4

-0.5 -0.6

-0.7

-0.8

-0.9

-1.0

-1.1

-1.2

Q_{INJ} - Charge Injection (pC)

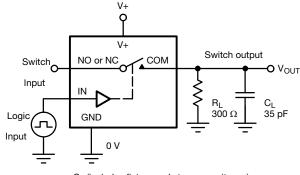
6

Document Number: 75165

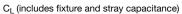
For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

S16-1451-Rev. A, 25-Jul-16

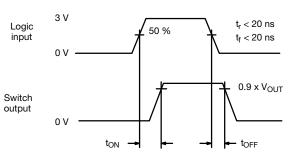
7


Fig. 3 - Charge Injection

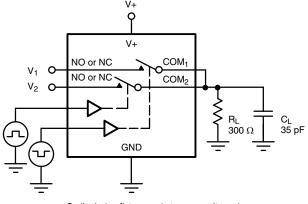
For technical questions, contact: analogswitchtechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


DG9232E, DG9233E, DG9234E

TEST CIRCUITS


VISHAY

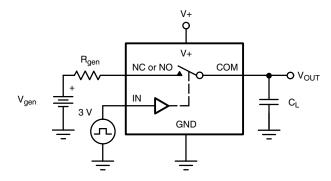
www.vishay.com

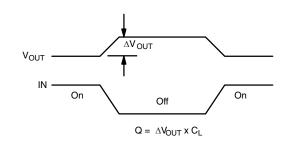


Logic "1" = switch on Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

Logic

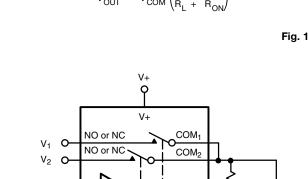

3 V



input t_f < 5 ns 0 V $V_{NC} = V_{NO}$ V_{O} 90 % Switch 0 V output t_D tn

CL (includes fixture and stray capacitance)

Fig. 2 - Break-Before-Make Interval



IN depends on switch configuration: input polarity determined by sense of switch.

Document Number: 75165

Vishay Siliconix

t_r < 5 ns

Vishay Siliconix

TEST CIRCUITS

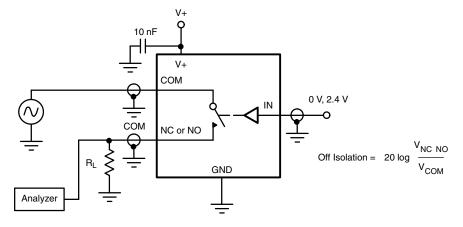


Fig. 4 - Off-Isolation

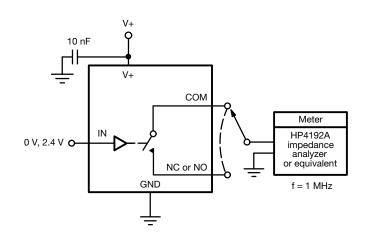
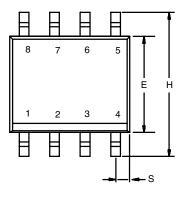
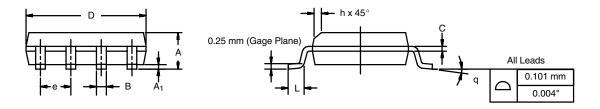


Fig. 5 - Channel Off/On Capacitance

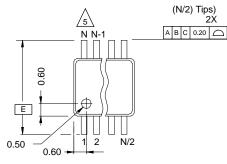

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75165.

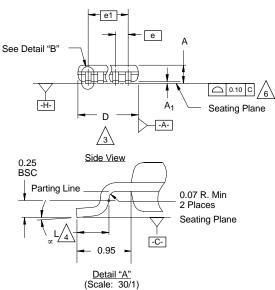


Package Information

Vishay Siliconix

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INC	HES
DIM	Min	Мах	Min	Max
A	1.35	1.75	0.053	0.069
A ₁	0.10	0.20	0.004	0.008
В	0.35	0.51	0.014	0.020
С	0.19	0.25	0.0075	0.010
D	4.80	5.00	0.189	0.196
E	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
н	5.80	6.20	0.228 0.244	
h	0.25	0.50	0.010	0.020
L	0.50	0.93	0.020	0.037
q	0°	8°	0°	8°
S	0.44	0.64	0.018	0.026
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498				


Package Information Vishay Siliconix

MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

/4.\ /5.\

1. Die thickness allowable is 0.203 ± 0.0127 .

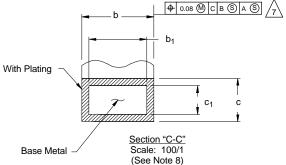
2 Dimensioning and tolerances per ANSI.Y14.5M-1994.

- /3.\ Dimensions "D" and "E1" do not include mold flash or protrusions, and are measured at Datum plane -H- , mold flash or protrusions shall not exceed 0.15 mm per side.
 - Dimension is the length of terminal for soldering to a substrate.

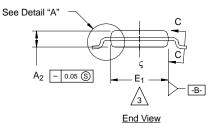
Terminal positions are shown for reference only.

- <u>/6</u>. Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.
- /7.\ The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

/8.\ Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

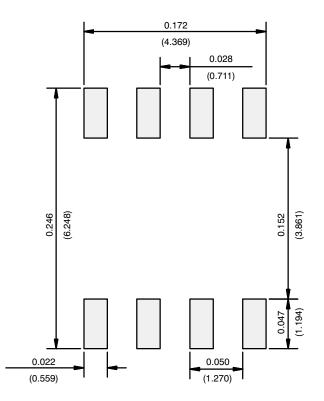

Controlling dimension: millimeters. 9.

10. This part is compliant with JEDEC registration MO-187, variation AA and BA.


/11. Datums -A- and -B- to be determined Datum plane -H-.

/12 Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 8L


	MILLIMETERS			
Dim	Min	Nom	Max	Note
Α	-	-	1.10	
A ₁	0.05	0.10	0.15	
A ₂	0.75	0.85	0.95	
b	0.25	-	0.38	8
b ₁	0.25	0.30	0.33	8
С	0.13	-	0.23	
c ₁	0.13	0.15	0.18	
D		3.00 BSC		3
Е		4.90 BSC		
E ₁	2.90	3.00	3.10	3
е		0.65 BSC		
e ₁		1.95 BSC		
L	0.40	0.55	0.70	4
Ν		8		5
α	0°	4°	6°	
ECN: T-02 DWG: 58	2080—Rev. C 67	, 15-Jul-02		

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.