STL220N6F7

N-channel 60 V, 1.2 mΩ typ., 120 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

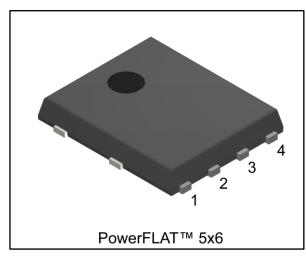
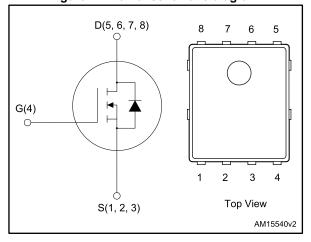



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STL220N6F7	60 V	1.4 mΩ	120 A

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STL220N6F7	220N6F7	PowerFLAT™ 5x6	Tape and reel

Contents STL220N6F7

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	7
4	Packag	e mechanical data	8
	4.1	PowerFLAT 5x6 type C package mechanical data	8
	4.2	PowerFLAT 5x6 packaging information	10
5	Revisio	n history	12

STL220N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	120	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	120	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	480	Α
I _D (3)	Drain current (continuous) at T _{pcb} = 25 °C	40	Α
I _D (3)	Drain current (continuous) at T _{pcb} = 100 °C	28.5	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed) 160		Α
Eas	Single pulse avalanche energy (starting T _j =25 °C, I _{AS} = 20 A)	900	mJ
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	188	W
P _{TOT} (3)	Total dissipation at T _{pcb} = 25 °C	4.8	W
т.	Operating junction temperature range		°C
Tj	Storage temperature range	-55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31.3	°C/W
R _{thj-case}	Thermal resistance junction-case	0.8	°C/W

Notes:

 $^{^{(1)}\!}This$ value is rated according to $R_{thj\text{-}c}$.

⁽²⁾Pulse width limited by safe operating area.

 $[\]ensuremath{^{(3)}}\xspace$ This value is rated according to $R_{thj\text{-pcb}}.$

 $^{^{(1)}\!}When$ mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

Electrical characteristics STL220N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	60			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V V _{DS} = 60 V			1	μΑ
Igss	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 20 A		1.2	1.4	mΩ

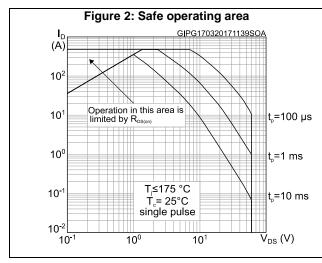
Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	V 05.V (4.MII.	ı	6500	-	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	-	3200	-	pF
Crss	Reverse transfer capacitance	VGS - 0 V	ı	230	-	pF
Qg	Total gate charge $V_{DD} = 30 \text{ V}, I_D = 40 \text{ A},$		-	98	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V	ı	38	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	28	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 20 \text{ A},$	-	41	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	-	45	-	ns
t _{d(off)}	Turn-off delay time	for resistive load switching	1	68	1	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	35	-	ns

Table 7: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0 V	ı		1.2	V
t _{rr}	Reverse recovery time	I _D = 40 A, di/dt = 100 A/μs	ı	69		ns
Qrr	Reverse recovery charge	$V_{DD} = 48 \text{ V}$	-	103		nC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	3		А

Notes:

 $^{(1)}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

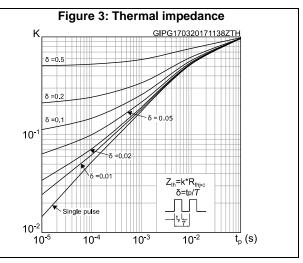


Figure 4: Output characteristics

GIPG1703201711360CH

(A)

120

V_{GS}=7, 8, 9, 10 V

100

80

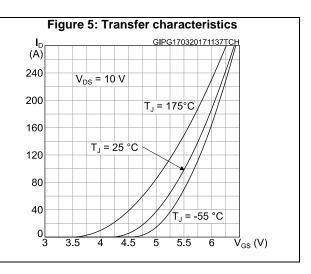
60

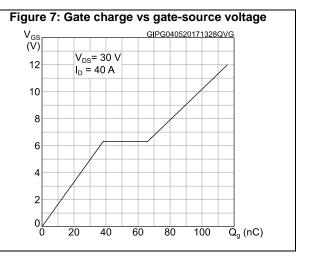
V_{GS}=6 V

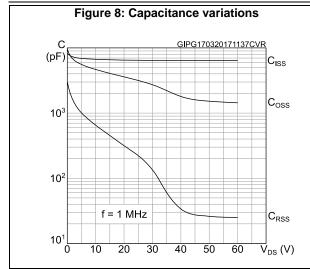
40

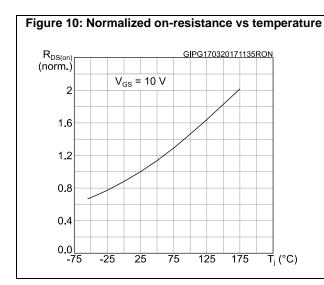
20

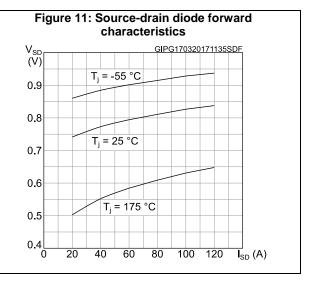
0

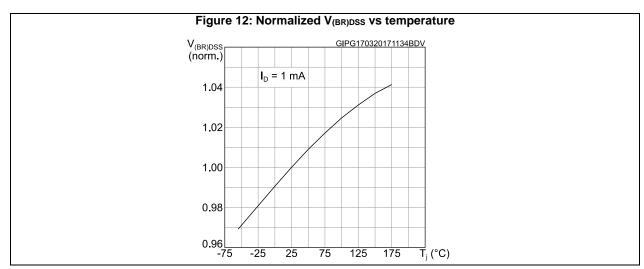

2


4


6

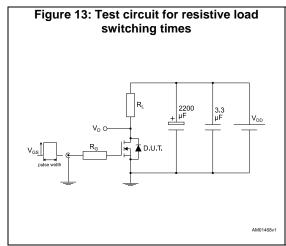
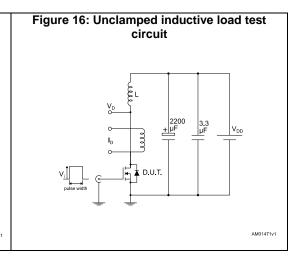

8

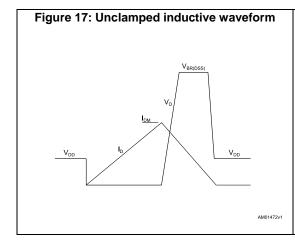

V_{DS} (V)

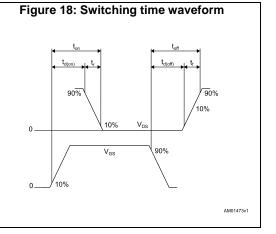


STL220N6F7 Test circuits

3 Test circuits


Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.

2200 VG

AM01468y1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT 5x6 type C package mechanical data

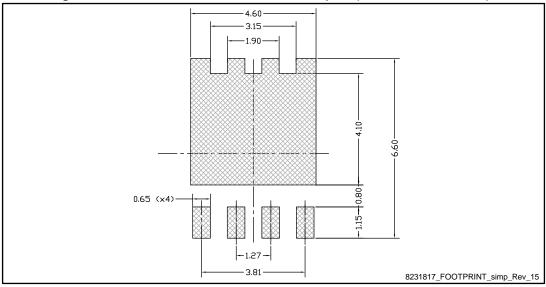

6 7 8 E_{7} E2 E3 Bottom view D5(x4) b(x8) e(x6) Side view Top view 8231817_typeC_A0ER_Rev15

Figure 19: PowerFLAT™ 5x6 type C package outline

Table 8: PowerFLAT™ 5x6 type C package mechanical data

	ie o. PoweiFLA1 ···· 3xo ty	mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.20
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.20
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
E	5.95	6.15	6.35
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.75	0.90	1.05
К	1.05		1.35
L	0.725		1.025
L1	0.05	0.15	0.25
θ	0°		12°

Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 PowerFLAT 5x6 packaging information

Figure 21: PowerFLAT™ 5x6 tape (dimensions are in mm)

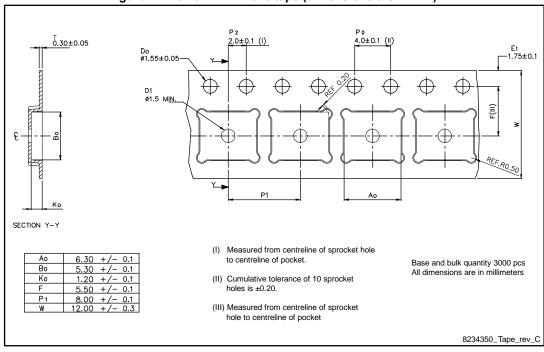
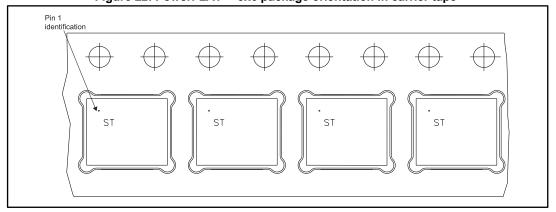



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

8234350_Reel_rev_C

Figure 23: PowerFLAT™ 5x6 reel

PART NO.

PRESON

RESON

R

Revision history STL220N6F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
13-Jun-2014	1	First release.
22-Sep-2014	2	Updated title, features and description in cover page. Updated Table 2: "Absolute maximum ratings", Table 4: "On /off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source-drain diode". Added Section 3: "Electrical characteristics (curves)".
14-Jan-2015	3	Document status promoted from preminary to production data.
02-May-2017	4	Modified title and features table on cover page. Modified Table 2: "Absolute maximum ratings", Table 4: "On /off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source-drain diode". Modified Section 2.1: "Electrical characteristics (curves)". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved