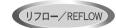

大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC **CAPACITORS**


	code	Temp.characteristics	operating Temp. range
OPERATING TEMP.	BJ	В	-25~+85°C
		X5R	-55~+85°C
	B7	X7R	-55~+125°C
	F	F	-25~+85°C
		Y5V	-30~+85°C

特長 FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、は んだ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生せ 高い信頼性を示します
- ・等価直列抵抗(ESR)が小さく、ノイズ吸収性にすぐれています。
- ・特にタンタルおよびアルミ電解コンデンサに比較した場合: 高い許容リップル電流値 高い定格電圧でありながら小型形状 絶縁抵抗、破壊電圧が高く信頼性にすぐれている 等の特徴があります
- · The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- · Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:

Higher permissible ripple current values Smaller case sizes relative to rated voltage Improved reliability due to higher insulation resistance and breakdown voltage.

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ 液晶モジュール用 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用 平滑コンデンサ
- DC-DCコンバータ(入力、出力側用) スイッチング電源(2次側用)

- General digital circuit
- · Power supply bypass capacitors Liquid crystal modules Liquid crystal drive voltage lines LS I, I C, converters(both for input and output)
- · Smoothing capacitors DC-DC converters (both for input and output) Switching power supplies (secondary side)

形名表記法 ORDERING CODE

積層コンデンサ

端子電極

形状寸法[EI	A)L×W(mm
107 (0603)	1.6×0.8
212 (0805)	2.0×1.25
316 (1206)	3.2×1.6
325 (1210)	3.2×2.5

6 温度特性〔%〕 $\triangle F$ +30 BJ B ±10 △=スペース

6		
公称静電容量〔pF〕		
例		
473	47,000	
105	1.000.000	

容量許容差 М ±20 % Z %

[み (mm)
0.45
0.8
0.85
1.15
1.25
1.5
1.6
1.9
2.0max
2.5

9 個別仕様 標準 10 包装

リールテーピング

シリーズ名

М

Rated voltage (VDC)			
4			
6.3			
10			
16			
25			
35			
50			

Dimensions (case size) (mm)			
	107 (0603)	1.6×0.8	
	212 (0805)	2.0×1.25	
	316 (1206)	3.2×1.6	
	325 (1210)	3.2×2.5	

5

Temperature characteristics code		
△F	Y5V	-30~+85°C +22/−82%
В7	X7R	-55~+125℃ ±15%
BJ	X5R	-55~+85℃ ±15%
		△=Blank space

6		
Nominal capacitance (pf		
example		
473	47,000	
105	1,000,000	

r.	±10	
М	±20	
Z	+80 -20	
8		
Thickness (mm)		
K	0.45	
A	0.8	
D	0.05	

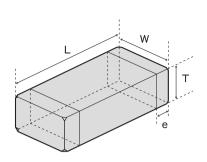
Capacitance tolerances [%]

Thickness (mm)			
K	0.45		
Α	0.8		
D	0.85		
F	1.15		
G	1.25		
Н	1.5		
L	1.6		
N	1.9		
Υ	2.0max		
M	2.5		

Special code			
	Standard products		
_			

Packaging			
T		Tape & reel	

Standard products △=Blank space



42

Series name

М	Multilayer Ceramic Capacitors
	•

外形寸法 EXTERNAL DIMENSIONS

注: *1. ±0.15mm公差あり *2. ±0.3mm公差あり *3. ±0.2mm公差あり *4. +0.15/-0.1mm公差あり Note: *1. Including dimension tolerance±0.15mm (±0.006 inch).

Note: *2. Including dimension tolerance ± 0.3 mm (± 0.012 inch). Note: *3. Including dimension tolerance ± 0.2 mm (± 0.008 inch). Note: *4. Including dimension tolerance $\pm 0.15/-0.1$ mm ($\pm 0.006/-0.004$ inch).

Type (EIA)	L	W	Т		е
MK107	1.6±0.10 ^{*3,*4}	0.8±0.10*3,*4	0.45±0.05 (0.018±0.002)	K	0.35±0.25
(0603)	(0.063±0.004)	(0.031±0.004)	0.8±0.10 *3,*4 (0.031±0.004)	Α	(0.014±0.010)
			0.45±0.05 (0.018±0.002)	K	
☐MK212 (0805)	2.0±0.10 ^{*1,*3} (0.079±0.004)	1.25±0.10 ^{*1,*3} (0.049±0.004)	0.85±0.10 (0.033±0.004)	D	0.5±0.25 (0.020±0.010)
			1.25±0.10 *1,*3 (0.049±0.004)	G	
			0.85±0.10 (0.033±0.004)	D	
□MK316	3.2±0.15*3	1.6±0.15 ^{*3}	1.15±0.10 (0.045±0.004)	F	0.5 ^{+0.35} _{-0.25}
(1206)	(0.126±0.006)	(0.063±0.006)	1.25±0.10 (0.049±0.004)	G	(0.020+0.014)
			1.6±0.20 (0.063±0.008)	L	
			0.85±0.10 (0.033±0.004)	D	
			1.15±0.10 (0.045±0.004)	F	
□MK325	3.2+0.30	2.5±0.20 ^{*2}	1.5±0.10 (0.059±0.004)	Н	0.6+0.3
(1210)	(0.126±0.012)	(0.098±0.008)	1.9±0.20 (0.075±0.008)	N	(0.024±0.012)
			1.9 ^{+0.1} _{-0.2} (0.075 ^{+0.004} _{-0.008})	Υ	
			2.5±0.20 *2 (0.098±0.008)	М	
					Unit:mm (inch

概略バリエーション AVAILABLE CAPACITANCE RANGE

Cap	Туре						10	07							Т							21	2								Т							316	3							Т							32	5					
	TC	В	/X7	R	E	3/X5	5R		Х	(5R		F	/Y5	٧	Т		B/>	(7R	1		В	Ά5I	3		>	(5F	2	F	/Y5	δV	Т		B/X	7R		E	3/X	5R		X5	R		F	/Y	5V	E	3/X	7R		Е	3/X	5R			X5	R		F/	Y5V
	VDC	25	16	10 3	5 2	5 16	10	6.3	10	6.3	4 5	0 2	5 1	6 10	0 50	35	25	16	10	50 3	35 2	5 16	10	6.3	25	10	6.3	50	16 1	06.	3 50	35	25	16 1	0 6	.32	5 16	6 10	50	10	6.3	4 :	35 2	25 1	6 1	0 2	5 16	10	50	35	25	16 1	10 5	50 3	35 16	6 10	6.3	16	10 6.
μF	3[digits	3]										T	Т		Т							Т									Т		П	T			Т						T			T										Т		П	
0.022	223	Α	П	Т	Т	Т	П	П	П			Т	Т	Т	Т	П		П	П	Т	Т	Т						П	Т	Т	Т		П	\neg	Т	Т	Т	Т					T	Т	T	Т	Т	П		П		T	Т	Т	Т	Т		П	Т
0.033	333		Α	1	1							T	T	Т	Т	Г						Т							T	Т	Т		П	\neg			Т								\top	T	Т	Г		П		\neg				Т		П	\top
0.047	473		Α	A	١ .			П	П	T	T	T	T	T	G			П		1	T	T						T	T	T	T		П	T	T		\top						T	T	1	T		T		П		1	T		1	T		П	T
0.068	683		Α		A		П	П	П	T		Т	Т	Т	G	П		П	П	T	Т	Т	Т				T	T	T	Т	Т		П	T	T	Т	Т	Т					T	\top	Т	Т	Т	Т		П		\neg	T		Т	Т		П	\top
0.1	104							П			1	4	T		G			П										1	1	1				T																		1	1			T		П	T
0.15	154		Α		A		П	П	П	T	T	T	T	Т	G	П		П	П	T	\top	Т	Т				T	T	\top	T	Т		П	\neg	\top	T	Т	T					T	\top	T	\top	Т	Т		П	\neg	\neg	T	T	Т	Т		П	\top
0.22	224		Α		A								1	1	G												T				L		П	\neg												\top						\neg						П	\top
0.33	334		П	А	A		П	П	П	T	T	T	T	T	T	G		П	П	\top	\top	T					T	T	\top	\top	T		П	T	T		\top						T	1	1	\top	T	T		П		\top	T	1	\top	T		П	\top
0.47	474			A	A	A				\neg	\top		1/	1	\top					G	a l	\top					-	G	\top	\top	L		П	\neg	\top	\top	\top	Т					\top	\top	\top	\top	T	\top		П		\top	\top	\top	\top	T		П	\top
0.68	684	Т	П	T	Т	Т	Α	П	П	T	1	T	Ť	Т	Т	T		G	П			T	T				T		T	T	Т	L	П	T	7	T	T	Т				T	T	1	\top	T	T	T	Т	П	\neg	\top	T	T	T	T		П	T
1	105	Т	Α	A A	NΑ	A		П	П	\neg	\top	\top	1	NΑ		G	G	G	G	\top	0	à	Т		П		-	G	\top	\top	T	L	П	\neg	\top	\top	\top	T				T	\top	\top	\top	\top	T	\top		П		\top	\top	\top	\top	T		П	\top
2.2	225		П	T	T		Α	Α	П	T	\top	T	1	NΑ				G		1	0	i G	T				T		G	\top	T		L	L	\top	T	\top	T	T			T	\top	1	\top	†	T	T		N	\neg	\top	T	T	\top	\top		П	\top
3.3	335	Т	П	\top	T	Т	П	П	Α	Α	\top	T	T	т	т	Т			G	\top	T	Ť	T				寸	\neg		\top	т	Т	П	L	ᅡ	T	_	T	T	П		T	\top	\top	\top	I	1	Т	Т	П	\neg	\top	T	T	\top	\top	Т	П	\pm
4.7	475	T	П	\top	\top	T	П	П	Α	Α	1	Ť	Ť	\top	T	T		П		\top	\top	G	G	G	G		T	\neg		з	\top		П	7		L	ıL	T	L			T	\top	\top	\top	I	1 N	T		П	N	\top	1	n n	N	\top		П	\top
6.8	685	Т	П	T	Т	Т	П	П	П	T	1	T	Ť	Т	Т	T		П	П	1	\top	Ť	Ť				T	T	T		Т		П	T	7	T	\top	Т				T	T	1	T	T	T	T	Т	П	\neg	\top	T	T	T	T		П	T
10	106	T	П	\top	T	T	П	П	П	A	Α	Ť	Ť	T	T	Т		П	\Box	Ť	\top	G	T			G	G	\forall		3 0	à	Т	П	7	L	LΙ	L	L	T	П		T	LI	LI		N	1	N	М	N	M.N	N	1	м	\top	\top	T	П	\top
22	226	T	П	T	Т	Т	П	П	П	-	А	T	Ť	Т	Т			П	П	1	\top	Ť	T			G		T	T	1	T		П	T	\top	T	L	L	T		L	T	T	1	L	_	T	T		П		МN	1.Y	T	1	T	Υ	N	N
47	476	Т	П	T	Т	Т	П	П	П	\dashv	\top	T	T	Т	Т	Т	Г	П	\Box	T	\top	Т	Т				G	\neg	\top	\top	Т	Г	П	\neg	\top	\top	\top	Т	Т	L	L	T	\top	\top	\top	\top	Т	Т	Т	П	\neg	\top	\top	T	N	1М		П	N
100	107	T	П	\top	T	T	П	П	П	T	1	\top	†	T	\top			П	\Box	\top	\top	\top	T				T	\neg	\top	\top	\top		П	\neg	\top	\top	\top	T	T		ı	ı	\top	\top	\top	\top	\top	T		П	\neg	\top	\top	T	\top		M.Y	П	\pm

注:グラフの記号は製品の厚み記号です。 Note: Letters in the table indicate thickness.

■低背積層セラミックコンデンサ Low profile Multilayer Ceramic Capacitors

B/X5		10	X5R 6.3	4	50 D D	B/X 25 D	7R 16	10	25	B/)		6.3	10	X5R 6.3	4	50	F/Y5V 10	6.3	50	B/X7R 25	16	25	B/X 16	5R 10	6.3	16	X5R 10	6.3	50	F/Y 35	5V 10	6.3	B/X7	7R 25	25	B/X5R 16	10		7/Y5R 35	10
		10		4	D		7R 16	10	25			6.3	10		4			6.3			16	25			6.3	16	X5R 10	6.3	50		5V 10	6.3								10
16 10	6.3	10	6.3	4	D	25 D	16	10	25	16	10	6.3	10	6.3	4	50	10	6.3	50	25	16	25	16	10	6.3	16	10	6.3	50	35	10	6.3	50	25	25	16	10	50	35	10
						D D																											=		=				\blacksquare	
						D D																													-					
					D	D D																													- 1					
						D D																											\neg							
						D					1																													
			- 1																														\neg						\neg	
1	1															D				F													\neg							
																				F													\neg							
	K						D		D																															
							D														F												\neg	\neg						\neg
K K	K			\neg			D	D	D	D·K	К	К									F	D											Н	\neg	\neg				\neg	
		К	К	K						D	D						D					D	D						G				\neg	Н	\neg				\neg	
																																	\neg				D			
			К	K						D	D		K	D·K				D						D						G	D						D	Н		
	1		-																						F								-1	\neg	\neg				-	\neg
				\neg									D	D·K										D	D	D·F					F	D	\neg	\neg	D	D	D		Н	F
				\neg										D	D												D	D					\neg	\neg	\neg	D			-	
				\neg																								D						\neg	\neg				-	
	K K	K K K		KK	K K K	K K K	K K K	K K K D D	K K K	K K K D D D	K K K	K K K	K K K	K K K	K K K D D D D K K K K D D D D D D D D D	K K K D D D D K K K K B D D D D D D D D	K K K D D D D D K D K	K K K D D D D K D D D D D D D D D D D D	K K K D D D D K D D D D D D D D D D D D	K K K D D D D K K K D D D D K D D D D D	K K K D D D D D K D D D D K D D D D D D	K K K B B B B B B B B B B B B B B B B B	K K K B B B B B B B B B B B B B B B B B	K K K D D D D K K D D D K D D D D K D D D D K D	K K K D D D D K K K D D D D K D D D D K D D D D D K D	K K K D D D D K K K D D D D F F D D F F D D F F D D F F D D F F D D D D F F D D D F F D D D D F F D D D D F F D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D F F D D D D D D D F F D D D D D F F D D D D D D F F D	K K K B D D D D K D D F D D D F F D D D D F F D D D D	K K K B D D D D K D D D F	K K K K	K K K K	K K K K	K K K K	K K K B D D D D W K K K D D D D D W K D W D D D D				K K K B B B B B B B B B B B B B B B B B	K K K	K K K	K K K

注:グラフの記号は製品の厚み記号です。 Note: Letters in the table indicate thickness.

温度特性コード		Tem	温度特性 perature characteri	stics		静電容量許容差〔%〕	tanδ(%)
Temp.char.Code	T)A	規格 e standard	温度範囲(℃) Temperature range	基準温度(℃) Ref. Temp.	静電容量変化率〔%〕 Capacitance change	Capacitance tolerance	Dissipation factor
BJ	JIS	В	-25~+85	20	±10	-10(14)	
DJ	EIA	X5R	−55∼+85	25	±15	±10(K) ±20(M)	2.5 max.*
B7	EIA	X7R	−55~+125	25	±15	±20 (IVI)	
	JIS	F	-25~+85	20	+30/-80	+80 -20 ^(Z)	7.0 max.*
	EIA	Y5V	-30 ∼+85	25	+22/-82	-20 ^(Z)	7.0 IIIax.

- *: 代表的な値を記載しています。詳細はアイテム一覧表を参照ください。
- * : The figure indicates typical value. Please refer to PART NUMBERS table.

etc

■ 107TYPE -

【温度特性 Temp.char. BJ:B/X5R】

【温度特性 Te	emp.char. BJ:B/X5F	₹]							
定格電圧 Rated Voltage	形 名 Ordering code		EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor [%] Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
	GMK107 BJ333□A		RoHS	0.033	B/X5R	3.5	R/W		0.8±0.1
35V	GMK107 BJ473□A		RoHS	0.047	B/X5R	3.5	Π/ VV		0.8±0.1
	GMK107 BJ105□A*		RoHS	1	B/X5R	5	R		0.8 ± 0.1
	TMK107 BJ223□A		RoHS	0.022	B/X5R**	2.5			0.8±0.1
	TMK107 BJ683□A		RoHS	0.068	B/X5R	3.5			0.8 ± 0.1
	TMK107 BJ154□A		RoHS	0.15	B/X5R	3.5	R/W		0.8±0.1
25V	TMK107 BJ224□A		RoHS	0.22	B/X5R	3.5			0.8±0.1
	TMK107 BJ334□A		RoHS	0.33	B/X5R	3.5			0.8 ± 0.1
	TMK107 BJ474□A*		RoHS	0.47	B/X5R	3.5			0.8±0.1
	TMK107 BJ105□A*		RoHS	1	B/X5R	5	R		0.8±0.1
	EMK107 BJ105□K*		RoHS	1	X5R	10			0.45±0.05
	EMK107 BJ333□A		RoHS	0.033	B/X5R**	3.5			0.8±0.1
	EMK107 BJ473□A		RoHS	0.047	B/X5R**	3.5			0.8±0.1
	EMK107 BJ683□A		RoHS	0.068	B/X5R**	3.5	R/W		0.8±0.1
16V	EMK107 BJ154□A*		RoHS	0.15	B/X5R**	3.5			0.8±0.1
	EMK107 BJ224□A*		RoHS	0.22	B/X5R**	3.5		±10%	0.8±0.1
	EMK107 BJ474□A		RoHS	0.47	B/X5R	3.5		±20%	0.8±0.1
	EMK107 BJ105□A*		RoHS	1	B/X5R	5			0.8±0.1
	EMK107 BJ225□A*		RoHS	2.2	B/X5R	10	R		0.8±0.1
	LMK107 BJ105□K*		RoHS	1	B/X5R	10			0.45±0.05
	LMK107 BJ225□K*		RoHS	2.2	X5R	10			0.45±0.05
	LMK107 BJ334□A		RoHS	0.33	B/X5R**	3.5	R/W		0.8±0.1
	LMK107 BJ474□A		RoHS	0.47	B/X5R**	3.5			0.8±0.1
10V	LMK107 BJ684□A		RoHS	0.68	B/X5R	5			0.8±0.1
	LMK107 BJ105□A*		RoHS	1	B/X5R**	5			0.8±0.1
	LMK107 BJ225□A*		RoHS	2.2	B/X5R	10			0.8±0.1
	LMK107 BJ335□A*		RoHS	3.3	X5R	10			0.8±0.1
	LMK107 BJ475□A*		RoHS	4.7	X5R	10			0.8±0.1
	JMK107 BJ474□K		RoHS	0.47	B/X5R	5			0.45±0.05
	JMK107 BJ105□K*		RoHS	1	B/X5R	10			0.45±0.05
	JMK107 BJ225□K*		RoHS	2.2	X5R	10			0.45±0.05
6.3V	JMK107 BJ475MK*		RoHS	4.7	X5R	10	R	±20%	0.45±0.05
6.37	JMK107 BJ225□A*		RoHS	2.2	B/X5R	10		1.400/	0.8±0.1
	JMK107 BJ335□A*		RoHS	3.3	X5R	10		±10% ±20%	0.8±0.1
	JMK107 BJ475□A*		RoHS	4.7	X5R	10		120%	0.8±0.1
	JMK107 BJ106MA*		RoHS	10	X5R	10		±20%	0.8+0.15/-0.1
	AMK107 BJ225□K*		RoHS	2.2	X5R	10		±10% ±20%	0.45±0.05
4V	AMK107 BJ475MK*		RoHS	4.7	X5R	10			0.45±0.05
	AMK107 BJ106MA*		RoHS	10	X5R	10		±20%	0.8±0.1
	AMK107 BJ226MA*		RoHS	22	X5R	10			0.8±0.2

^{**}個別仕様の取交しにより、X7R仕様に対応している場合があります。

We may provide X7R for some items according to the individual specification.

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor [%] Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
25V	TMK107 B7 223□A	RoHS	0.022	X7R	2.5			0.8±0.1
	EMK107 B7 333 ☐ A	RoHS	0.033	X7R	3.5			0.8±0.1
	EMK107 B7 473□A	RoHS	0.047	X7R	3.5	R/W		0.8±0.1
16V	EMK107 B7 683□A	RoHS	0.068	X7R	3.5	rn/ vv		0.8±0.1
100	EMK107 B7 154□A*	RoHS	0.15	X7R	3.5		±10%	0.8±0.1
	EMK107 B7 224□A*	RoHS	0.22	X7R	3.5		±20%	0.8±0.1
	EMK107 B7 105□A*	RoHS	1	X7R	5	R		0.8±0.1
	LMK107 B7 334□A	RoHS	0.33	X7R	3.5	R/W		0.8±0.1
10V	LMK107 B7 474□A	RoHS	0.47	X7R	3.5	R		0.8±0.1
	LMK107 B7 105□A*	RoHS	1	X7R	5	n		0.8±0.1

形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

^{*} 高温負荷試験の試験電圧は定格電圧の 1.5 倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
50V	UMK107 F104ZA	RoHS	0.1	F/Y5V	7			0.8±0.1
25V	TMK107 F474ZA	RoHS	0.47	F/Y5V	7	R/W		0.8±0.1
	EMK107 F224ZA	RoHS	0.22	F/Y5V	7	Π/ VV		0.8±0.1
16V	EMK107 F474ZA	RoHS	0.47	F/Y5V	7		+80%	0.8±0.1
100	EMK107 F105ZA	RoHS	1	F/Y5V	16		-20%	0.8±0.1
	EMK107 F225ZA	RoHS	2.2	F/Y5V	16	R		0.8±0.1
101/	LMK107 F105ZA	RoHS	1	F/Y5V	16	n n		0.8±0.1
10V	LMK107 F225ZA	RoHS	2.2	F/Y5V	16			0.8±0.1

■ 212TYPE —

【温度特性 Temp.char. BJ:B/X5R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor [%] Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thicknes 〔mm〕
	UMK212 BJ223□D	RoHS	0.022	B/X5R**	2.5			0.85±0.
	UMK212 BJ333□D	RoHS	0.033	B/X5R**	2.5			0.85±0.
	UMK212 BJ473□G	RoHS	0.047	B/X5R**	3.5			1.25±0.1
F0)/	UMK212 BJ683□G	RoHS	0.068	B/X5R**	3.5			1.25±0.1
50V	UMK212 BJ104□G	RoHS	0.1	B/X5R**	3.5			1.25±0.1
	UMK212 BJ154□G	RoHS	0.15	B/X5R**	3.5			1.25±0.
	UMK212 BJ224□G*	RoHS	0.22	B/X5R**	3.5	R/W		1.25±0.
	UMK212 BJ474□G*	RoHS	0.47	B/X5R	3.5			1.25±0.
	GMK212 BJ334□G	RoHS	0.33	B/X5R**	3.5			1.25±0.
35V	GMK212 BJ474□G	RoHS	0.47	B/X5R	3.5			1.25±0.
	GMK212 BJ105□G*	RoHS	1	B/X5R**	3.5			1.25±0.
	TMK212 BJ473□D	RoHS	0.047	B/X5R**	2.5			0.85±0.
	TMK212 BJ683□D	RoHS	0.068	B/X5R**	2.5			0.85±0.
	TMK212 BJ474□D	RoHS	0.47	B/X5R	3.5			0.85±0
25V	TMK212 BJ105□D	RoHS	1	B/X5R	5			0.85±0.
	TMK212 BJ105□G	RoHS	1	B/X5R	5	R		1.25±0
	TMK212 BJ225 G*	RoHS	2.2	B/X5R	5			1.25±0
	TMK212 BJ475□G*	RoHS	4.7	X5R	10			1.25±0.
	EMK212 BJ105 K*	RoHS	1	B/X5R	5			0.45±0.
	EMK212 BJ474 D	RoHS	0.47	B/X5R**	3.5	R/W	±10%	0.85±0
	EMK212 BJ684 D	RoHS	0.68	B/X5R**	3.5		±20%	0.85±0
	EMK212 BJ105 D	RoHS	1	B/X5R	5	_		0.85±0
40)/	EMK212 BJ225 D	RoHS	2.2	B/X5R	5	R		0.85±0
16V	EMK212 BJ475 D*	RoHS	4.7	B/X5R	10			0.85±0
	EMK212 BJ684□G EMK212 BJ105□G	RoHS	0.68	B/X5R**	3.5	R/W		1.25±0 1.25±0
	EMK212 BJ105 G	RoHS RoHS	2.2	B/X5R** B/X5R**	3.5 5			1.25±0
	EMK212 BJ225 G*	RoHS	4.7	B/X5R	5			1.25±0
	EMK212 BJ106 G*	RoHS	10	B/X5R	10			1.25±0.
	LMK212 BJ105 K	RoHS	1	B/X5R	5			0.45±0.
	LMK212 BJ475 K*	RoHS	4.7	X5R	10	R		0.45±0.
	LMK212 BJ105□D	RoHS	1	B/X5R**	3.5	, ''		0.85±0
	LMK212 BJ225 D*	RoHS	2.2	B/X5R	5			0.85±0
	LMK212 BJ475 D*	RoHS	4.7	B/X5R	10			0.85±0
	LMK212 BJ106 D*	RoHS	10	X5R	10			0.85±0
10V	LMK212 BJ105□G	RoHS	1	B/X5R**	3.5	R/W		1.25±0
	LMK212 BJ225□G	RoHS	2.2	B/X5R**	5	.,,		1.25±0
	LMK212 BJ335□G	RoHS	3.3	B/X5R**	5			1.25±0
	LMK212 BJ475□G	RoHS	4.7	B/X5R	5			1.25±0.
	LMK212 BJ106□G	RoHS	10	X5R	10			1.25±0.
	LMK212 BJ226MG	RoHS	22	X5R	10		±20%	1.25±0
	JMK212 BJ105□K	RoHS	1	B/X5R	5		±10%	0.45±0.
	JMK212 BJ475□K*	RoHS	4.7	X5R	10		±20%	0.45±0.
	JMK212 BJ106MK*	RoHS	10	X5R	10		±20%	0.45±0.
	JMK212 BJ475□D	RoHS	4.7	X5R	10	R	±10%	0.85±0
6.3V	JMK212 BJ106□D*	RoHS	10	X5R	10		±20%	0.85±0
0.57	JMK212 BJ226MD*	RoHS	22	X5R	10		±20%	0.85±0
	JMK212 BJ475□G	RoHS	4.7	B/X5R	5		±10%	1.25±0
	JMK212 BJ106□G	RoHS	10	X5R	10		±20%	1.25±0
	JMK212 BJ226MG*	RoHS	22	X5R	10			1.25±0.
	JMK212 BJ476MG*	RoHS	47	X5R	10		±20%	1.25±0
4V	AMK212 BJ226MD*	RoHS	22	X5R	10			0.85±0

形名の□には静電容量許容差記号が入ります。

^{*} 高温負荷試験の試験電圧は定格電圧の 1.5 倍

^{**} 個別仕様の取交しにより、X7R 仕様に対応している場合があります。

[☐] Please specify the capacitance tolerance code.

^{*} Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

 $^{^{\}star\star}$ We may provide X7R for some items according to the individual specification.

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness (mm)
	UMK212 B7 223□D	RoHS	0.022	X7R	2.5			0.85±0.1
	UMK212 B7 333□D	RoHS	0.033	X7R	2.5			0.85±0.1
	UMK212 B7 473□G	RoHS	0.047	X7R	3.5			1.25±0.1
50V	UMK212 B7 683□G	RoHS	0.068	X7R	3.5			1.25±0.1
	UMK212 B7 104□G	RoHS	0.1	X7R	3.5			1.25±0.1
	UMK212 B7 154□G	RoHS	0.15	X7R	3.5	R/W		1.25±0.1
	UMK212 B7 224□G*	RoHS	0.22	X7R	3.5			1.25±0.1
35V	GMK212 B7 334□G	RoHS	0.33	X7R	3.5			1.25±0.1
357	GMK212 B7 105□G*	RoHS	1	X7R	3.5			1.25±0.1
	TMK212 B7 473□D	RoHS	0.047	X7R	2.5			0.85±0.1
25V	TMK212 B7 683□D	RoHS	0.068	X7R	2.5		±10%	0.85±0.1
	TMK212 B7 105 G*	RoHS	1	X7R	5	R	±20%	1.25±0.1
	EMK212 B7 474□D	RoHS	0.47	X7R	3.5	R/W		0.85±0.1
	EMK212 B7 684□D	RoHS	0.68	X7R	3.5	H/ VV		0.85±0.1
16V	EMK212 B7 105□D	RoHS	1	X7R	5	R		0.85±0.1
100	EMK212 B7 684□G	RoHS	0.68	X7R	3.5	R/W		1.25±0.1
	EMK212 B7 105□G	RoHS	1	X7R	3.5	H/ VV		1.25±0.1
	EMK212 B7 225 G*	RoHS	2.2	X7R	10	R		1.25±0.1
	LMK212 B7 105□D	RoHS	1	X7R	3.5	К		0.85±0.1
10V	LMK212 B7 105□G	RoHS	1	X7R	3.5	R/W		1.25±0.1
IUV	LMK212 B7 225□G	RoHS	2.2	X7R	5	R		1.25±0.1
	LMK212 B7 335□G	RoHS	3.3	X7R	5	n		1.25±0.1

【温度特性 Temp.char. F:F/Y5V】

-								
定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
	UMK212 F224ZD	RoHS	0.22	F/Y5V	7			0.85±0.1
50V	UMK212 F474ZG	RoHS	0.47	F/Y5V	7	R/W		1.25±0.1
	UMK212 F105ZG	RoHS	1	F/Y5V	7	Fi/ VV		1.25±0.1
16V	EMK212 F225ZG	RoHS	2.2	F/Y5V	7		1.000/	1.25±0.1
	LMK212 F225ZD	RoHS	2.2	F/Y5V	9		+80% -20%	0.85±0.1
10V	LMK212 F475ZG	RoHS	4.7	F/Y5V	9		-20%	1.25±0.1
	LMK212 F106ZG	RoHS	10	F/Y5V	16	R		1.25±0.1
6.3V	JMK212 F475ZD	RoHS	4.7	F/Y5V	16			0.85±0.1
0.37	JMK212 F106ZG	RoHS	10	F/Y5V	16			1.25±0.1

形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

^{*} 高温負荷試験の試験電圧は定格電圧の 1.5 倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

■ 316TYPE -

【温度特性 Temp.char. BJ:B/X5R】

。温度特性 Te	emp.char. BJ:B/X5F	RJ							
定格電圧 Rated Voltage	形 名 Ordering code		EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
	UMK316 BJ224□L		RoHS	0.22	B/X5R**	2.5	D 444		1.6±0.2
50V	UMK316 BJ474□L		RoHS	0.47	B/X5R**	3.5	R/W		1.6±0.2
	UMK316 BJ475□L*		RoHS	4.7	X5R	10	R		1.6±0.2
	GMK316 BJ684□L		RoHS	0.68	B/X5R**	3.5			1.6±0.2
35V	GMK316 BJ105□L		RoHS	1	B/X5R**	3.5	R/W		1.6±0.2
	TMK316 BJ105□D		RoHS	1	B/X5R	3.5	_		0.85±0.1
	TMK316 BJ225□D*		RoHS	2.2	B/X5R	3.5	R		0.85±0.1
	TMK316 BJ224□F		RoHS	0.22	B/X5R**	2.5			1.15±0.1
	TMK316 BJ334□F		RoHS	0.33	B/X5R**	2.5	R/W		1.15±0.1
25V	TMK316 BJ225□L		RoHS	2.2	B/X5R**	3.5			1.6±0.2
	TMK316 BJ335□L		RoHS	3.3	B/X5R	3.5		±10%	1.6±0.2
	TMK316 BJ475□L*		RoHS	4.7	B/X5R	5		±20%	1.6±0.2
	TMK316 BJ106□L*		RoHS	10	B/X5R	5	R		1.6±0.2
	EMK316 BJ225□D		RoHS	2.2	B/X5R	3.5			0.85±0.1
	EMK316 BJ106□D*		RoHS	10	X5R	10			0.85±0.1
	EMK316 BJ684□F		RoHS	0.68	B/X5R**	3.5			1.15±0.1
	EMK316 BJ105□F		RoHS	1	B/X5R**	3.5	R/W		1.15±0.1
	EMK316 BJ106□F*		RoHS	10	X5R	10	R		1.15±0.1
16V	EMK316 BJ225□L		RoHS	2.2	B/X5R**	3.5	R/W		1.6±0.2
	EMK316 BJ335□L		RoHS	3.3	B/X5R**	3.5			1.6±0.2
	EMK316 BJ475□L		RoHS	4.7	B/X5R	5			1.6±0.2
	EMK316 BJ106□L*		RoHS	10	B/X5R	5			1.6±0.2
	EMK316 BJ226ML*		RoHS	22	B/X5R	10		±20%	1.6±0.2
	LMK316 BJ475□D		RoHS	4.7	B/X5R	5		±10%	0.85±0.1
	LMK316 BJ106□D		RoHS	10	B/X5R	10		±20%	0.85±0.1
	LMK316 BJ226MD*		RoHS	22	X5R	10		±20%	0.85±0.1
	LMK316 BJ335□L		RoHS	3.3	B/X5R**	3.5			1.6±0.2
10V	LMK316 BJ475□L		RoHS	4.7	B/X5R**	5			1.6±0.2
	LMK316 BJ106□L		RoHS	10	B/X5R	5		±20%	1.6±0.2
	LMK316 BJ226ML*		RoHS	22	B/X5R	10			1.6±0.2
	LMK316 BJ476ML*		RoHS	47	X5R	10	R	±20%	1.6±0.2
	JMK316 BJ106□D		RoHS	10	B/X5R	10		±10% ±20%	0.85±0.1
	JMK316 BJ226MD*		RoHS	22	X5R	10			0.85±0.1
	JMK316 BJ476MD*		RoHS	47	X5R	10		±20%	0.85±0.1
6.3V	JMK316 BJ685□F		RoHS	6.8	B/X5R	10			1.15±0.1
	JMK316 BJ106□L		RoHS	10	B/X5R**	5			1.6±0.2
	JMK316 BJ226□L		RoHS	22	X5R	10		±20%	1.6±0.2
	JMK316 BJ476ML		RoHS	47	X5R	10			1.6±0.2
	JMK316 BJ107ML*		RoHS	100	X5R	10		±20%	1.6±0.2
								許 容 差 Capacitance tolerance ±10% ±20% ±20% ±10% ±20% ±20% ±20% ±20% ±20% ±20%	

^{**} 個別仕様の取交しにより、X7R 仕様に対応している場合があります。

【温度特性 Temp.char. B7:X7R】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
50V	UMK316 B7 224□L	RoHS	0.22	X7R	2.5			1.6±0.2
507	UMK316 B7 474□L	RoHS	0.47	X7R	3.5			1.6±0.2
35V	GMK316 B7 684□L	RoHS	0.68	X7R	3.5	R/W		1.6±0.2
337	GMK316 B7 105□L	RoHS	1	X7R	3.5	n/ vv		1.6±0.2
	TMK316 B7 224□F	RoHS	0.22	X7R	2.5			1.15±0.1
25V	TMK316 B7 334□F	RoHS	0.33	X7R	2.5			1.15±0.1
	TMK316 B7 225□L	RoHS	2.2	X7R	3.5	R		1.6±0.2
	EMK316 B7 684□F	RoHS	0.68	X7R	3.5		±10% ±20%	1.15±0.1
16V	EMK316 B7 105□F	RoHS	1	X7R	3.5	R/W	12070	1.15±0.1
100	EMK316 B7 225□L	RoHS	2.2	X7R	3.5			1.6±0.2
	EMK316 B7 335□L	RoHS	3.3	X7R	3.5			1.6±0.2
	LMK316 B7 335□L	RoHS	3.3	X7R	3.5			1.6±0.2
10V	LMK316 B7 475□L	RoHS	4.7	X7R	5	R		1.6±0.2
	LMK316 B7 106□L*	RoHS	10	X7R	5			1.6±0.2
6.3V	JMK316 B7 106□L	RoHS	10	X7R	5			1.6±0.2

形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

 $[\]ensuremath{^{\star\star}}\xspace$ We may provide X7R for some items according to the individual specification

^{*} 高温負荷試験の試験電圧は定格電圧の 1.5 倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

【温度特性 Temp.char. F:F/Y5V】

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor [%] Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
50V	UMK316 F225ZG	RoHS	2.2	F/Y5V	7	R/W		1.25±0.1
35V	GMK316 F475ZG	RoHS	4.7	F/Y5V	7		Laggy	1.25±0.1
337	GMK316 F106ZL	RoHS	10	F/Y5V	9			1.6±0.2
25V	TMK316 F106ZL	RoHS	10	F/Y5V	9			1.6±0.2
16V	EMK316 F106ZL	RoHS	10	F/Y5V	9	R	+80% -20%	1.6±0.2
	LMK316 F475ZD	RoHS	4.7	F/Y5V	9	n n	2070	0.85±0.1
10V	LMK316 F106ZF	RoHS	10	F/Y5V	16	1		1.15±0.1
	LMK316 F226ZL	RoHS	22	F/Y5V	16			1.6±0.2
6.3V	JMK316 F106ZD	RoHS	10	F/Y5V	16			0.85±0.1

【温度特性 Te	emp.char. BJ:B/X5F	R]							
定格電圧 Rated Voltage	形 名 Ordering code		EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor [%] Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness (mm)
50V	UMK325 BJ105□H		RoHS	1	B/X5R**	3.5	R/W	±10% ±20%	1.5±0.1
500	UMK325 BJ475MM*		RoHS	4.7	X5R	10			2.5±0.2
	UMK325 BJ106MM*		RoHS	10	X5R	10			2.5±0.2
	GMK325 BJ225MN		RoHS	2.2	B/X5R	3.5			1.9±0.2
35V	GMK325 BJ475MN*		RoHS	4.7	X5R	10			1.9±0.2
	GMK325 BJ106MN*		RoHS	10	B/X5R	5			1.9±0.2
	TMK325 BJ106MD*		RoHS	10	B/X5R	5			0.85±0.1
	TMK325 BJ225MH		RoHS	2.2	B/X5R**	3.5			1.5±0.1
25V	TMK325 BJ335MN		RoHS	3.3	B/X5R**	3.5			1.9±0.2
23 V	TMK325 BJ475MN*		RoHS	4.7	B/X5R**	3.5			1.9±0.2
	TMK325 BJ106MN		RoHS	10	B/X5R	5			1.9±0.2
	TMK325 BJ106MM*		RoHS	10	B/X5R	3.5			2.5±0.2
	EMK325 BJ106MD*		RoHS	10	B/X5R	5			0.85±0.1
	EMK325 BJ226MD*		RoHS	22	B/X5R	10			0.85±0.1
16V	EMK325 BJ475MN		RoHS	4.7	B/X5R**	3.5			1.9±0.2
100	EMK325 BJ106MN		RoHS	10	B/X5R	3.5	R	±20%	1.9±0.2
	EMK325 BJ226MM*		RoHS	22	B/X5R	5	n	±20%	2.5±0.2
	EMK325 BJ476MM*		RoHS	47	X5R	10			2.5±0.2
	LMK325 BJ335MD		RoHS	3.3	B/X5R	3.5			0.85±0.1
	LMK325 BJ475MD		RoHS	4.7	B/X5R	5			0.85±0.1
	LMK325 BJ106MD*		RoHS	10	B/X5R	5			0.85±0.1
10V	LMK325 BJ226MY*		RoHS	22	B/X5R	5			1.9+0.1/-0.2
100	LMK325 BJ106MN		RoHS	10	B/X5R**	3.5			1.9±0.2
	LMK325 BJ226MM		RoHS	22	B/X5R	5			2.5±0.2
	LMK325 BJ476MM*		RoHS	47	X5R	10			2.5±0.2
	LMK325 BJ107MM*		RoHS	100	X5R	10			2.5±0.3
	JMK325 BJ226MY		RoHS	22	X5R	5			1.9+0.1/-0.2
	JMK325 BJ107MY*		RoHS	100	X5R	10			1.9+0.1/-0.2
6.3V	JMK325 BJ476MN*		RoHS	47	X5R	10			1.9±0.2
	JMK325 BJ476MM*		RoHS	47	X5R	10			2.5±0.2
	JMK325 BJ107MM*		RoHS	100	X5R	10			2.5±0.3

形名の□には静電容量許容差記号が入ります。

^{*} 高温負荷試験の試験電圧は定格電圧の 1.5 倍

 $[\]hfill \square$ Please specify the capacitance tolerance code.

^{*} Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage. ** 個別仕様の取交しにより、X7R 仕様に対応している場合があります。

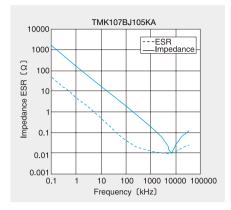
 $^{^{\}star\star}$ We may provide X7R for some items according to the individual specification.

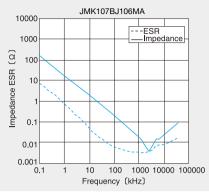
⁴⁹

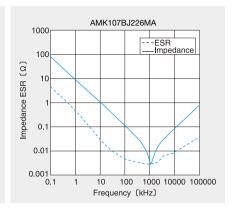
【温度特性 Temp.char. B7:X7R】

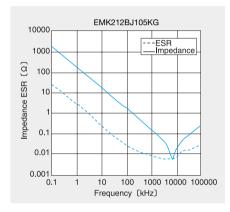
定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
50V	UMK325 B7105□H	RoHS	1	X7R	3.5	R/W	±10% ±20%	1.5±0.1
	TMK325 B7225MH	RoHS	2.2	X7R	3.5			1.5±0.1
25V	TMK325 B7335MN	RoHS	3.3	X7R	3.5			1.9±0.2
250	TMK325 B7475MN*	RoHS	4.7	X7R	3.5	R	±20%	1.9±0.2
	TMK325 B7106MN*	RoHS	10	X7R	5	n	120%	1.9±0.2
16V	EMK325 B7475MN	RoHS	4.7	X7R	3.5			1.9±0.2
10V	LMK325 B7106MN	RoHS	10	X7R	3.5			1.9±0.2

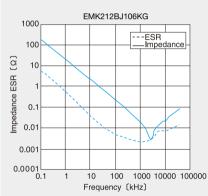
【温度特性 Temp.char. F:F/Y5V】

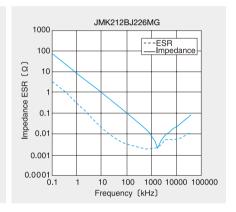

定格電圧 Rated Voltage	形 名 Ordering code	EHS (Environmental Hazardous Substances)	公 称 静電容量 Capacitance 〔µF〕	温度特性 Temperature characteristics	tan δ Dissipation factor (%) Max.	実装条件 Soldering method R:リフロー Reflow soldering W: フロー Wave soldering	静電容量 許 容 差 Capacitance tolerance	厚み Thickness 〔mm〕
50V	UMK325 F475ZH	RoHS	4.7	F/Y5V	7		+80%	1.5±0.1
35V	GMK325 F106ZH	RoHS	10	F/Y5V	7			1.5±0.1
16V	EMK325 F226ZN	RoHS	22	F/Y5V	16	R		1.9±0.2
10V	LMK325 F106ZF	RoHS	10	F/Y5V	16		-20%	1.15±0.1
100	LMK325 F226ZN	RoHS	22	F/Y5V	16			1.9±0.2
6.3V	JMK325 F476ZN	RoHS	47	F/Y5V	16			1.9±0.2

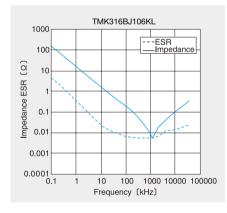

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

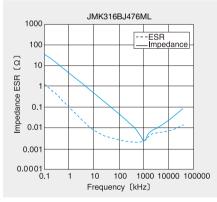

* 高温負荷試験の試験電圧は定格電圧の 1.5 倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

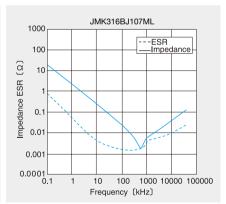

インピーダンス・ESR一周波数特性例 Example of Impedance ESR vs. Frequency characteristics

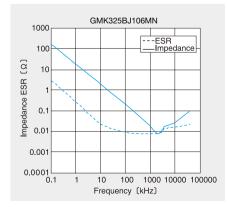

・当社積層セラミックコンデンサ例 (Taiyo Yuden multilayer ceramic capacitor)

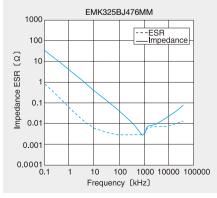


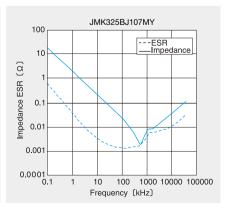


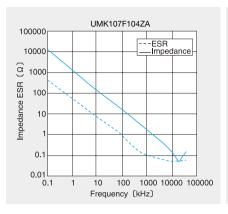


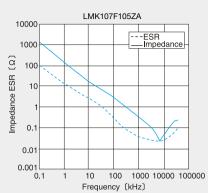


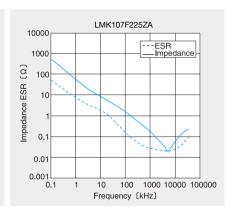


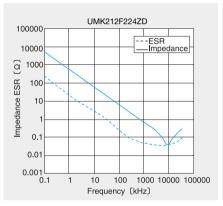


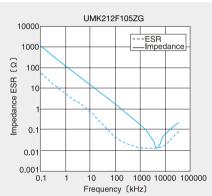


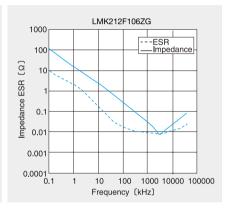


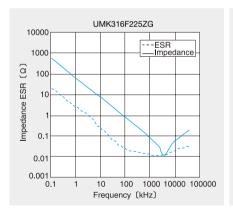


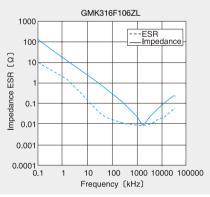


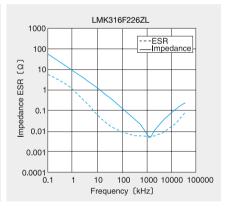


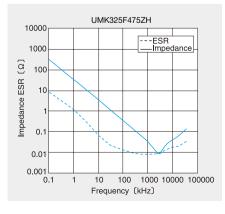


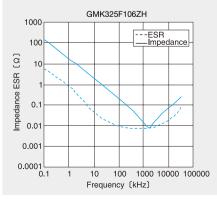


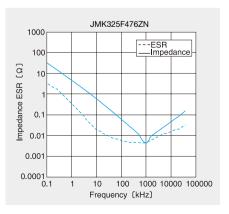




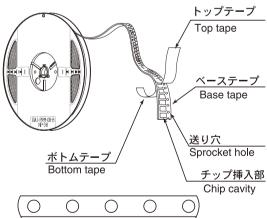


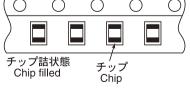


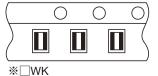




梱包 PACKAGING


①最小受注単位数 Minimum Quantity

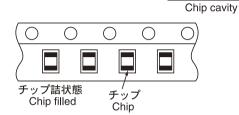

■テーピング梱包 Taped packaging

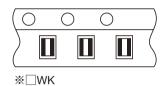

形式(EIA) Type	製品厚み Thickness			数量 d quantity s]	
.,,,,,	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape	
☐MK042 (01005)	0.2 (0.008)	С	15000	_	
☐MK063(0201)	0.3 (0.012)	Р	15000	_	
□2K096(0302)	0.3 (0.012)	Р	10000		
□2KU96(U3U2)	0.45 (0.018)	K	10000	_	
□WK105(0204)	0.3 (0.012)	Р	10000	_	
☐MK105(0402)	0.5 (0.000)	V, W	10000		
□VK105 (0402)	0.5 (0.020)	W	10000	_	
	0.45 (0.018)	K	4000	_	
☐MK107(0603)	0.5 (0.020)	V	_	4000	
□WK107(0306)	0.0(0.004)	А	4000		
	0.8(0.031)	Z	4000		
	0.5 (0.020)	V	4000	_	
□2K110(0504)	0.8(0.031)	Α	4000	_	
	0.6 (0.024)	В	4000	_	
	0.45 (0.018)	К	4000	_	
☐MK212(0805) ☐ ☐WK212(0508) ☐	0.85 (0.033)	D	4000	_	
	1.25 (0.049)	G	_	3000	
□4K212(0805)	0.85 (0.033)	D	4000	_	
□2K212(0805)	0.85 (0.033)	D	4000	_	
	0.85 (0.033)	D	4000	_	
□MK316(1206)	1.15 (0.045)	F		2000	
□WK316(0612)	1.25 (0.049)	G	-	3000	
	1.6 (0.063)	L	_	2000	
	0.85 (0.033)	D			
	1.15 (0.045)	F	1	0000	
	1.5 (0.059)	Н	1 -	2000	
□MK325(1210)	1.9 (0.075)	N			
	2.0max(0.079)	Y	_	2000	
ļ	2.5 (0.098)	М	_	500,1000	
MK432(1812)	2.5 (0.098)	М	1	500	

②テーピング材質 Taping material 紙テープ Card board carrier tape

※プレスポケットタイプは、 ボトムテープ無し。

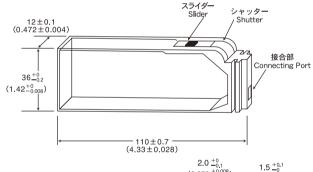
エンボステープ Embossed Tape

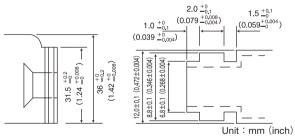

トップテープ


Top tape

送り穴

Sprocket hole


チップ挿入部

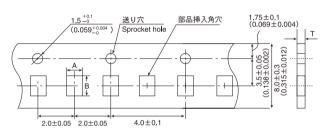


③バルクカセット Bulk Cassette

ベーステー Base tape

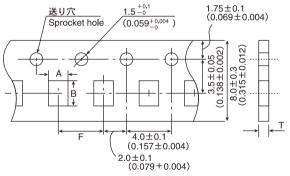
105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)

2.0±0.05


2.0±0.05

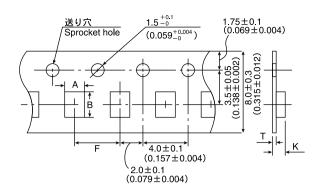
③テーピング寸法 Taping dimensions 紙テープ Paper Tape(8mm幅)(0.315inches wide)

4.0±0.1


Type (EIA)		挿入部 Cavity	挿入ピッチ Insertion Pitch		プ厚み iickness
(LIA)	A B F		Т	T1	
☐MK042(01005)	0.25	0.45	2.0±0.05	0.36max.	0.27max.
	(0.010)	(0.018)	(0.079±0.002)	(0.014)	(0.011)
☐MK063(0201)	0.37	0.67	2.0±0.05	0.45max.	0.42max.
	(0.016)	(0.027)	(0.079±0.002)	(0.018)	(0.017)
□WK105(0204)	0.65	1.15	2.0±0.05	0.45max	0.42max
	(0.026)	(0.045)	(0.079±0.002)	(0.018max)	(0.017max)

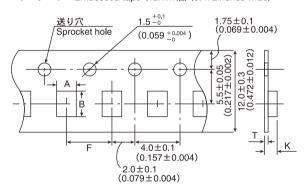
Unit: mm (inch)

T	チッフ	[°] 挿入部	挿入ピッチ	テープ厚み
Type (EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
(EIA)	Α	В	F	Т
	0.72	1.02	2.0±0.05	0.45max.(0.018max)
□2K096(0302)	(0.028)	(0.040)	(0.079±0.002)	0.6max.(0.024max)
☐MK105(0402)	0.65	1.15	2.0±0.05	0.8max.
□VK105(0402)	(0.026)	(0.045)	(0.079±0.002)	(0.031max.)

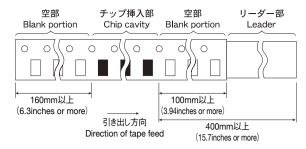

Unit: mm (inch)

_	チッフ	[°] 挿入部	挿入ピッチ	テープ厚み	
Type	Chip (Cavity	Insertion Pitch	Tape Thickness	
(EIA)	Α	A B		Т	
☐MK107(0603)	1.0	1.8	4.0±0.1	1.1max.	
□WK107(0306)	(0.039)	(0.071)	(0.157±0.004)	(0.043max.)	
	1.15	1.55	4.0±0.1	1.0max.	
□2K110 (0504)	(0.045)	(0.061)	(0.157±0.004)	(0.039max.)	
☐MK212(0805)					
□WK212 (0508)	1.65	2.4			
□4K212(0805)	(0.065)	(0.094)	4.0±0.1	1.1max.	
□2K212(0805)			(0.157±0.004)	(0.043max.)	
☐MK316 (1206)	2.0	3.6			
□WK316(0612)	(0.079)	(0.142)			

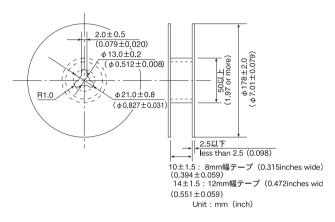
Unit: mm (inch)


エンボステープ Embossed tape (8mm幅) (0.315inches wide)

チップ	°挿入部	挿入ピッチ	テーフ	テープ厚み	
Chip	cavity	Insertion Pitch	Tape Th	Tape Thickness	
Α	В	F	K	Т	
1.0	1.8		1.3max.	0.25±0.1	
(0.039)	(0.071)		(0.051max.)	(0.01±0.004)	
1.65	2.4				
(0.065)	(0.094)	4.0±0.1			
2.0	3.6	(0.157±0.004)	3.4max.	0.6max.	
(0.079)	(0.142)		(0.134max.)	(0.024max.)	
2.8	3.6				
(0.110)	(0.142)				
	Chip (A 1.0 (0.039) 1.65 (0.065) 2.0 (0.079) 2.8	1.0 1.8 (0.039) (0.071) 1.65 2.4 (0.065) (0.094) 2.0 3.6 (0.079) (0.142) 2.8 3.6	Chip cavity Insertion Pitch A B F 1.0 1.8 (0.039) (0.071) 1.65 2.4 (0.065) (0.094) 4.0±0.1 2.0 3.6 (0.157±0.004) (0.079) (0.142) 2.8 3.6	Chip cavity Insertion Pitch Tape Th A B F K 1.0 1.8 1.3max. (0.039) (0.071) 4.0±0.1 1.65 2.4 4.0±0.1 2.0 3.6 (0.157±0.004) (0.079) (0.142) 2.8 3.6	

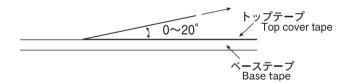

Unit: mm (inch)

エンボステープ Embossed tape (12mm幅) (0.472inches wide)



-	チッフ	°挿入部	挿入ピッチ	テープ厚み			
Type	Chip	cavity	Insertion Pitch	Tape Thickness			
(EIA)	А	В	F	K	Т		
□MK432 (1812)	3.7 (0.146)			8.0±0.1 4.0max. 0.6max. (0.315±0.004) (0.157max.) (0.024max.)			
Unit: mm (inch)							

④リーダー部/空部 Leader and Blank portion



⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて $0.1\sim0.7$ Nとなります。 The top tape requires a peel-off force of $0.1\sim0.7$ N in the direction of the arrow as illustrated below.

Multilayer Ceramic Capacitor Chips

			Specific	ed Value		
It	tem	Temperature Comp	pensating (Class 1)	High Permitiv	vity (Class 2)	Test Methods and Remarks
		Standard	High Frequency Type	Standard Note1	High Value	
.Operating Range	Temperature	-55 to +125°C		BJ: -55 to +125°C F: -25 to +85°C	−25 to +85°C	High Capacitance Type BJ (X7R): -55~+125°C, BJ (X5R): -55~+85°1
	Temperature	-55 to +125°C		BJ: -55 to +125°C	-25 to +85°C	E (Y5U): -30~+85°C, F (Y5V): -30~+85° High Capacitance Type BJ (X7R): -55~+125°C, BJ (X5R): -55~+85°
Range				F: −25 to +85°C		E (Y5U): -30~+85°C, F (Y5V): -30~+85°
Rated Volta	ge	50VDC,25VDC, 16VDC	16VDC 50VDC	50VDC,25VDC	50VDC,35VDC,25VDC 16VDC,10VDC,6.3VDC 4DVC, 2.5VDC	
.Withstandin Between ter		No breakdown or damage	No abnormality	No breakdown or dama	· ·	Applied voltage: Rated voltage ×3 (Class 1) Rated voltage ×2.5 (Class 2) Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)
Insulation R	lesistance	10000 MΩ min.	l	500 MΩ μF. or 10000 smaller.	$M\Omega$., whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec. Charge/discharge current: 50mA max.
6.Capacitance	e (Tolerance)	0.5 to 5 pF: ±0.25 pF 1 to 10 pF: ±0.5 pF 5 to 10 pF: ±1 pF 11 pF or over: ±5% ±10% 105TYPERA, SA, TA, UA only 0.5~2pF: ±0.1pF 2.2~20pF: ±5%	0.5 to 2 pF: ±0.1 pF 2.2 to 5.1 pF: ±5%	BJ: ±10%, ±20% F: +80% -20	BJ: ±10%, ±20% F: -20%/+80%	Measuring frequency : Class1 : 1MHz±10% (C≦1000pF) 1 k Hz±10% (C≤1000pF) 1 k Hz±10% (C≤1000pF) Class2 : 1 k Hz±10% (C≤10 μ F) 120Hz±10Hz (C>10 μ F) Note 4 Class1 : 0.5~5Vrms (C≤1000pF) 1±0.2Vrms (C>1000pF) Class2 : 1±0.2Vrms (C≤10 μ F) 0.5±0.1Vrms (C>10 μ F) Bias application: None
7.Q or Tangent (tan δ)	t of Loss Angle	Under 30 pF : Q≥400 + 20C 30 pF or over : Q≥1000 C= Nominal capacitance	Refer to detailed specification	BJ: 2.5% max. (50V, 25V) F: 5.0% max. (50V, 25V) Note 4	BJ: 2.5% max. F: 7% max. Note 4	Multilayer: Measuring frequency: Class1: $1MHz\pm10\%$ (C≤1000pF) $1kHz\pm10\%$ (C>1000pF) $1kHz\pm10\%$ (C≤1000pF) $120Hz\pm10\%$ (C≤10 μ F) $120Hz\pm10Hz$ (C>10 μ F) Measuring voltage: Note 4 Class1: $0.5\sim5Vrms$ (C≤1000pF) $1\pm0.2Vrms$ (C>1000pF) $1\pm0.2Vrms$ (C>10 μ F) $0.5\pm0.1Vrms$ (C>10 μ F) Bias application: None High—Frequency—Multilayer: Measuring frequency: $13Hz$ (C>10 $13Hz$ Measuring equipment: $13Hz$ Measuring ig: HP16192A
Temperature Characteristic of Capacitance	(Without voltage ap- plication)	CK: 0±250 CJ: 0±120 CH: 0±60 CG: 0±30 RH: -220±60 SK: -330±250 SJ: -330±120 SH: -470±250 TJ: -470±120 UK: -750±250 UJ: -750±120 SL: +350 to -1000 (ppm/C)	CH: 0±60 RH: -220±60 (ppm/°C)	BJ: ±10% (-25~85°C) F: +30% (-25~85°C) BJ (X7R): ±15% F (Y5V):+22%	BJ: ±10% (-25~+85°C) F:+30%/-80% (-25~+85°C) BJ(X7R, X5R): ±15% F(Y5V): +22%/-82%	According to JIS C 5102 clause 7.12. Temperature compensating: Measurement of capacitance at 20°C and 85°C shall be made to calculate temperature characteristic by the following equation. $ \frac{(C_{65}-C_{20})}{C_{20}\times \triangle T}\times 10^{6} \text{(ppm/°C)} $ High permittivity: Change of maximum capacitance deviation in step 1 to 5 Temperature at step 1: $\pm 20^{\circ}\text{C}$ Temperature at step 2: minimum operating temperature Temperature at step 3: $\pm 20^{\circ}\text{C}$ (Reference temperature Temperature at step 4: maximum operating temperature Temperature at step 5: $\pm 20^{\circ}\text{C}$ Reference temperature for X7R, X5R, Y5U and Y5V shall be $\pm 25^{\circ}\text{C}$
3.Resistance Substrate	to Flexure of	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5 pF, whichever is larger.	Appearance: No abnormality Capacitance change: Within±0.5 pF	Appearance: No abnormality Capacitance change: BJ: Within ±12.5% F: Within ±30%		Warp: 1mm Testing board: glass epoxy—resin substrate Thickness: 1.6mm (063 TYPE: 0.8mm) The measurement shall be made with board in the bent position.

Multilayer Ceramic Capacitor Chips

	Specified Value				
Item	Temperature Compensating (Class 1) High Permittivity (Class 2)			Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value	
10.Body Strength	_	No mechanical damage.	_	_	High Frequency Multilayer: Applied force: 5N Duration: 10 sec. Press Chip Chip L L W
11.Adhesion of Electrode	No separation or indication of separation of electrode.		Applied force: 5N Duration: 30±5 sec. (01005, 0201, 0302 TYPE 2N) Hooked jig R=05 Chip Cross-section		
12.Solderability	At least 95% of termina	electrode is covered by	new solder.		Solder temperature: 230±5°C Duration: 4±1 sec.
13.Resistance to soldering	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	tan δ: Initial value Insulation resistance: In	Vithin ±7.5% (BJ) Vithin ±20% (F) Note 4	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 mir 150 to 200°C, 2 to 5 min. or 5 to 10 mir Recovery: Recovery for the following period under the standard condition after the test. 6~24 hrs (Class 1) 24±2 hrs (Class 2)
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ±2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnorm Capacitance change: We tan δ : Initial value Insulation resistance: In Withstanding voltage (abnormality	Vithin ±7.5% (BJ) Vithin ±20% (F) Note 4 itial value	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30 ± 3 min Step 2: Room temperature 2 to 3 min Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30 ± 3 min Step 4: Room temperature 2 to 3 min Number of cycles: 5 times Recovery after the test: $6\sim$ 24 hrs (Class 1) $24\pm$ 2 hrs (Class 2)
15.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5pF, whichever is larger. Q: C≥30 pF : Q≥350 $10 ≤ C < 30$ pF: Q≥ $275 + 2.5C$ C<10 pF : Q≥200 + 10C C: Nominal capacitance Insulation resistance: $1000 \text{ M}\Omega$ min.	Appearance: No abnormality Capacitance change: Within ±0.5pF, Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : BJ: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: $50~\mathrm{M}\Omega~\mu\mathrm{F}$ or $1000~\mathrm{M}\Omega$ whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ Note 4 $\tan \delta$: BJ: 5.0% max. Note 4. F: 11.0% max. Insulation resistance: $50~\mathrm{M}\Omega~\mathrm{\mu}\mathrm{F}$ or $1000~\mathrm{M}\Omega$ whichever is smaller. Note 5	Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber 6~24 hrs (Class 1) 24±2 hrs (Class 2) High—Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Recovery: Recovery for the following period under the standard condition after the removal from test chamber 6~24 hrs (Class 1)

Multilayer Ceramic Capacitor Chips

			Specified Value		
Item	Temperature Compensating (Class 1)		High Permittivity (Class 2)		Test Methods and Remarks
	Standard	High Frequency Type	Standard Note1	High Value	
16.Loading under Damp Heat	Appearance: No abnormality Capacitance change: Within ±7.5% or ± 0.75pF, whichever is larger. Q: C≧30 pF: Q≧200 C<30 pF: Q≧100 + 10C/3 C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: C≤2 pF: Within ±0.4 pF C>2 pF: Within ±0.75 pF C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: $25~{\rm M}\Omega\mu{\rm F}$ or $500~{\rm M}\Omega$, whichever is the smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. F: 11% max. Note 4 Insulation resistance: $25~\text{M}\Omega\mu\text{F}$ or $500~\text{M}\Omega$, whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 6~24 hrs (Class 1) 24±2 hrs (Class 2) High—Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 6~24 hrs of recovery under the standard condition after the removal from test chamber.
17.Loading at High Temperature	Appearance: No abnormality Capacitance change: Within $\pm 3\%$ or ± 0.3 pF, whichever is larger. Q: C ≥ 30 pF : Q ≥ 25 5 + 2.5C C < 10 pF: Q ≥ 200 + 10C C: Nominal capacitance Insulation resistance: 1000 M Ω min.	Appearance: No abnormality Capacitance change: Within $\pm 3\%$ or \pm 0.3pF, whichever is larger. Insulation resistance: 1000 M Ω min.	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : BJ: 4.0% max. F: 7.5% max. Note 4 Insulation resistance: $50\mathrm{M}\Omega\mu\mathrm{F}$ or $1000\mathrm{M}\Omega$, whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ Within $\pm 20\% \%\%$ Within $\pm 25\% \%\%$ F: Within $\pm 30\%$ Note 4 $\tan \delta$: BJ: 5.0% max. F: 11% max. Note 4 Insulation resistance: $50\ M\Omega \mu F$ or $1000\ M\Omega$, whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C (Class 1, Class 2: B, BJ (X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000_0^+48 Applied voltage: Rated voltage×2 Note 6 Recovery: Recovery for the following period under the standard condition after the removal from test chamber. 6~24 hrs (Class 1) 24±2 hrs (Class 1) 24±2 hrs (Class 2) High—Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000_48 hrs Applied voltage: Rated voltage×2 Recovery: 6~24 hrs of recovery under the standard condition after the removal from test chamber.

Note 1 :For 105 type, specified in "High value".

Note 2 :Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /- 10 °C followed by 24±2 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3 :Voltage treatment (Multilayer): 1 hr of voltage treatment and voltage for testing followed by 24±2 hrs of recovery under the standard condition shall be performed before the measurement.

Note 4, 5 :The figure indicates typical inspection. Please refer to individual specifications.

Note 6 :Some of the parts are applicable in rated voltage × 1.5. Please refer to individual specifications.

Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

Stages	Precautions	Technical considerations
1.Circuit Design	Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Voltage (Verification of Rated voltage)	
	1. The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. 2. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.	
2.PCB Design	Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.	1.The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amourts. (larger fillets which extend above the component end terminations) Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Land pattern Chip capacitor Chip capacitor Chip capacitor Chip capacitor Solder-resist Chip capacitor Chip capacitor Chip capacitor Solder-resist Chip capacitor Chip capacitor Solder-resist Chip capacitor Chip capacitor A 0.8 - 1.0 1.6 2.0 3.2 3.2 W 0.8 1.25 1.6 2.5 A 0.8 - 1.0 1.0 - 1.4 1.8 - 2.5 1.8 - 2.5 B 0.5 - 0.8 0.8 - 1.5 0.8 - 1.7 0.8 - 1.7 C 0.6 - 0.8 0.9 - 1.2 1.2 - 1.6 1.8 - 2.5
		Type

Stages	Precautions	Technical considerations		
		LWDC Recommended land dimensions for reflow-soldering		
		Type 105 107 212 316 B W 1.0 1.6 2.0 3.2 C L 0.52 0.8 1.25 1.6 A 0.18~0.22 0.25~0.3 0.5~0.7 0.8~1.0		
		B 0.2~0.25 0.3~0.4 0.4~0.5 0.4~0.5 C 0.9~1.1 1.5~1.7 1.9~2.1 3.0~3.4 (unit: mm)		
2.PCB Design		(2) Examples of good and bad solder application		
		Items Not recommended Recommended		
		Mixed mounting of SMD and leaded components		
		Component placement close to the chassis		
		Hand-soldering of leaded components near mounted components		
		Horizontal component placement		
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips	1-1. The following are examples of good and bad capacitor layout; SMD capacitors should be located to minimize any possible mechanical stresses from board warp or deflection.		
	can be subjected to mechanical stresses in subsequent	Not recommended Recommended		
	manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board Deflection of the board Deflection of the board Deflection of the stresses that are articipated.		
		1-2. To layout the capacitors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on capacitor layout. The example below shows recommendations for better design.		
		Perforation C D D D D D D D D D D D D D D D D D D		
		Magnitude of stress A>B = C>D>E 1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD capacitor layout must also consider the PCB splitting procedure.		

Stages	Precautions	Technical considerations	
3.Considerations for automatic placement	Adjustment of mounting machine 1. Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards. 2. The maintenance and inspection of the mounters should be conducted periodically.	1. If the lower limit of the pick-up nozzle is low, too much force may be improapacitors, causing damage. To avoid this, the following points should be before lowering the pick-up nozzle: (1) The lower limit of the pick-up nozzle should be adjusted to the surface PC board after correcting for deflection of the board. (2) The pick-up pressure should be adjusted between 1 and 3 N static loads (3) To reduce the amount of deflection of the board caused by impact of nozzle, supporting pins or back-up pins should be used under the PC boal lowing diagrams show some typical examples of good pick-up nozzle place.	level of the the pick-up ard. The fol-
		Not recommended Recommende	d
		Single-sided mounting Cracks	=
		Double-sided mounting Sokler peeling Cracks Supporting pin	
		2. As the alignment pin wears out, adjustment of the nozzle height can cause cracking of the capacitors because of mechanical impact on the capacitor this, the monitoring of the width between the alignment pin in the stopped p maintenance, inspection and replacement of the pin should be conducted p	ors. To avoid
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	 Some adhesives may cause reduced insulation resistance. The differenthe shrinkage percentage of the adhesive and that of the capacitors may stresses on the capacitors and lead to cracking. Moreover, too little of adhesive applied to the board may adversely affect component placement lowing precautions should be noted in the application of adhesives. Required adhesive characteristics The adhesive should be strong enough to hold parts on the board during ing & solder process. The adhesive should have sufficient strength at high temperatures. The adhesive should have good coating and thickness consistency. The adhesive should be used during its prescribed shelf life. The adhesive should harden rapidly The adhesive must not be contaminated. The adhesive should have excellent insulation characteristics. The adhesive should not be toxic and have no emission of toxic gasses. (2) The recommended amount of adhesives is as follows; Figure 212/316 case sizes as examples	nay result in or too much t, so the fol-

Stages	Precautions	Technical considerations
Soldering	Selection of Flux 1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of th soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted witt great care so as to prevent malfunction of the components due to excessive thermal shock.
	Sn-Zn solder paste can affect MLCC reliability performance. Please contact us prior to usage.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (°C) Peak 280°C max 10 sec max Peak 280°C max 10 sec max Peak 280°C max Peak 280°C max 10 sec max Peak 280°C max 10 sec max Peak 280°C max Peak 280°C max 10 sec max Peak 280°C max Peak 280°C max Peak 280°C max Peak 280°C max Within 10 seconds Cooling Within 10 to 130°C of the soldering Within 10 to 130°C
		2. Because excessive dwell times can detrimentally affect solderability, soldering du ration should be kept as close to recommended times as possible. [Wave soldering] Temperature profile
		Temperature 230°C 250°C 250°C 200 Preheating 200 Preheating 200 Preheating 200 Preheating 100 120 sec min *Ceramic chip components should be preheating in the cooling within 100 to 130°C of the soldering for 1 time. *Except for reflow soldering type. Caution
		1. Make sure the capacitors are preheated sufficiently. 2. The temperature difference between the capacitor and melted solder should not b greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the capacitors designated as for reflow soldering only.

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile Temperature (*C) (Pb free soldering 400 400 400 400 400 400 400 400 400 40
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 W/ & Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.	

Stages	Precautions	Technical considerations
8.Storage conditions	1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 30°C Humidity Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.