

Type 2N3635 Geometry TBD Polarity PNP Qual Level: Pending

Features:

- General-purpose high gain, low power amplifier transistor which operates over a wide temperature range.
- Housed in a TO-39 case.
- Also it will be available in chip form using the TBD chip geometry.
- The Min and Max limits shown are per MIL-PRF-19500/357 which Semicoa meets in all cases.

Maximum Ratings

 $T_C = 25^{\circ}C$ unless otherwise specified

Rating	Symbol	Rating	Unit	
Collector-Emitter Voltage	V _{CEO}	140	V	
Collector-Base Voltage	V _{CBO}	140	V	
Emitter-Base Voltage	V _{EBO}	5.0	V	
Collector Current, Continuous	Ι _C	1.0	mA	
Operating Junction Temperature	TJ	-65 to +200	°C	
Storage Temperature	T _{STG}	-65 to +200	℃	

Data Sheet No. 2N3635

Generic Part Number: 2N3635

REF: MIL-PRF-19500/357

 \ge

Request Quotation

Electrical Characteristics

OFF Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage $I_{C} = 10 \ \mu A$	V _{(BR)CBO}	140		V
Collector-Emitter Breakdown Voltage $I_{C} = 10 \text{ mA}$	V _{(BR)CEO}	140		V
Emitter-Base Breakdown Voltage $I_E = 10 \ \mu$ A, pulsed	V _{(BR)EBO}	5.0		V
Collector-Base Cutoff Current $V_{CB} = 100 V$ $V_{CB} = -100 V$, $T_A = +150^{\circ}C$	I _{CBO1}		100 100	nA
Emitter-Base Cutoff Current $V_{EB} = 3 V$	I _{CBO2} I _{EBO}		50	μA nA
Collector-Emitter Cutoff Current V _{CE} = 100 V	I _{CEO}		10	μA
ON Characteristics	Symbol	Min	Max	Unit
Forward Current Transfer Ratio $I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V} \text{ (pulse test)}$ $I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \text{ (pulse test)}$	h _{FE1} h _{FE2}	55 90		
$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V} \text{ (pulse test)}$	h _{FE3}	100		
$I_{C} = 50 \text{ mA}, V_{CE} = 10 \text{ V} \text{ (pulse test)}$ $I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V} \text{ (pulse test)}$	h _{FE4} h _{FE5}	100 60	300	
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 10 V (pulsed), $T_{\rm A}$ = -55°C	h _{FE6}	50		
Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1 \text{ mA} \text{ (pulse test)}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA} \text{ (pulse test)}$	V _{CE(sat)1} V _{CE(sat)2}		0.3 0.6	V dc V dc
$\begin{array}{l} \textbf{Base-Emitter Saturation Voltage Non Saturated} \\ \textbf{I}_{C} = 10 \text{ mA}, \textbf{I}_{B} = 1 \text{ mA} \text{ (pulse test)} \\ \textbf{I}_{C} = 50 \text{ mA}, \textbf{I}_{B} = 5 \text{ mA} \text{ (pulse test)} \end{array}$	V _{BE(sat)1} V _{BE(sat)2}	 0.65	0.8 0.9	V dc V dc

Switching Characteristics	Symbol	Min	Max	Unit
Pulse Delay Time	t _d		100	ns
Per Figure 3 of MIL-S-19500/357	ŭ			_
Pulse Rise Time	+		100	ns
$I_{C} = 500 \text{ mA}, I_{B1} = 50 \text{ mA}, V_{EB} = 2 \text{ V}$	۲		100	115
Pulse Storage Time	+		500	20
$I_{\rm C} = 500 \text{ mA}, I_{\rm B1} = I_{\rm B2} = 50 \text{ mA}$	t _s		500	ns
Pulse Fall Time	+		150	20
$I_{\rm C} = 500 \text{ mA}, I_{\rm B1} = I_{\rm B2} = 50 \text{ mA}$	t _f		150	ns
t off	+		600	ns
$I_{\rm C} = 500 \text{ mA}, I_{\rm B1} = I_{\rm B2} = 50 \text{ mA}$	t _{off}		000	115

Small Signal Characteristics	Symbol	Min	Max	Unit
Magnitude of Short-Circuit Forward Current Transfer Ratio V _{CE} = 30 V, I _C = 30 mA, f = 100 MHz	h _{FE}	2.0	8.5	
Magnitude of Short-Circuit Forward Current Transfer Ratio $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}, f = 1 \text{ kHz}$	h _{FE}	80	320	
Short-Circuit Input Impedance $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}, f = 1 \text{ kHz}$	h _{IE}	200	1200	ohms
$\begin{array}{l} \textit{Open-Circuit, Reverse Voltage Transfer Ratio} \\ \textit{V}_{CE} = 10 \; \textit{V}, \textit{I}_{C} = 10 \; \textit{mA}, \textit{f} = 1 \; \textit{kHz} \end{array}$	h _{RE}		3x10 ⁻⁴	
Open Circuit Output Admittance $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}, f = 1 \text{ kHz}$	hoe		200	μS
$\begin{array}{l} \textit{Open Circuit Output Capacitance} \\ \textit{V}_{CB} = 20 \text{ V}, \textit{I}_{E} = 0, 100 \text{ kHz} < f < 1 \text{ MHz} \end{array}$	C _{OBO}		10	pF
Input Capacitance, Output Open Circuited $V_{EB} = 1 \text{ V}, I_C = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	CIBO		75	pF
Noise Figure $V_{CE} = 10 \text{ V}, I_C = 0.5 \text{ mA}, R_g = 1 \text{ kohm}$				
f = 100 Hz f = 1 kHz	NF		5 3	dB dB
f = 10 kHz			3	dB