
SILECT[†] THYRISTORS[‡] 600 mA DC • 30 thru 200 VOLTS

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These thyristors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C method 106B. The thyristors are insensitive to light.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TIC44	TIC45	TIC46	TIC47	UNIT
Static Off-State Voltage, VD (See Note 1)	30	60	100	200	V
Repetitive Peak Off-State Voltage, VDRM (See Note 1)	30	60	100	200	٧
Static Reverse Voltage, VR (See Note 1)	30	60	100	200	٧
Repetitive Peak Reverse Voltage, VRRM (See Note 1)	30	60	100	200	٧
Continuous or RMS On-State Current at (or below) 55°C		600		mA	
Case Temperature (See Note 2)					
Continuous or RMS On-State Current at (or below) 25°C		300		^	
Free-Air Temperature (See Note 3)				mA	
Average On-State Current (180° Conduction Angle) at (or below) 55°C		430		mA	
Case Temperature (See Note 4)	ļ				
Surge On-State Current (See Note 5)		6		Α	
Peak Negative Gate Voltage		8		V	
Peak Positive Gate Current (Pulse Width ≤ 300 μs)		1		Α	
Peak Gate Power Dissipation (Pulse Width ≤ 300 μs)		4		W	
Operating Free-Air Temperature Range		55 to 125		°C	
Storage Temperature Range		-55 to 150		°C	
Lead Temperature 1/16 Inch from Case for 10 Seconds	-	260		°C	

NOTES: 1. These values apply when the gate-cathode resistance $R_{GK} \le 1 \text{ k}\Omega$.

- 2. These values apply for continuous d-c operation with resistive load. Above 55°C derate according to Figure 5.
- 3. These values apply for continuous d-c operation with resistive load. Above 25°C derate according to Figure 6.
- 4. This value may be applied continuously under single-phase, 60-Hz, half-sine-wave operation with resistive load. Above 55°C derate according to Figure 5.
- 5. This value applies for one 60-Hz half sine wave when the device is operating at (or below) rated values of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

‡U. S. Patent No. 3,439,238

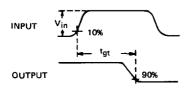
[†]Trademark of Texas Instruments

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

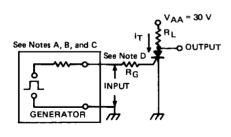
PARAMETER			TEST CONDITIONS		MIN MAX	UNIT
I _D	Static Off-State Current	VD = Rated VD.	RGK = 1 kΩ,	T _A = 125°C	50	μА
1 _R	Static Reverse Current	VR = Rated VR	, R _{GK} = 1 kΩ,	T _A = 125°C	50	μΑ
GT	Gate Trigger Current (See Note 6)	VAA = 6 V,	R _L ≈ 100 Ω,	^t p(g) ≥ 20 μs	200	μА
VGT	Gate Trigger Voltage (See Note 6)	VAA = 6 V,	RL≈ 100 Ω,	$t_{p(g)} \ge 20 \mu s$	0.8	V
		VAA = 6 V,	R _L ≈ 100 Ω,	tp(g) ≥ 20 µs, TA = 125°C	0.2	7 °
1 _H	Holding Current	$R_L = 100 \Omega$,	R _{GK} = 1 kΩ		5	mA
VΤ	On-State Voltage	I _T = 300 mA,	$R_{GK} \ge 1 k\Omega$,	See Note 7	1.4	V

NOTES: 6. When measuring these parameters, a 1-k Ω resistor should be used between gate and cathode to prevent triggering by random noise.

7. This parameter is measured using pulse techniques. $t_{\rm W}=1$ ms, duty cycle \leq 1%.


switching characteristics at 25° C free-air temperature

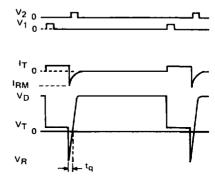
PARAMETER		TEST CONDITIONS	TYP	UNIT
^t gt	Gate-Controlled Turn-On Time	V_{AA} = 30 V, R_L = 50 Ω , R_G = 20 k Ω , V_{in} = 20 V, See Figure 1	3.5	μs
^t q	Circuit-Commutated Turn-Off Time	V _{AA} = 30 V, R _L ≈ 50 Ω, I _{RM} = 1 A, See Figure 2	6.8	μs


thermal characteristics

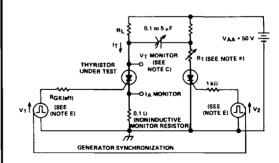
PARAMETER	MAX	UNIT
R ₀ JC Junction-to-Case Thermal Resistance	75	°C/W
R _{0JA} Junction-to-Free-Air Thermal Resistance	275	C/##

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS



TEST CIRCUIT


FIGURE 1-TURN-ON TIME

NOTES: A. V_{in} is measured with gate and cathode terminals connected as shown and anode terminal open.

- B. The input waveform of Figure 1 has the following characteristics: $t_r \le 40~\text{ns},~t_W \ge 20~\mu\text{s}.$
- C. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r \le 14$ ns, $R_{in} \ge 10$ M Ω , $C_{in} \le 12$ pF.
- D. R_G includes the total resistance of the generator and the external resistor.

WAVEFORMS

TEST CIRCUIT

FIGURE 2-COMMUTATING TURN-OFF TIME

NOTES: E. Pulse generators for V_1 and V_2 are synchronized to provide an anode current waveform with the following characteristics: t_W = 50 to 300 μ s, duty cycle = 1%. The pulse widths of V_1 and V_2 are \geq 10 μ s.

F. Resistor R₁ is adjusted for I_{RM} = 1 A.

THERMAL INFORMATION

The minimum heat-sink requirements may be calculated for any on-state current, heat-sink combination by the following procedure:

- 1. Determine worst-case power dissipation from Figure 3.
- 2. Calculate maximum allowable case-to-free-air thermal resistance by use of the equation.

$$R_{\theta CA} = \frac{T_J - T_A}{P_{A(av)}} - R_{\theta JC}$$

where: T₁ = Junction temperature

 T_{Δ} = Free-air temperature

 $P_{\Delta(av)} = Average$ anode power dissipation (see Figure 3 for worst-case values)

RAIC = Junction-to-case thermal resistance = 75°C/W maximum.

3. Determine area of heat sink from Figure 4.

EXAMPLE

Determine: Minimum size of 1/16"-thick alumi-

num heat sink for safe operation of thyristor at an average current of 0.4 A

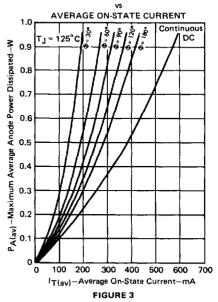
with a conduction angle of 180°

Maximum T_J = 125°C Given:

 $T_A = 35^{\circ}C$

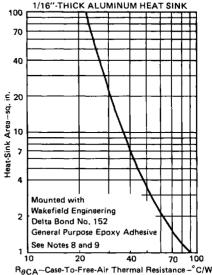
 $R_{\theta JC} = 75^{\circ}C$

From Figure 3, PA(av) = 0.84 W for Solution:

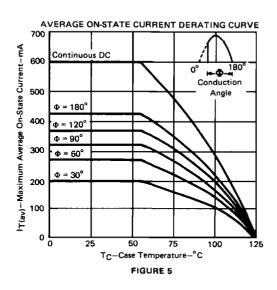

0.4 A with 180° conduction angle. Using the equation of step 2 above:

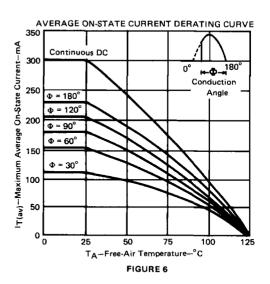
 $R_{\theta CA} = \frac{125^{\circ}C - 35^{\circ}C}{0.84 \text{ W}} - 75^{\circ}\text{C/W} = 32^{\circ}\text{C/W}$

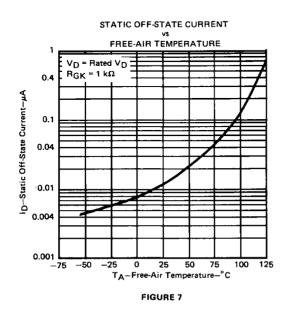
Figure 4 shows that for R_{PCA} of 32°C/W, the area is 18 sq. in. The minimum dimensions of the sides should be:


$$\sqrt{\frac{\text{area}}{2}} \times \sqrt{\frac{\text{area}}{2}} = \sqrt{\frac{18}{2}} \times \sqrt{\frac{18}{2}} = 3^{"} \times 3^{"}$$

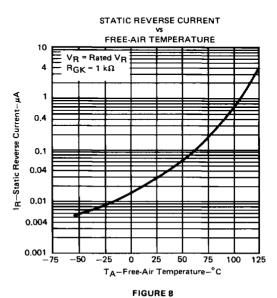
MAXIMUM AVERAGE ANODE POWER DISSIPATED

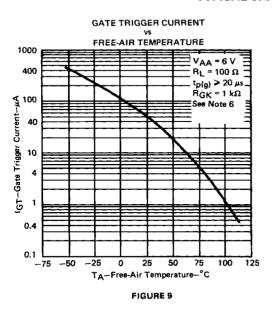

TYPICAL HEAT-SINK AREA


CASE-TO-FREE-AIR THERMAL RESISTANCE


- NOTES: 8. The thyristor is mounted in the center of a square heat sink vertically positioned in still free air with both sides exposed. The heat-sink area is twice the area of one side.
 - 9. R_{0CA} includes the case-to-heat sink thermal resistance, R_{0CHS}, in addition to the heat-sink-to-free-air thermal resistance, R_{0CHS}, and is defined by the equation, ROCA = ROCHS + ROHSA.

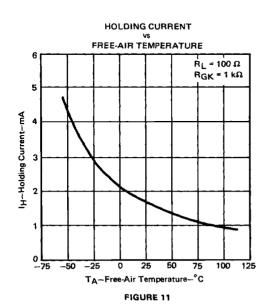
THERMAL INFORMATION




TYPICAL CHARACTERISTICS

1271

TYPICAL CHARACTERISTICS



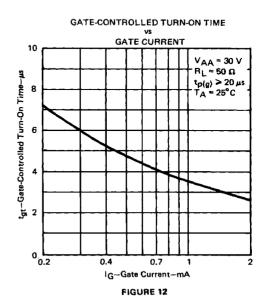

GATE TRIGGER VOLTAGE FREE-AIR TEMPERATURE V_{AA} = 6 V R_L = 100 Ω $t_{D(q)} > 20 \, \mu s$ RGK ≈ 1 kΩ VGT~Gate Trigger Voltage~V 0.6 See Note 6 0.5 0.4 0.3 0.2 0.1 _75 -50 25 TA-Free-Air Temperature-°C

FIGURE 10

NOTE 6: When measuring these parameters, a 1-k Ω resistor should be used between gate and cathode to prevent triggering by random noise.

1271