Signetics

82LS135 2K-Bit ΠL Bipolar PROM

Product Specification

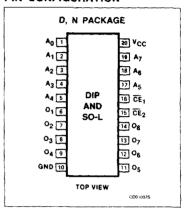
Bipolar Memory Products

DESCRIPTION

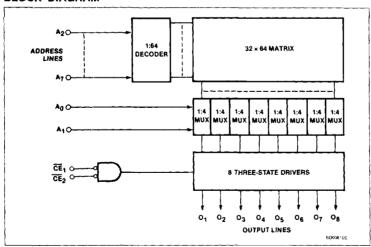
The 82LS135 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82LS135 includes on-chip decoding and two chip enable inputs for ease of memory expansion, and features Three-state outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.


FEATURES

- · Address access time: 100ns max.
- Power dissipation: 200µW/bit typ
- Input loading: -100µA max
- . Two chip enable inputs
- · On chip address decoding
- · No separate fusing pins
- Fully TTL compatible
- Unprogrammed outputs are at Low level
- · Outputs: Three-state


APPLICATIONS

- Prototyping/volume production
- · Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATION

BLOCK DIAGRAM

2K-Bit TL Bipolar PROM (256 x 8)

82LS135

ORDERING CODE

DESCRIPTION	ORDER CODE
Plastic Dual Inline 300mil wide 20-pin	N82LS135 N
Plastic Small Outline 300mil wide 20-pin	N82LS135 D

ABSOLUTE MAXIMUM RATINGS

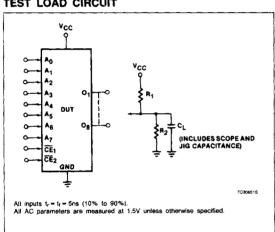
	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage	+7	V _{dc}	
VIN	Input voltage	+ 5.5	V _{dc}	
Vo	Output voltage Off-state	+5.5	V _{dc}	
T _A T _{STG}	Temperature range Operating Storage	0 to +75 -65 to +150	°C	

DC ELECTRICAL CHARACTERISTICS $0^{o}C \leqslant T_{A} \leqslant +75^{o}C,~4.75V \leqslant V_{CC} \leqslant 5.25V$

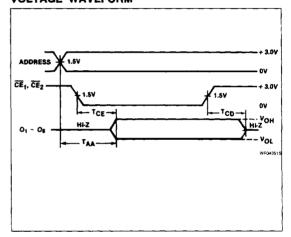
	12	LIMITS				
PARAMETER	TEST CONDITIONS ^{1,2}	Min	Min Typ ⁵		UNIT	
Input voltage		1				
V _{IL} Low		Ì		.80		
V _{IH} High	(2.0			V	
V _{IC} Clamp	I _{IN} = -12mA	L		-1.2		
Output voltage						
V _{OL} Low	I _{OUT} = 16mA			.50	V	
V _{OH} High	I _{OUT} = -2mA, High stored	2.4				
Input current						
I _{IL} Low	$V_{ N} = 0.45V$			100	μΑ	
l _{IH} High	V _{IH} ≈ 5.5V			40		
Output current						
I _{OZ} Hi-Z State	\overline{CE}_1 , $\overline{CE}_2 = High$, $V_{OUT} = 0.5V$	1		-40	μА	
	\overline{CE}_1 , \overline{CE}_2 = High, V_{OUT} = 5.5V			40		
los Short circuit ³	\overline{CE}_1 , \overline{CE}_2 = Low, V_{OUT} = 0V, One stored	-15		-75	ma	
Supply current						
lcc	V _{CC} = 5.25V		80	100	mA	
Capacitance	$V_{CC} = 5.0V$ $\overline{CE} = High$					
C _{IN} Input	$V_{IN} = 2.0V$	1	5		pF	
C _{OUT} Output	V _{OUT} = 2.0V		В			

2K-Bit TTL Bipolar PROM (256 x 8)

82LS135


AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30$ pF, 0° C $\leq T_A \leq +75^{\circ}$ C, 4.75V $\leq V_{CC} \leq 5.25$ V

PARAMETER	то	FROM	LIMITS			
			Min	Typ ₅	Max	UNIT
Access time ⁴	<u> </u>					"
TAA	Output	Address		70	100	ns
T _{CE}	Output	Chip enable		30	50	
Disable time ⁶						
TCD	Output	Chip disable		30	60	ns


NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of 1µsec.
- 5. Typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

