Type 2N3637 Geometry TBD Polarity PNP Qual Level: Pending **Generic Part Number:** 2N3637 REF: MIL-PRF-19500/357 ## Features: - General-purpose high gain, low power amplifier transistor which operates over a wide temperature range. - Housed in a TO-39 case. - Also it will be available in chip form using the TBD chip geometry. - The Min and Max limits shown are per MIL-PRF-19500/357 which Semicoa meets in all cases. ## **Maximum Ratings** $T_C = 25^{\circ}C$ unless otherwise specified | Rating | Symbol | Rating | Unit | | |--------------------------------|------------------|-------------|------|--| | Collector-Emitter Voltage | V_{CEO} | 175 | V | | | Collector-Base Voltage | V_{CBO} | 175 | V | | | Emitter-Base Voltage | V_{EBO} | 5.0 | V | | | Collector Current, Continuous | I _C | 1.0 | mA | | | Operating Junction Temperature | T _J | -65 to +200 | °C | | | Storage Temperature | T _{STG} | -65 to +200 | °C | | ## **Electrical Characteristics** $T_C = 25^{\circ}C$ unless otherwise specified | OFF Characteristics | Symbol | Min | Max | Unit | |---|----------------------|-----|-----|------| | Collector-Base Breakdown Voltage $I_C = 10 \mu A$ | V _{(BR)CBO} | 175 | | V | | Collector-Emitter Breakdown Voltage $I_C = 10 \text{ mA}$ | V _{(BR)CEO} | 175 | | V | | Emitter-Base Breakdown Voltage $I_E = 10 \mu A$, pulsed | $V_{(BR)EBO}$ | 5.0 | | V | | Collector-Base Cutoff Current | | | | | | $V_{CB} = 100 \text{ V}$ | I _{CBO1} | | 100 | nA | | $V_{CB} = -100 \text{ V}, T_A = +150^{\circ}\text{C}$ | I _{CBO2} | | 100 | μΑ | | Emitter-Base Cutoff Current $V_{EB} = 3 \text{ V}$ | I _{EBO} | | 50 | nA | | Collector-Emitter Cutoff Current $V_{CE} = 100 \text{ V}$ | I _{CEO} | | 10 | μA | | ON Characteristics | Symbol | Min | Max | Unit | |--|------------------|------|-----|------| | Forward Current Transfer Ratio | | | | | | $I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$ | h _{FE1} | 55 | | | | $I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V (pulse test)}$ | h _{FE2} | 90 | | | | $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$ | h _{FE3} | 100 | | | | $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$ | h _{FE4} | 100 | 300 | | | $I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$ | h _{FE5} | 60 | | | | $I_C = 50$ mA, $V_{CE} = 10$ V (pulsed), $T_A = -55$ °C | h _{FE6} | 50 | | | | Collector-Emitter Saturation Voltage | | | | | | $I_C = 10 \text{ mA}, I_B = 1 \text{ mA (pulse test)}$ | $V_{CE(sat)1}$ | | 0.3 | V dc | | $I_C = 50 \text{ mA}, I_B = 5 \text{ mA (pulse test)}$ | $V_{CE(sat)2}$ | | 0.6 | V dc | | Base-Emitter Saturation Voltage Non Saturated | | | | | | $I_C = 10 \text{ mA}, I_B = 1 \text{ mA (pulse test)}$ | $V_{BE(sat)1}$ | | 0.8 | V dc | | $I_C = 50 \text{ mA}, I_B = 5 \text{ mA} \text{ (pulse test)}$ | $V_{BE(sat)2}$ | 0.65 | 0.9 | V dc | | Switching Characteristics | Symbol | Min | Max | Unit | |--|------------------|-----|-----|------| | Pulse Delay Time Per Figure 3 of MIL-S-19500/357 | t _d | | 100 | ns | | Pulse Rise Time $I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA}, V_{EB} = 2 \text{ V}$ | t _r | | 100 | ns | | Pulse Storage Time $I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$ | t _s | | 500 | ns | | Pulse Fall Time
$I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$ | t _f | | 150 | ns | | $I_{C} = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$ | t _{off} | | 600 | ns | | Small Signal Characteristics | Symbol | Min | Max | Unit | |--|------------------|------|--------------------|----------------| | Magnitude of Short-Circuit Forward Current Transfer Ratio V _{CE} = 30 V, I _C = 30 mA, f = 100 MHz | h _{FE} | 2.0 | 8.5 | | | Magnitude of Short-Circuit Forward Current Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$ | h _{FE} | 80 | 320 | | | Short-Circuit Input Impedance
$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$ | h _{IE} | 200 | 1200 | ohms | | Open-Circuit, Reverse Voltage Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$ | h _{RE} | | 3x10 ⁻⁴ | | | Open Circuit Output Admittance
$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$ | hoe | | 200 | μS | | Open Circuit Output Capacitance
V _{CB} = 20 V, I _E = 0, 100 kHz < f < 1 MHz | C _{OBO} | | 10 | pF | | Input Capacitance, Output Open Circuited $V_{EB} = 1 \text{ V}, I_C = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$ | C _{IBO} | | 75 | pF | | Noise Figure $V_{CE} = 10 \text{ V, I}_{C} = 0.5 \text{ mA, R}_{g} = 1 \text{ kohm}$ $f = 100 \text{ Hz}$ $f = 1 \text{ kHz}$ $f = 10 \text{ kHz}$ | NF |
 | 5
3
3 | dB
dB
dB |