
HSP054-4N10

Datasheet

4-line high speed ESD protection with ultra-low clamping voltage

µQFN 1.9x1 10L

Product status link HSP054-4N10

Features

- Flow-through routing to keep signal integrity
- Unidirectional protection
- Ultra large bandwidth: 12 GHz (I/O2 to GND)
- Ultra-low capacitance: 0.30 pF
- Ultra-low clamping voltage: 9 V at 16 A TLP
- Extended operating junction temperature range: -40 °C to 150 °C
- RoHS compliant
- Exceeds IEC 61000-4-2 level 4:
 - ±15 kV (contact discharge)
 - ±30 kV (air discharge)

Applications

- USB 3.1 up to 10 Gbps
- USB 3.2 up to 10 Gbps
- Ethernet 1000 BASE-T
- Ethernet 10 G BASE-T
- DisplayPort
- LVDS

•

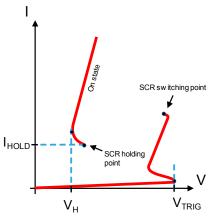
Description

The HSP054-4N10 is a 4 channel ESD array with a rail to rail architecture.

The HSP054-4N10 is designed to protect most sensitive, submicron technology circuits, thanks to its very low clamping voltage < 9 V under a 8 KV ESD surge.

HSP054-4N10 high protection level is achieved with no compromise on high speed lines signal integrity, thanks to ST new extra low capacitance technology.

The device is packaged in μ QFN 1.9 mm x 1 mm with a 400 μ m pitch.

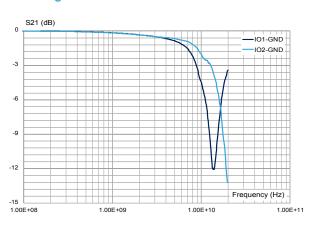

1 Characteristics

Symbol	Parameter		Value	Unit
		IEC 61000-4-2:		
V _{PP}	Peak pulse voltage	Contact discharge	15	kV
		Air discharge	30	
I _{PP}	Peak pulse current (8/20 µs), IEC 61000-4-5		3	A
T _{stg}	Storage temperature range		-55 to +150	
Тј	Operating junction temperature range		-40 to +150	°C
TL	Maximum lead temperature for soldering during 10 s		260	

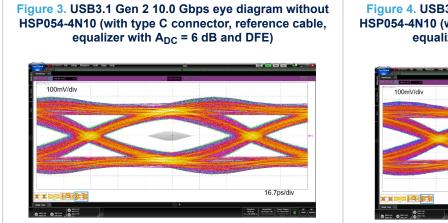
Table 1. Absolute maximum ratings (T_{amb} = 25 °C)

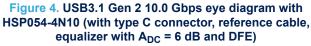
Figure 1. Electrical characteristics - parameters definition

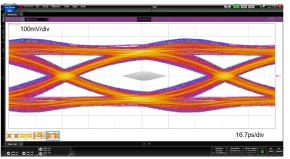
Symbol V _{RM}	=	Parameter Stand-off voltage	4		a t
I _{RM}		Leakage current @ V _{RM}			On state
V _{TRIG}	=	Trigger voltage			0
V _H	=	Minimum voltage when the protection is triggered			
V _{CL}	=	Clamping voltage	I _{HOLD} -	L \	_
IPP	=	Peak pulse current	HOLD		•
R_{D}	=	Dynamic resistance			
C_{LINE}	=	Input capacitance per line	4	V _H	

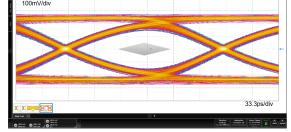


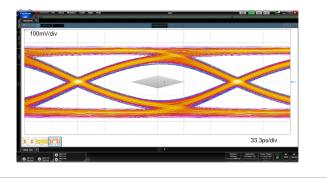
Symbol	Parameter	Test condit	ions	Min.	Тур.	Max.	Unit
V _{TRIG}	Higher voltage than V_{TRIG} guarantees the protection turn-on			-	8.5	10	V
V _H	Lower voltage than VH guarantees the protection turn-off			-	1.8		V
I _{HOLD}	Lower current than IHOLD guarantees the	protection turn-off		-	40		mA
V _{RM}	Reverse working voltage			-		5	V
I _{RM}	Leakage current	V _{RM} = 5 V		-	5	100	nA
		8 µs/20 µs wave form	I/O to GND	-	3.8		- V
V _{CL} Cla	Clamping voltage	I _{PP} = 3 A	GND to I/O	-	4.8		
		8 kV contact discharge after 30 ns, IEC 61000-4-2	I/O to GND	-	9		
			GND to I/O	-	9		
		TLP measurement I _{PP} = 16 A	I/O to GND	-	8		
			GND to I/O	-	9		
R _d	Dynamic resistance, TLP measurement	I/O to GND		-	0.40		Ω
Nd	(pulse duration 100 ns)	GND to I/O		-	0.55		12
C _{I/O - I/O}	Line capacitance $V_{I/O} = 0 V$ $V_{OSC} = 30 mV$	F = 200 MHz		-	0.25		ъĘ
	Line capacitance	F = 200 MHz		-	0.45	0.70	pF
C _{I/O - GND}	V _{I/O} = 0 V V _{OSC} = 30 mV	F = 3 GHZ		-	0.30	0.45	
f _C	Differential mode cut-off frequency at - 3dB			-	10		GHz

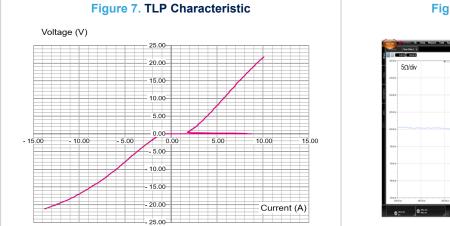

Table 2. Electrical characteristics (T_{amb} = 25 °C)

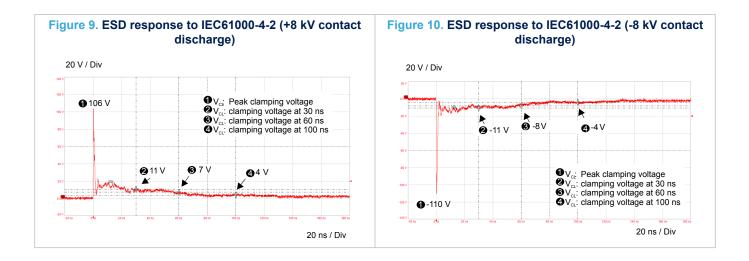

1.1 Characteristics (curves)

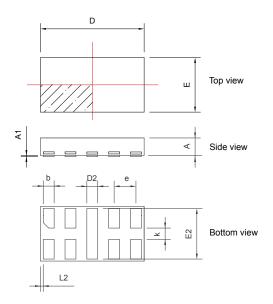

57


Figure 2. S21 attenuation measurement









2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

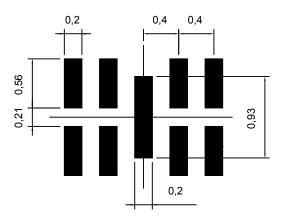

2.1 µQFN1.9x1 10L package information

Figure 11. µQFN1.9x1 10L package outline

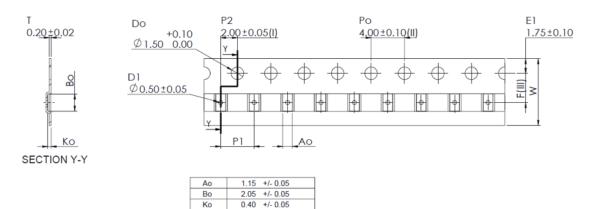


Table 3. µQFN1.9x1 10L package mechanical data

	Dimensions					
Ref.	Millimeters					
	Min.	Тур.	Max.			
А	0.28	0.32	0.35			
A1	0.00	0.02	0.05			
b	0.15	0.20	0.25			
D	1.85	1.90	1.95			
D2	0.15	0.20	0.25			
E	0.95	1.00	1.05			
E2	0.88	0.93	0.98			
е		0.40				
k		0.21				
L2	0.02	0.05	0.07			

3.50 +/- 0.05

4.00 +/- 0.10 8.00 +/- 0.10

F

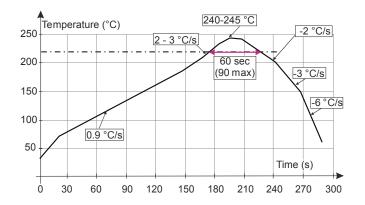
P1 W

3 Recommendation on PCB assembly

3.1 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Solder paste with fine particles: powder particle size is 20-38 µm.

3.2 Placement


- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.3 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.4 Reflow profile

Figure 14. ST ECOPACK[®] recommended soldering reflow profile for PCB mounting

Note:Minimize air convection currents in the reflow oven to avoid component movement.Note:Maximum soldering profile corresponds to the latest IPC/JEDEC J-STD-020.

4 Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
HSP054-4N10	H4	µQFN-10L	1.8 mg	7000	Tape and reel

Revision history

Table 5. Document revision history

Date	Revision	Changes
11-Dec-2019	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved