
STN1NK60ZL

Datasheet - production data

N-channel 600 V, 10.4 Ω typ., 0.44 A SuperMESH™ Power MOSFET in a SOT-223 package

4 2 3 SOT-223

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID	Ртот
STN1NK60ZL	600 V	15 Ω	0.44 A	3.3 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- ESD improved capability

Applications

• Switching applications

Description

This high voltage device is an N-channel Power MOSFET developed using the SuperMESH[™] technology by STMicroelectronics, an optimization of the well-established PowerMESH[™]. In addition to a significant reduction in on-resistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1: Device summary

Order code	Marking	Package	Packing	
STN1NK60ZL	1NK60ZL	SOT-223	Tube	

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.2	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	SOT-223 package information	9
5	Revisio	n history	11

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vds	Drain-source voltage	600	V
V _{GS}	Gate-source voltage	±20	V
ID	Drain current (continuous) at T _{amb} = 25 °C	0.44	А
lo	Drain current (continuous) at T _{amb} = 100 °C	0.3	А
IDM ⁽¹⁾	Drain current (pulsed)	1.8	А
Ртот	Total dissipation at T _{amb} = 25 °C	3.3	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	3	V/ns
Tj	Operating junction temperature range	- 55 to 150	°C
T _{stg}	Storage temperature range	- 55 10 150	C

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}I_{SD} \leq 0.3$ A, di/dt ≤ 200 A/µs, V_DD = 80%V_{(BR)DSS}

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-amb ⁽¹⁾	Thermal resistance junction- ambient max	38	°C/W

Notes:

 $^{(1)}$ When mounted on 1 inch² FR-4 board, 2 Oz Cu, t < 3 s

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{jmax})$	0.3	А
Eas	Single pulse avalanche energy (starting Tj = 25 °C, $I_D = I_{AR}, V_{DD} = 50$ V)	150	mJ

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 5: On/off-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	600			V
	7	$V_{GS} = 0 V, V_{DS} = 600 V$			1	μA
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 600 V$ $T_{C} = 125 \ ^{\circ}C^{(1)}$			50	μA	
lgss	Gate body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 20 V$			±100	nA
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	0.9	1.7	2	V
R _{DS(on)}	Static drain-source on- resistance	V_{GS} = 10 V, I_D = 0.25 A		10.4	15	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	125	-	pF
Coss	Output capacitance	utput capacitance $V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz$		13	-	pF
Crss	Reverse transfer capacitance		-	2	-	pF
Qg	Total gate charge $V_{DD} = 480 \text{ V}, I_D = 0.8 \text{ A}$		-	9.4	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	0.8	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	4.5	-	nC

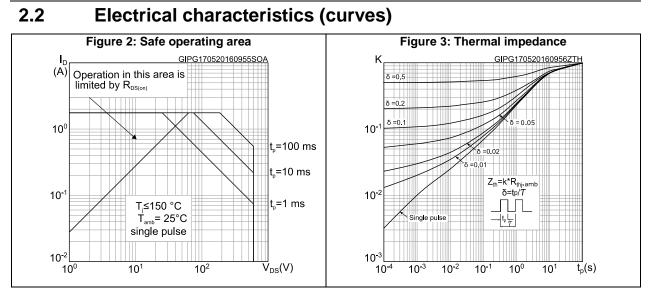
Table 6: Dynamic

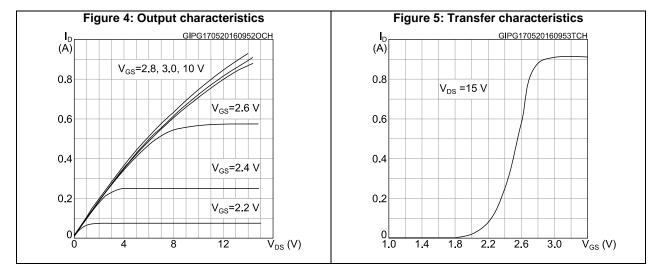
Table 7: Switching times

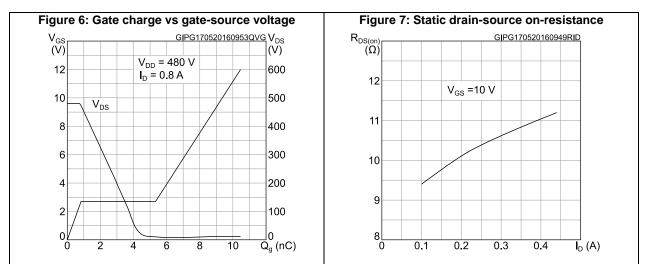
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 300 V, I _D = 0.4 A,	-	4.4	-	ns
tr	Rise time	$R_G = 4.7 \Omega$	-	4	-	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 10 V (see <i>Figure 14: "Test circuit</i>	-	18.4	-	ns
t _f	Fall time	for resistive load switching times" and Figure 19: "Switching time waveform")	-	41	-	ns

STN1NK60ZL

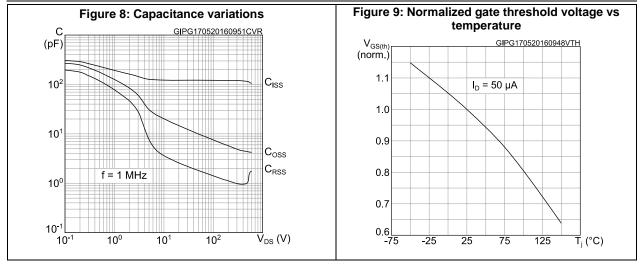
Electrical characteristics

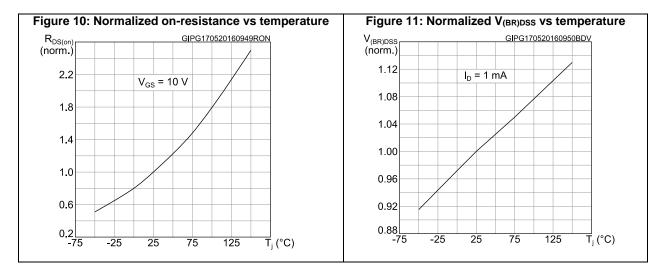

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		0.44	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		1.8	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 0.44 A	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 0.8 \text{ A},$	-	155		ns
Qrr	Reverse recovery charge	di/dt = 100 A/ μ s,V _{DD} = 60 V (see <i>Figure 16: "Test circuit</i>	-	232		nC
Irrm	Reverse recovery current	for inductive load switching and diode recovery times")	-	3		А
trr	Reverse recovery time	I _{SD} = 0.8 A, di/dt = 100 A/µs	-	186		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 ^{\circ}\text{C}$ (see <i>Figure 16: "Test circuit</i>	-	297		nC
Irrm	Reverse recovery current	for inductive load switching and diode recovery times")	-	3.2		А

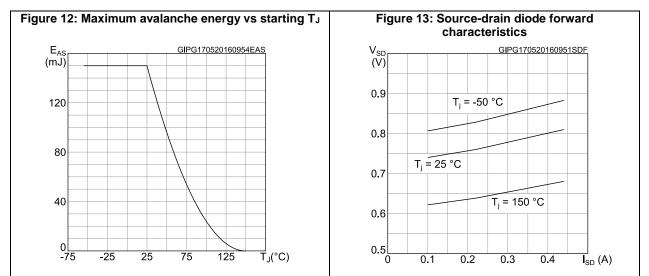

Notes:


 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

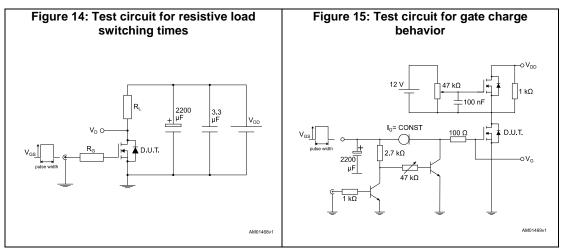

DocID026549 Rev 2

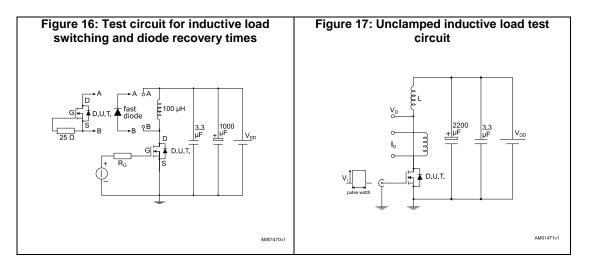


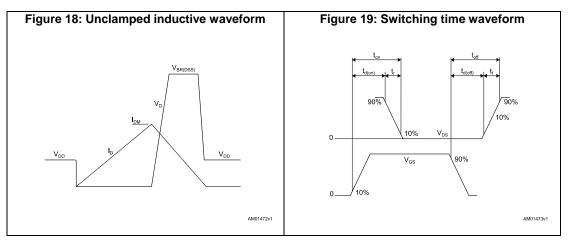

STN1NK60ZL

57

Electrical characteristics

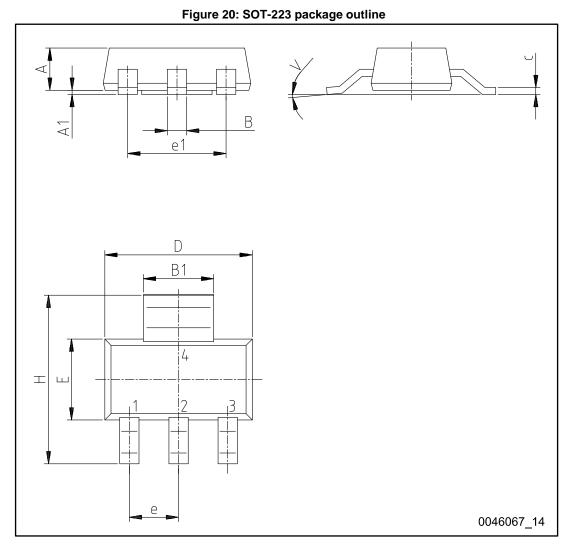






DocID026549 Rev 2

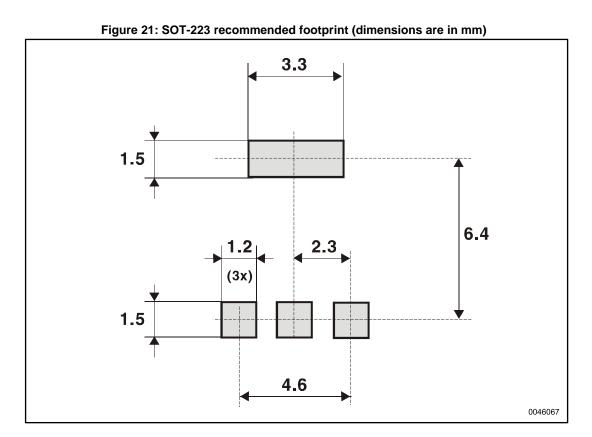
3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 SOT-223 package information



Package information

Table 9: SOT-223 package mechanical data

STN1NK60ZL

Table 9: 501-223 package mechanical data			
Dim.		mm	
Dini.	Min.	Тур.	Max.
A			1.8
A1	0.02		0.1
В	0.6	0.7	0.85
B1	2.9	3	3.15
С	0.24	0.26	0.35
D	6.3	6.5	6.7
е		2.3	
e1		4.6	
E	3.3	3.5	3.7
Н	6.7	7.0	7.3
V			10°

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
12-Nov-2015	1	First release.
05-Dec-2016	2	Modified: features in cover page Modified Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "Avalanche characteristics", Table 5: "On/off-state", Table 6: "Dynamic", Table 7: "Switching times" and Table 8: "Source- drain diode" Datasheet promoted from preliminary data to production data Modified Section 3.1: "Electrical characteristics (curves)" Minor text changes

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

