Signetics # 82LS135 2K-Bit ΠL Bipolar PROM **Product Specification** ## **Bipolar Memory Products** ## DESCRIPTION The 82LS135 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix. The 82LS135 includes on-chip decoding and two chip enable inputs for ease of memory expansion, and features Three-state outputs for optimization of word expansion in bused organizations. Ordering information can be found on the following page. #### **FEATURES** - · Address access time: 100ns max. - Power dissipation: 200µW/bit typ - Input loading: -100µA max - . Two chip enable inputs - · On chip address decoding - · No separate fusing pins - Fully TTL compatible - Unprogrammed outputs are at Low level - · Outputs: Three-state ### **APPLICATIONS** - Prototyping/volume production - · Sequential controllers - Microprogramming - Hardwired algorithms - Control store - Random logic - Code conversion #### PIN CONFIGURATION ### **BLOCK DIAGRAM** # 2K-Bit TL Bipolar PROM (256 x 8) 82LS135 # **ORDERING CODE** | DESCRIPTION | ORDER CODE | |---|------------| | Plastic Dual Inline
300mil wide 20-pin | N82LS135 N | | Plastic Small Outline
300mil wide 20-pin | N82LS135 D | # ABSOLUTE MAXIMUM RATINGS | | PARAMETER | RATING | UNIT | | |------------------------------------|---|-------------------------|-----------------|--| | V _{CC} | Supply voltage | +7 | V _{dc} | | | VIN | Input voltage | + 5.5 | V _{dc} | | | Vo | Output voltage
Off-state | +5.5 | V _{dc} | | | T _A
T _{STG} | Temperature range
Operating
Storage | 0 to +75
-65 to +150 | °C | | # DC ELECTRICAL CHARACTERISTICS $0^{o}C \leqslant T_{A} \leqslant +75^{o}C,~4.75V \leqslant V_{CC} \leqslant 5.25V$ | | 12 | LIMITS | | | | | |--------------------------------|---|--------|----------------------|------|------|--| | PARAMETER | TEST CONDITIONS ^{1,2} | Min | Min Typ ⁵ | | UNIT | | | Input voltage | | 1 | | | | | | V _{IL} Low | | Ì | | .80 | | | | V _{IH} High | (| 2.0 | | | V | | | V _{IC} Clamp | I _{IN} = -12mA | L | | -1.2 | | | | Output voltage | | | | | | | | V _{OL} Low | I _{OUT} = 16mA | | | .50 | V | | | V _{OH} High | I _{OUT} = -2mA, High stored | 2.4 | | | | | | Input current | | | | | | | | I _{IL} Low | $V_{ N} = 0.45V$ | | | 100 | μΑ | | | l _{IH} High | V _{IH} ≈ 5.5V | | | 40 | | | | Output current | | | | | | | | I _{OZ} Hi-Z State | \overline{CE}_1 , $\overline{CE}_2 = High$, $V_{OUT} = 0.5V$ | 1 | | -40 | μА | | | | \overline{CE}_1 , \overline{CE}_2 = High, V_{OUT} = 5.5V | | | 40 | | | | los Short circuit ³ | \overline{CE}_1 , \overline{CE}_2 = Low, V_{OUT} = 0V, One stored | -15 | | -75 | ma | | | Supply current | | | | | | | | lcc | V _{CC} = 5.25V | | 80 | 100 | mA | | | Capacitance | $V_{CC} = 5.0V$ $\overline{CE} = High$ | | | | | | | C _{IN} Input | $V_{IN} = 2.0V$ | 1 | 5 | | pF | | | C _{OUT} Output | V _{OUT} = 2.0V | | В | | | | # 2K-Bit TTL Bipolar PROM (256 x 8) 82LS135 ## AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30$ pF, 0° C $\leq T_A \leq +75^{\circ}$ C, 4.75V $\leq V_{CC} \leq 5.25$ V | PARAMETER | то | FROM | LIMITS | | | | |---------------------------|----------|--------------|--------|------------------|-----|------| | | | | Min | Typ ₅ | Max | UNIT | | Access time ⁴ | <u> </u> | | | | | " | | TAA | Output | Address | | 70 | 100 | ns | | T _{CE} | Output | Chip enable | | 30 | 50 | | | Disable time ⁶ | | | | | | | | TCD | Output | Chip disable | | 30 | 60 | ns | #### NOTES: - 1. Positive current is defined as into the terminal referenced. - 2. All voltages with respect to network ground. - 3. Duration of short circuit should not exceed 1 second. - 4. Tested at an address cycle time of 1µsec. - 5. Typical values are at $V_{CC} = 5V$, $T_A = 25$ °C. - 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$. ### **TEST LOAD CIRCUIT** # **VOLTAGE WAVEFORM**