TYPES 2N2160 P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

BULLETIN NO. DLIS 683189, OCTOBER 1962-REVISED MAY 1968

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits

- Highly Stable Negative Resistance and Firing Voltage
- Low Firing Current
- High Pulse Current Capabilities
- Simplified Circuit Design

mechanical data

Package outline similar to JEDEC TO-5 except for lead position. Approximate weight 1 gram.

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	2N1671 2 2N1671A 2N1671B	N2160
Emitter-Base Reverse Voltage	- 30 v	
Emitter-Base Reverse Voltage below 140°C Junction Temperature	-	-30 v
Interbase Voltage	35 v	35 v
RMS Emitter Current	50 ma	
DC Emitter Current	•	70 ma
Peak Emitter Current (See Note 1)	2 a	
Peak Emitter Current below 140°C Junction Temperature		2 a
Total Device Dissipation at (or below) 25°C Free-Air Temperature (See Notes 2 & 3)	450 mw 45	50 mw
Operating Temperature Range (See Note 3)	-65°C to 1	40°C
Storage Temperature Range (See Note 4)	- 65°C to 1	
Lead Temperature 1/4 Inch from Case for 10 Seconds		260°C

MOTES: 1. Capacitor discharge — 10 μf or less, 30 volts or less — total interbase power dissipation must be limited by external circultry.

- 2. Derate linearly to 140°C free-air temperature at the rate of 3.9 mm/°C. (2N167) series only, thermal resistance to case = 0.16°C/mm.)
- 3. Texas Instruments guarantees a maximum operating temperature of 175°C free-air. Derate linearly at the rate of 3 mw/°C.
- 4. Texas Instruments guarantees a maximum storage temperature of 175°C.

*Indicates JEDEC registered data

TYPES 745524, 286644A, 286674B, 282160 P-N-BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

*electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	2N1671		2N1671A		2N1671B		2N2160		
P			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
ree .	Static Interbase Resistance	V ₈₂₈₁ = 3 v, I _E = 0	4.7	9.1	4.7	9,1	4.7	9.1	4.0	12	kΩ
η	Intrinsic Standoff Ratio	Y ₈₂₈₁ = 10 v, See Figure 1	0.47	0.42	0.47	0.62	0.47	0.62	0.47	0.00	
I B2 (mod)	Medulated Interbase Current	V _{B2 \$1} == 10 v, I _E == 50 mm	6.0	22	6.8	22	6.8	22	6.8	30	me
[EB2O	Emiller Reverse Current	V _{02E} = 30 v, f ₀₁ = 0		-12		-12		-0.2		-12	μα
14	Peak-Point Emitter Current	Y ₈₂₈₁ = 25 v		25		25		6		25	μο
V _{EB1(sat)}	Emitter Seturation Voltage	Y ₈₂₈₁ = 10 v, I _E = 50 ma		5		5		3			7
ly	Valley-Point Emitter Current	$V_{B2B1}=20 \text{ v, R}_{B2}=100 \Omega$	8	T			•				m
AOBI	Bose-One Peak Pulsa Valtage	$V_1=20~{ m v},~R_{B1}=20~\Omega,$ See Figure 2			3		3		3		٧

^{*}Indicates JEDEC registered data

PARAMETER MEASUREMENT INFORMATION

 η — Intrinsic Standoff Ratio — This parameter is defined in terms of the peak-point voltage, V_p , by means of the equation: $V_p = \eta$, $V_{\rm BIRT} = V_p$, where V_p is about 0.56 volt at 25°C and decreases with temperature at about 2 millivolts/deg

The circuit used to measure η is shown in the figure. In this circuit, $R_{\rm L}$ C, and the unjunction transitor form a reloxation oscillator, and the remainder of the circuit serves as a peak voltage detector with the diode $D_{\rm L}$ automatically subtracting the voltage $V_{\rm F}$. To use the circuit, the "call button is pushed and $R_{\rm S}$ is adjusted to make the current meter $M_{\rm L}$ read full scale. The "call button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full scale deflection of 100 $\mu{\rm A}$.

D, 18457, or equivalent, with the following characteristics.

 $V_{\rm F}=$ 0.565 V at I $_{\rm F}=$ 50 $\mu{\rm A}_{\rm r}$

I $_{\rm R}$ \leq 2 μ A at V $_{\rm R}$ = 20 V

FIGURE 1 - TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (n)

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE