High Performance MEMS VCXO

Advanced information

■ Features, Benefits and Applications

- Any frequency between 1 MHz and 80 MHz with 6 decimal places of accuracy
- 100% pin-to-pin compatible with and direct replacement of quartz based VCXO
- Widest pull range options: ±25, ±50, ±100, ±150, ±200, ±400, ±800, ±1600 PPM
- Superior pull range linearity of <= 1%, 10 times better than quartz
- LVCMOS/LVTTL compatible output
- Typical tuning voltage: 0 V to Vdd
- Three industry-standard packages: 3.2 mm x2.5 mm (4-pin), 5.0 mm x 3.2 mm (6-pin), 7.0 mm x 5.0 mm (6-pin)
- Outstanding siicon reliability of 2 FIT (10x improvement over quartz-based devices)
- Ultra short lead time
- Ideal for telecom clock synchronization, instrumentation, low bandwidth analog PLL, jitter cleaner, clock recovery, audio, video, FPGA, broadband and networking

■ Specifications

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Output Frequency Range	f	1	-	80	MHz		
Frequency Stability	F_stab	-10	-	+10	PPM	Inclusive of initial tolerance (F_init), operating temperature,	
		-25	-	+25	PPM	power, supply voltage change, load change	
		-50	=	+50	PPM	Select stability option in part number ordering (see back page)	
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial	
		-40	-	+85	°C	Industrial	
Supply Voltage	Vdd	1.71	1.8	1.89	V		
		2.25	2.5	2.75	V		
		2.52	2.8	3.08	V		
		2.97	3.3	3.63	V		
Pull Range ^[1,2]	PR	±25	, ±50, ±100,±	150,	PPM		
		±200, ±400, ±800, ±1600					
Upper Control Voltage	VC_U	1.62	-	1.7	V	Vdd = 1.8 V, Voltage at which maximum deviation is guaranteed.	
		2.25	-	2.3	V	Vdd = 2.5 V, Voltage at which maximum deviation is guaranteed.	
	,	2.52	-	2.6	V	Vdd = 2.8 V, Voltage at which maximum deviation is guaranteed.	
	,	3	-	3.1	V	Vdd = 3.3 V, Voltage at which maximum deviation is guaranteed.	
Lower Control Voltage	VC_L	0	-	0.1	V	Voltage at which maximum deviation is guaranteed.	
Linearity	Lin	-	-	1	%		
Frequency Change Polarity	1		Positive slope	е	-		
Control Voltage Bandwidth(-3dB)	V_BW	ı	8	-	kHz	Contact SiTime for 16 kHz bandwidth	
		2.97	3.3	3.63	V		
Current Consumption	ldd	-	29	33	mA	No load condition, f = 20 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	31	31	mA	No load condition, f = 20 MHz, Vdd = 1.8 V	
Standby Current	I_std	-	-	TBD	μΑ	ST = GND, All Vdd, Output is Weakly Pulled Down	
Duty Cycle	DC	45	-	55	%	All Vdds	
Rise/Fall Time	Tr, Tf	-	1.0	2.2	ns	Vdd = 1.8, 2.5, 2.8 or 3.3 V, 10% - 90% Vdd level	
Output Voltage High	VOH	90	-	-	%Vdd	IOH = TBD	
Output Voltage Low	VOL	-	-	10	%Vdd	IOL = TBD	
Output Load	Ld	1	-	15	pF		
Start-up Time	T_start	-	6	10	ms		
OE Enable/Disable Time	T_oe	ı	_	TBD	ms		
Resume Time	T_resume	-	-	10	ms	Measured from the time ST pin crosses 50% threshold	
RMS Period Jitter	T_jitt	-	1.7	-	ps	f = 10 MHz, all Vdds	
RMS Phase Jitter (random)	T_phj	-	0.51	-	ps	f = 10 MHz, Pull range = 100 PPM, Integration bandwidth = 12kHz to 20MHz, all Vdds	
Aging	F_aging	-	-	±5	PPM	10 years	

Notes:

1. Absolute Pull Range (APR) is defined as the guaranteed pull range over temperature and voltage.

2. APR = pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

SiTime Corporation 990 Almanor Avenue Sunnyvale, CA 94085 (408) 328-4400 www.sitime.com

High Performance MEMS VCXO

Advanced Information

■ Specifications (Cont.)

Pin Description Tables (4-pin device)

Pin #1 Functionality			
VIN			
0 - Vdd: produces voltage dependent frequency change			

Pin Map					
Pin	Connection				
1	VIN				
2	GND				
3	CLK				
4	Vdd				

Pin Description Tables (6-pin device)

Pin #1 Functionality				
VIN				
0 - Vdd: produces voltage dependent frequency change				
Pin #2 Functionality				
NC				
H or L or Open: No effect on output frequency or other device functions				
OE				
H or Open ^[3] : specified frequency output				
L: output is high impedance				
ST				
H or Open ^[3] : specified frequency output				
L: output is low level (weak pull down). Oscillation stops				

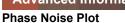
ар
Connection
VIN
NC/OE/ST
GND
CLK
NC
Vdd

Absolute Maximur	n Datings

Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

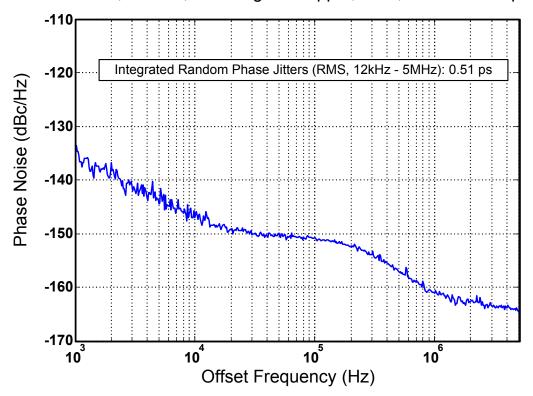
Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	6000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Number of Program Writes	-	1	NA
Program Retention over -40 to 125°C, Process, Vdd (0 to 3.65 V)	1,000+	-	years

Environmental Compliance

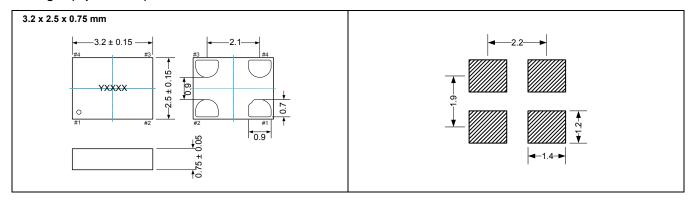

Parameter	Condition/Test Method		
Mechanical Shock	MIL-STD-883F, Method 2002; 50kG		
Mechanical Vibration	MIL-STD-883F, Method 2007; 70G		
Temperature Cycle	JESD22, Method A104		
Solderability	MIL-STD-883F, Method 2003		
Moisture Sensibility Level	MSL1 @ 260°C		

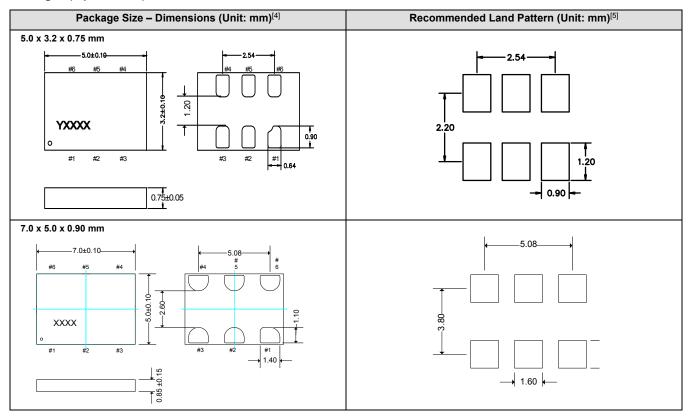
Notes

3. In 1.8V mode, a resistor of <10 k Ω between OE pin and Vdd is required. SiTime recommends using pull-up resistors for other Vdd(s).


High Performance MEMS VCXO

SiT3808, 10MHz, Pull range ±100ppm, 3.3V, LVCMOS output

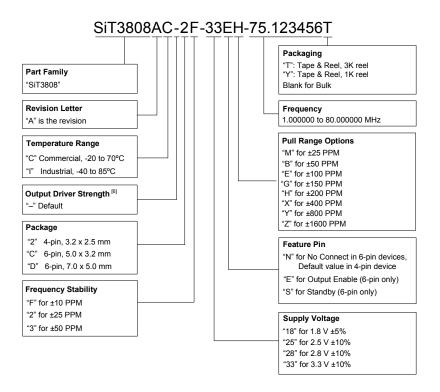

High Performance MEMS VCXO



■ Dimensions and Land Patterns

Packages (4-pin device)

Packages (6-pin device)


- Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
 A capacitor of value 0.1 μF between Vdd and GND is recommended.

High Performance MEMS VCXO

Advanced Information

■ Part No. Guide - How to Order

APR Definition

Absolute pull range (APR) = Norminal pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

APR Table

	Frequency Stability			
Nominal Pull Range	± 10	± 25	±50	
	APR (PPM)			
± 25	± 10	_	_	
± 50	± 35	± 20	_	
± 100	± 85	± 70	± 45	
± 150	± 135	± 120	± 95	
± 200	± 185	± 170	± 145	
± 400	± 385	± 370	± 345	
± 800	± 785	± 770	± 745	
± 1600	± 1585	± 1570	± 1545	

Note

6. Contact SiTime for different drive strength options for driving higher loads or reducing EM

© SiTime Corporation 2011. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any sitime product and any product documentation. products sold by sitme are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. all sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.