3918590 GENERAL SEMICONDUCTOR 95D 02033 D SQUARE D COMPANY # SURFACE MOUNT TRANSZORB® SMC SERIES 5.0 THRU 170.0 VOLTS 1500 WATTS UNIDIRECTIONAL T-11-23 ## **CASES** Modified J-Bend Leads (C-Bend) DO-214AB **Gull-Wing Leads** DO-215AB Schematic Symbol #### **FEATURES** - 1500 Watts Peak Power • Voltage Range: 5.0-170 Volts - Low Inductance - **JEDEC Registered Low Profile** Package for Surface Mounting ### **MAXIMUM RATINGS** - 1500 watts of Peak Power - dissipation (10/1000us) tolamping (0 volts to BV min): less than 1 x 10⁻¹² seconds (theoretical) Forward surge rating: 100 Amps, - 1/120 sec @ 25°C - Operating and Storage Temp.: -55° to +150°C ### **DESCRIPTION** This series of TransZorb® transient voltage suppressors, available in small outline mountable packages, is designed to optimize board space. Packaged for use with surface mount tech-nology automated assembly equipment, these parts can be placed on printed circuit boards and ceramic substrates to protect sensitive components from transient voltage damage. # **APPLICATION** This device is designed specifically for transient voltage suppression. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground. A 1500W (SMC) device is normally selected when the threat of transients is from lightning induced transients, conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. Source impedance at component level in a system is usually high enough to limit the current within the peak pulse current (Ipp) rating of this series. # MECHANICAL CHARACTERISTICS - Molded Surface Mountable Case - Gull-wing or Modified J-bend leads Terminals: Tin/Lead Plated - Positive end indicated by polarity band - Body marked with type code (see part list) and Logo - Standard Packaging: 16 mm tape (see EIA Std. RS-481) | | | ! | DIMEN | HOIZI | s in II | CHES | ì | | | |-----|------|------|-------|--------|---------|-------|------|------|------| | | A | В | C | D | E | F | K | L | м | | MIN | .115 | 260 | 225 | 305 | 075 | 380 | 025 | 030 | 038 | | MAX | -121 | 280 | 245 | 320 | 095 | 400 | 040 | 060 | 053 | | | | DIA | ENSI | ONS II | MILL | IMETE | RS | | | | MIN | 2 92 | 6 60 | 5 72 | 7 75 | 191 | 9 65 | 0 64 | 0 76 | 0 97 | | MAX | 3.07 | 7.11 | 6 22 | 8 13 | 2.41 | 10 16 | 1 02 | 1 52 | 1 35 | Typical Standoff Height, 0 004"-0 008" (0.1mm-0 2mm) D | 39103 | | RICAL | CHARA | CTERIST | ics | @ 25°C | | | |---|--|---------------------------------|---------------------------------|---|----------------------|--|--|---------------------------------------| | GENERAL SEM
Part N | IICONDUCTOR
Umber | | REVERSE
STAND-OFF
WOLTAGE | BREAKUOWN
Voltage
BV @ It
Volts | | MAXIMUM
CLAMPING
VOLTAGE
O In | PEAK
PULSE
CURRENT
(See Fig. 2) | MAXIMUM
REVERSE
LEAKAGE
@ VR | | GULL-WING LEAD | MODIFIED
"J" BEND LEAD | DEVICE
Marking
Code | NOTE II
VA
VOLTS | | Am Ti | VOLTS | ipp
Amps | lR
uA | | SMCG5.0
SMCG5.0A
SMCG6.0
SMCG6.0A | SMCJ5.0
SMCJ5.0A
SMCJ6.0
SMCJ6.0A | GDD
GDE
GDF
GDG | 5.0
5.0
6.0
6.0 | 6.40
6.40
6.67
6.67 | 10
10
10
10 | 9.6
9.2
11.4
10.3 | 158,2
- 163.0
131.6
145.6 | 1000
1000
1000
1000 | | SMCG6.5A
SMCG7.0
SMCG7.0A | SMCJ6.5
SMCJ6.5A
SMCJ7.0
SMCJ7.0A | GDH
GDK
GDL
GDM | 6.5
8.5
7.0
7.0 | 7,22
7,22
7,78
7,78 | 10
10
10
10 | 12.3
11.2
13.3
12.0 | 122.0
133.9
112.8
125.0 | 500
500
200
200 | | SMCG7.5
SMCG7.5A
SMCG8.0
SMCG8.0A | SMCJ7.5
SMCJ7.5A
SMCJ8.0
SMCJ8.0A | GDN
GDP
GDQ
GDR | 7.5
7.5
8.0
8.0 | 8.33
8.89
8.89 | 1 1 1 1 | 14.3
12.9
15.0
13.6 | 104.9
116.3
100.0
110.3
94.3 | 100
100
50
50
25 | | SMCG8.5
SMCG8.5A
SMCG9.0
SMCG9.0A | SMCJ8.5
SMCJ8.5A
SMCJ9.0
SMCJ9.0A | GDS
GDT
GDU
GDV | 8.5
8.5
.9.0
9.0 | 9.44
9.44
10.0
10.0
11.1 | 1 1 1 1 | 15.9
14.4
16.9
15.4
16.8 | 104.2
88.7
97.4
79.8 | 20
10
10
5 | | SMCG10
SMCG10A
SMCG11
SMCG11A | SMCJ10
SMCJ10A
SMCJ11
SMCJ11A
SMCJ12 | GDW
GDX
GDY
GDZ
GED | 10
10
11
11
12 | 11.1
12.2
12.2
13.3 | 1 1 1 | 17.0
20.1
18.2
22.0 | 88.2
74.6
82.4
68.2 | 5
5
5
5 | | SMCG12
SMCG12A
SMCG13
SMCG13A
SMCG14 | SMCJ12A
SMCJ13A
SMCJ13A
SMCJ14 | GEE
GEF
GEG
GEH | 13
13
13 | 13.3
14.4
14.4
15.6 | 1
1
1 | 19.9
23.8
21.5
25.8 | 75,3
63.0
69.7
- 58.1 | 5
5
5
5 | | SMCG14A
SMCG15
SMCG15A
SMCG16 | SMCJ14A
SMCJ15
SMCJ15A
SMCJ16 | GEK
GEL
GEM
GEN | 14
15
15
15 | 15.6
16.7
16.7
17.8 | 1
1
1 | 23,2
26,9
24,4
28,8 | 64.7
55.8
61.5
52.1 | 5
5
5 | | SMCG16A
SMCG17
SMCG17A
SMCG18 | SMCJ16A
SMCJ17
SMCJ17A
SMCJ18 | GEP
GEQ
GER
GES | 16
17
17
18 | 17.8
18.9
18.9
20.0 | 1 1 | 26.0
30.5
27.6
32.2 | 57.7
49.2
53.3
46.6 | 5
5
5 | | SMCG18A
SMCG20
SMCG20A
SMCG22 | SMCJ18A
SMCJ20
SMCJ20A
SMCJ22 | GET
GEU
GEV
GEW | 16
20
20
22
22 | 20.0
22.2
22.2
24.4 | 1 1 1 | 29.2
35.8
32.4
39.4 | 51.4
41.9
- 46.3
38.1 | 5
5
5
5 | | SMCG22A
SMCG24
SMCG24A
SMCG26 | SMCJ22A
SMCJ24
SMCJ24A
SMCJ26 | GEX
GEY
GEZ
GFD | 24
24
26 | 24.4
26.7
26.7
28.9 | 1 1 | 35.5
43.0
38.9
46.6 | 42.2
34.9
38.6
32.2
35.6 | 5
5
5
5 | | SMCG26A
SMCG28
SMCG28A
SMCG30 | SMCJ26A
SMCJ28
SMCJ28A
SMCJ30 | GFE
GFF
GFG
GFH | 26
28
28
30 | 28.9
31.1
31.1
33.3 | 1 | 42.1
50.0
45.4
53.5 | 30.0
33.0
28.0 | 5
5
5
5
5 | | SMCG30A
SMCG33
SMCG33A
SMCG36 | SMCJ30A
SMCJ33
SMCJ33A
SMCJ36 | GFK
GFL
GFM
GFN | 30
33
33
36 | 33.3
36.7
36.7
40.0 | 1 1 | 48.4
59.0
53.3
64.3 | 31.0
25.2
28.1
23.3
25.8 | 5
5 | | SMCG40
SMCG40A
SMCG43 | SMCJ36A
SMCJ40
SMCJ40A
SMCJ43 | GFP
GFQ
GFR
GFS | 36
40
40
43 | 40.0
44.4
44.4
47.8 | 1 1 1 | 58.1
71.4
64.5
- 76.7 | 21.0
32.2
19.6 | 5
5
5
5
5
5 | | SMCG43A
SMCG45
SMCG45A
SMCG48 | SMCJ43A
SMCJ45
SMCJ45A
SMCJ48 | GFT
GFU
GFV | 43
45
45
48 | 47.8
50.0
50.0
53.3
53.3 | 1 1 1 1 | 69.4
80.3
72.7
85.5
77.4 | 21,6
18.7
20.6
17.5
19.4 | 5
5
5
5
5
5 | | SMCG48A
SMCG51
SMCG51A
SMCG54 | SMCJ48A
SMCJ51
SMCJ51A
SMCJ54 | GFX
GFY
GFZ
GGD | 48
51
51
54
54 | 56.7
56.7
60.0 | 1 | 91.1
82.4
96.3
87.1 | 18.5
18.2
15.6
17.2 | 5
5
5
5
5 | | SMCG54A
SMCG58
SMCG58A
SMCG60 | SMCJ54A
SMCJ58
SMCJ58A
SMCJ60 | GGE
GGF
GGG
GGH
GGK | 58
58
60
60 | 60.0
64.4
64.4
66.7
66.7 | 1 1 | 103.0
93.6
107.0
96.8 | 14.6
16.0
14.0
15.5 | 5 5 5 5 5 5 | | SMCG60A
SMCG64
SMCG64A
SMCG70 | SMCJ60A
SMCJ64
SMCJ64A
SMCJ70 | GGL
GGM
GGN
GGP | 84
64
70
70 | 71.1
71.1
77.8
77.8 | 1 1 | 114.0
103.0
125
113 | 13.2
14.6
12.0
13.3 | 5
5
5 | | SMCG70A
SMCG75
SMCG75A
SMCG78 | SMCJ70A
SMCJ75
SMCJ75A
SMCJ78
SMCJ78A | GGQ
GGR
GGS
GGT | 78
75
78
78 | 83.3
83.3
86.7
86.7 | 1
1
1 | 134
121
139
126 | 11.2
12.4
10.8
11.4 | 55 55 55 | | SMCG78A
SMCG85
SMCG85A
SMCG90
SMCG90A | SMCJ85
SMCJ85A
SMCJ90
SMCJ90A | GGU
GGV
GGW | 85
85
90 | 94.4
94.4
100
100 | i
1
1 | 151
137
160
146
179 | 9.9
10.4
9.4
10.3 | 5
5
5 | | SMCG100
SMCG100A
SMCG110
SMCG110A | SMCJ100
SMCJ100A
SMCJ110 | GGX
GGZ
GHD
GHE | 100
100
100
110
110 | 111
111
122
122 | i
1
1 | 179
162
196
177 | 8.4
9.3
7.7 | 5
5
5 | | SMCG120
SMCG120A
SMCG130
SMCG130A | SMCJ110A
SMCJ120
SMCJ120A
SMCJ130
SMCJ130A | GHF
GHG
GHH
GHK | 120
120
130
130 | 133
133
144
144 | i
1
1 | 214
193
231
209 | 8.4
7.0
7.8
6.5
7.2 | 5
5
5 | | SMCG150
SMCG150A
SMCG160 | SMCJ150
SMCJ150A
SMCJ160 | GHL
GHM
GHN | 150
150
160 | 167
167
178
178 | i
1
1 | 268
243
287
259 | 5.6
6.2
5.2
5.8 | 5
5
5 | | SMCG160A
SMCG170
SMCG170A | SMCJ160A
SMCJ170
SMCJ170A | GHP
GHQ
GHR | - 160
170
170 | 189
189 | 1 | 304
275 | 4.9
5.5 | 5 | 95D 02034 95 **SURFACE MOUNT** TRANSZORB® SMC SERIES 5.0 THRU 170.0 VOLTS 1500 WATTS UNIDIRECTIONAL 1 T-//-23 RECOMMENDED PAD SIZES The pad dimensions should be 0.010" longer than the contact size, in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods. ### ABBREVIATIONS & SYMBOLS VR Stand Off Voltage Applied Reverse Voltage to assure a non-conductive condition (See Note 1) BV (min) This is the minimum Breakdown Voltage the device will exhibit and is used to assure that conduction does not occur prior to this voltage level at 25 C Wc Maximum Clamping Voltage The maximum peak voltage appearing across the TransZorb when subjected to the peak pulse current in a one millisecond time interval. The peak pulse voltages are the combination of voltage rise due to both the series resistance and thermal rise. Peak Pulse Current - See Figure 2 Peak Pulse Power Reverse Leakage #### NOTES ## Note 1: A TransZorb TVS is normally selected accord-ing to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage