

Type 2N3637
Geometry TBD
Polarity PNP
Qual Level: Pending

Generic Part Number: 2N3637

REF: MIL-PRF-19500/357

Features:

- General-purpose high gain, low power amplifier transistor which operates over a wide temperature range.
- Housed in a TO-39 case.
- Also it will be available in chip form using the TBD chip geometry.
- The Min and Max limits shown are per MIL-PRF-19500/357 which Semicoa meets in all cases.

Maximum Ratings

 $T_C = 25^{\circ}C$ unless otherwise specified

Rating	Symbol	Rating	Unit	
Collector-Emitter Voltage	V_{CEO}	175	V	
Collector-Base Voltage	V_{CBO}	175	V	
Emitter-Base Voltage	V_{EBO}	5.0	V	
Collector Current, Continuous	I _C	1.0	mA	
Operating Junction Temperature	T _J	-65 to +200	°C	
Storage Temperature	T _{STG}	-65 to +200	°C	

Electrical Characteristics

 $T_C = 25^{\circ}C$ unless otherwise specified

OFF Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage $I_C = 10 \mu A$	V _{(BR)CBO}	175		V
Collector-Emitter Breakdown Voltage $I_C = 10 \text{ mA}$	V _{(BR)CEO}	175		V
Emitter-Base Breakdown Voltage $I_E = 10 \mu A$, pulsed	$V_{(BR)EBO}$	5.0		V
Collector-Base Cutoff Current				
$V_{CB} = 100 \text{ V}$	I _{CBO1}		100	nA
$V_{CB} = -100 \text{ V}, T_A = +150^{\circ}\text{C}$	I _{CBO2}		100	μΑ
Emitter-Base Cutoff Current $V_{EB} = 3 \text{ V}$	I _{EBO}		50	nA
Collector-Emitter Cutoff Current $V_{CE} = 100 \text{ V}$	I _{CEO}		10	μA

ON Characteristics	Symbol	Min	Max	Unit
Forward Current Transfer Ratio				
$I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$	h _{FE1}	55		
$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V (pulse test)}$	h _{FE2}	90		
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$	h _{FE3}	100		
$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$	h _{FE4}	100	300	
$I_C = 150 \text{ mA}, V_{CE} = 10 \text{ V (pulse test)}$	h _{FE5}	60		
$I_C = 50$ mA, $V_{CE} = 10$ V (pulsed), $T_A = -55$ °C	h _{FE6}	50		
Collector-Emitter Saturation Voltage				
$I_C = 10 \text{ mA}, I_B = 1 \text{ mA (pulse test)}$	$V_{CE(sat)1}$		0.3	V dc
$I_C = 50 \text{ mA}, I_B = 5 \text{ mA (pulse test)}$	$V_{CE(sat)2}$		0.6	V dc
Base-Emitter Saturation Voltage Non Saturated				
$I_C = 10 \text{ mA}, I_B = 1 \text{ mA (pulse test)}$	$V_{BE(sat)1}$		0.8	V dc
$I_C = 50 \text{ mA}, I_B = 5 \text{ mA} \text{ (pulse test)}$	$V_{BE(sat)2}$	0.65	0.9	V dc

Switching Characteristics	Symbol	Min	Max	Unit
Pulse Delay Time Per Figure 3 of MIL-S-19500/357	t _d		100	ns
Pulse Rise Time $I_C = 500 \text{ mA}, I_{B1} = 50 \text{ mA}, V_{EB} = 2 \text{ V}$	t _r		100	ns
Pulse Storage Time $I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$	t _s		500	ns
Pulse Fall Time $I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$	t _f		150	ns
$I_{C} = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}$	t _{off}		600	ns

Small Signal Characteristics	Symbol	Min	Max	Unit
Magnitude of Short-Circuit Forward Current Transfer Ratio V _{CE} = 30 V, I _C = 30 mA, f = 100 MHz	h _{FE}	2.0	8.5	
Magnitude of Short-Circuit Forward Current Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$	h _{FE}	80	320	
Short-Circuit Input Impedance $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$	h _{IE}	200	1200	ohms
Open-Circuit, Reverse Voltage Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$	h _{RE}		3x10 ⁻⁴	
Open Circuit Output Admittance $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$	hoe		200	μS
Open Circuit Output Capacitance V _{CB} = 20 V, I _E = 0, 100 kHz < f < 1 MHz	C _{OBO}		10	pF
Input Capacitance, Output Open Circuited $V_{EB} = 1 \text{ V}, I_C = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{IBO}		75	pF
Noise Figure $V_{CE} = 10 \text{ V, I}_{C} = 0.5 \text{ mA, R}_{g} = 1 \text{ kohm}$ $f = 100 \text{ Hz}$ $f = 1 \text{ kHz}$ $f = 10 \text{ kHz}$	NF	 	5 3 3	dB dB dB