

2N5664 2N5665

MECHANICAL DATA Dimensions in mm (inches)

TO-66 (TO-213AA)

Underside View

1 = Base2 = Emitter3 = Collector

NPN BIPOLAR POWER SWITCHING TRANSISTORS

FEATURES

- FAST SWITCHING
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS
- JAN LEVEL SCREENING OPTIONS

APPLICATIONS

- HIGH SPEED SWITCHING CIRCUITS
- POWER AMPLIFIERS

ABSOLUTE	MAXIMUM RATINGS (T _c = 25°C unless otherwise stated)	2N5664	2N5665	
V _{CBO}	Collector – Base Voltage	250V	400V	
V _{CEO}	Collector – Emitter Voltage ($I_B = 0$)	200V	300V	
V _{EBO}	Emitter – Base Voltage (I _B = 0)	6V		
I _B	Base Current	0.6A		
I _C	Collector Current	ЗA		
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–65 to +200°C		
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	3.33°C/W		
P _D	Power Dissipation	30W		

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS - 2N5664 ($T_A = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{CEO(sus)}	Collector – Emitter Sustaining Voltage	I _C = 10mA	I _B = 0	200			V
V _{CER(sus)}	Collector – Emitter Sustaining Voltage	I _C = 10mA	$R_{EB} = 100\Omega$	250			v
I _{CES}	Collector – Emitter Cut-off Current	$V_{CE} = 200V$	I _B = 0			1.0	μA
		V _{CE} = 175V	T _C = 150°C			100	
I _{EBO}	Emitter Base Cut-off Current	$V_{EB} = 6V$	$I_E = 0$			10	μA
V _{CE(sat)}	Collector – Emitter Saturation Voltage	I _C = 3.0A	I _B = 0.3A			0.4 1.2	V
V _{BE(sat)}	Base – Emitter On Voltage	I _C = 3.0A	I _B = 0.3A				
h _{FE}	DC Current Gain	I _C = 0.5A	$V_{CE} = 2V$	40			
		I _C = 1.0A	$V_{CE} = 5V$	40		120	
		I _C = 3.0A	$V_{CE} = 5V$	15			
C _{obo}	Output Capacitance	$V_{CB} = 5.0V$	f = 1MHz			125	pF
[h _{fe}]	Small Signal Current Gain	$V_{CE} = 5.0V$	I _C = 0.5A	2.0			_
		f = 10MHz					
t _{on}	Turn on time	I _C = 1.0A	$V_{CC} = 100V$			0.25	_ μs
		$I_{B1} = -I_{B2} = 30$)mA				
t _{off}	Turn off time	I _C = 1.0A	$V_{CC} = 100V$			1.5	
		I _{B1 = -} I _{B2 = 30})mA			1.5	

1) f_t is defined as the frequency at which $|h_{fe}|$ extrapolates to untity.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS - 2N5665 ($T_A = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{CEO(sus)}	Collector – Emitter Sustaining Voltage	I _C = 10mA	I _B = 0	300			V
V _{CER(sus)}	Collector – Emitter Sustaining Voltage	I _C = 10mA	R _{EB} = 100Ω	400			
I _{CES}	Collector – Emitter Cut-off Current	$V_{CE} = 300V$	I _B = 0			1.0	μA
		$V_{CE} = 250V$	T _C = 150°C			100	
I _{EBO}	Emitter Base Cut-off Current	$V_{EB} = 6V$	I _E = 0			10	μΑ
V _{CE(sat)}	Collector – Emitter Saturation Voltage	I _C = 3.0A	I _B = 0.6A		0.4	V	
V _{BE(sat)}	Base – Emitter On Voltage	I _C = 3.0A	I _B = 0.6A			1.2	v
h _{FE}	DC Current Gain	I _C = 0.5A	$V_{CE} = 2V$	25			
		I _C = 1.0A	$V_{CE} = 5V$	25		75	
		I _C = 3.0A	$V_{CE} = 5V$	15			
C _{obo}	Output Capacitance	$V_{CB} = 5.0V$	f = 1MHz			125	pF
[h _{fe}]	Small Signal Current Gain	$V_{CE} = 5.0V$	I _C = 0.5A	2.0			-
		f = 10MHz					
t _{on}	Turn on time	I _C = 1.0A	$V_{CC} = 100V$			0.25	μs
		$I_{B1} = -I_{B2} = 30$)mA				
t _{off}	Turn off time	I _C = 1.0A	V _{CC} = 100V			2.0	
		$I_{B1} = -I_{B2} = 30$)mA			2.0	

1) f_t is defined as the frequency at which $|h_{fe}|$ extrapolates to untity.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.