Clock OSC

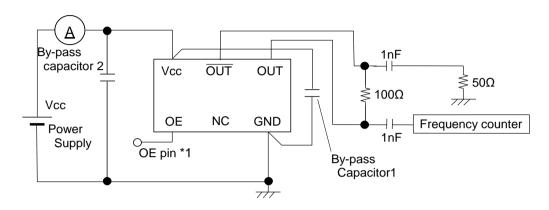
SG3225VEN

Product name SG3225VEN 156.250000MHz CJHA
Product Number / Ordering code X1G0053510036xx

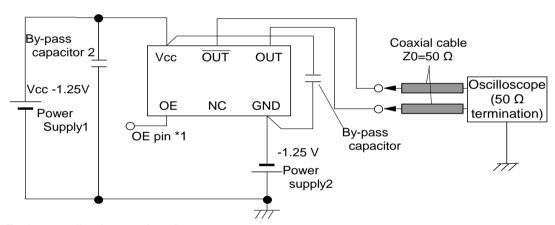
Please refer to the 8.Packing information about xx (last 2 digits)

Output waveform LVDS

Pb free / Complies with EU RoHS directive


Reference weight Typ. 26 mg

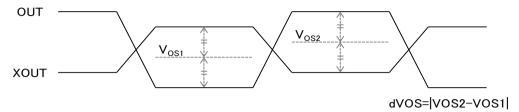
1.Absolute maximum ratings						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Maximum supply voltage	Vcc-GND	-0.5	-	+4	V	-
Storage temperature	T_stg	-55	-	+125	°C	Storage as single product
Input voltage	Vin	-0.5	-	Vcc+0.5	V	OE Terminal


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions / Remarks
Output frequency	f0	-	156.2500	-	MHz	Conditions / Normanie
Supply voltage	Vcc	3.135	3.3	3.465	V	-
Operating temperature	T_use	-40	-	+105	°C	-
Frequency tolerance	f tol	-50	_	+50	x10 ⁻⁶	-
Current consumption	lcc	-	_	25	mA	OE=Vcc L_LVDS=100 ohm
Stand-by current	I std	_	_	-	mA	-
Disable current	I dis	_	_	15	mA	OE=GND
Symmetry	SYM	45	50	55	%	At output crossing point
Output voltage(LVDS)	Vod	250	350	450	mV	VOD1 , VOD2
	dVop	-	-	50	mV	VOD1 - VOD2
	Vos	1.15	1.25	1.35	V	VOS1 , VOS2
	dVos	-	-	50	mV	VOS1 - VOS2
Output load condition(LVDS)	L LVDS	_	100	-	Ω	-
Input voltage	V _{IH}	70% Vcc	-	_	JE	OE Terminal
mpat veitage	V _{IL}	-	_	30% Vcc		OE Terminal
Rise time	t _r	_	_	300	ps	At 20% to 80% output swing
Fall time	tf	_	_	300	ps	At 20% to 80% output swing
Start-up time	t_str	_	_	10	ms	-
Jitter	t _{DJ}	_	1.1	-	ps	Deterministic Jitter
	T _{RJ}	_	0.6	_	ps	Random Jitter
	t _{RMS}	_	0.8	_	ps	δ(RMS of total distribution)
	t _{p-p}	_	6.8	_	ps	Peak to Peak
	t _{acc}	_	0.8	_	ps	Accumulated Jitter(δ) n=2 to 50000 cycles
Phase jitter	t _{PJ}	_	59.6	90	fs	Offset Frequency: 12kHz to 20MHz
Phase noise	L(f)	_	-49	-	dBc/Hz	Offset 1Hz
T Hase Holse	_(,)	_	-82	_	dBc/Hz	Offset 10Hz
		_	-111	_	dBc/Hz	Offset 100Hz
		_	-135	_	dBc/Hz	Offset 1kHz
		_	-149	_	dBc/Hz	Offset 10kHz
		_	-155	_	dBc/Hz	Offset 100kHz
		_	-160	_	dBc/Hz	Offset 1MHz
Frequency aging	f_age	_	-	_	•	Included in Frequency tolerance 10 years
	ugo				ATO / TOOL	l l l l l l l l l l l l l l l l l l l

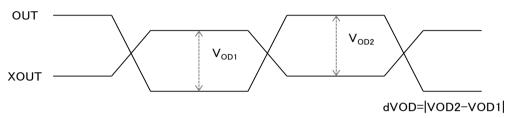
3.Test circuit

1) To observe frequency and current

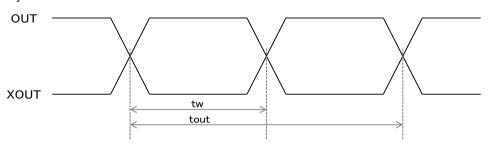
2) To observe output wave



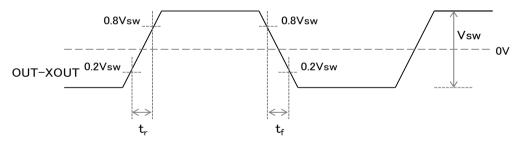
*Each output line is same length

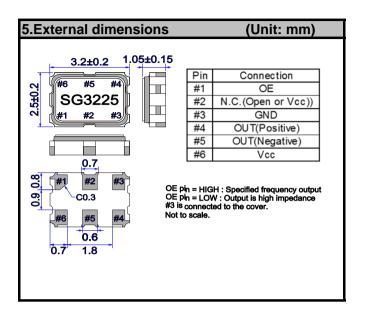

- 3) Measurement condition
- A) Oscilloscope
- •Bandwidth should be 5 times higher than DUT's output frequency (2.5 GHz).
- •Probe ground should be placed closely from test point and lead length should be as short as possible.
- B) By-pass capacitor 1 (approx. 0.1 μF) places closely between Vcc and GND.
- C) By-pass capacitor 2 (approx. 10 µF) places closely between power supply terminals on the board.
- D) Use the current meter whose internal impedance value is small.
- E) Power supply
- Start up time (0 Vg90 %Vcc) of power source should be more than 150 µs
- Impedance of power supply should be as low as possible.

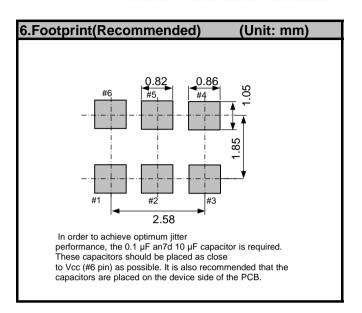
4.Timing chart

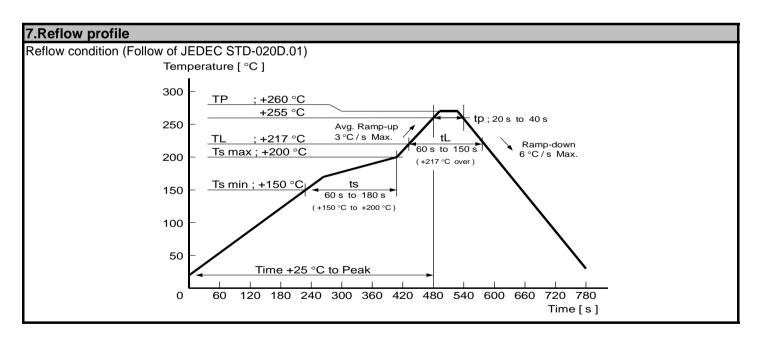

Output offset voltage

Differential output voltage

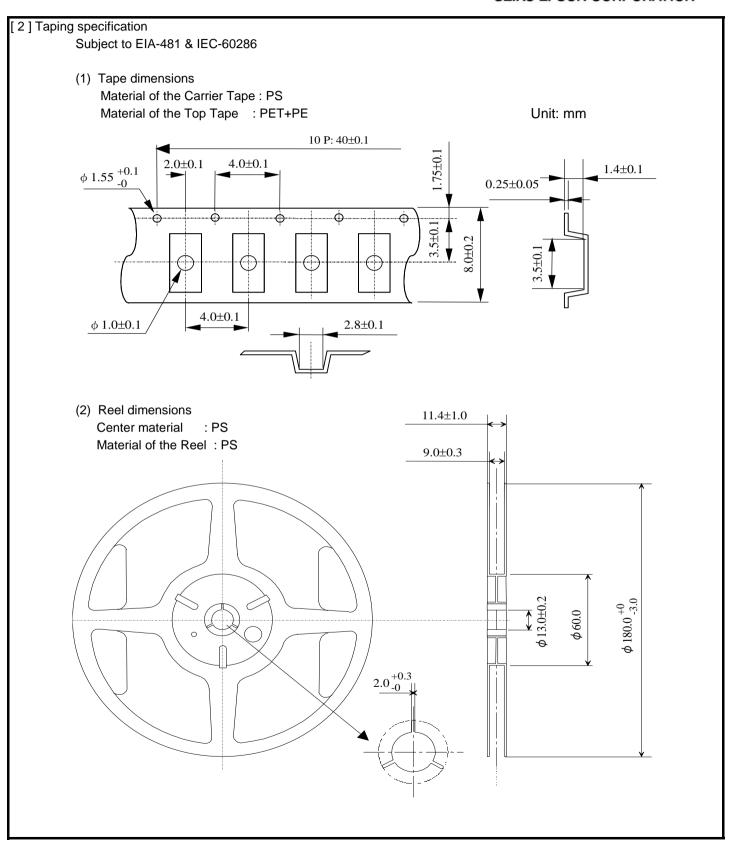



Duty




SYM=tw/tout $\times 100(\%)$

Rise time / Fall time



[1]Product	Product number last 2 digits code(xx) description		The recommended code is "00"			
	X1G0053	3510036xx				
	Code	Condition	Code	Condition		
	01	Any Q'ty vinyl bag(Tape cut)	13	500pcs / Reel		
	11	Any Q'ty / Reel	14	1000pcs / Reel		
	12	250pcs / Reel	00	2000pcs / Reel		

10.Notice

- This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information about applied circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable
 export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific applications that require
 extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.
 - / Space equipment (artificial satellites, rockets, etc.)
 - / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)
 - / Medical instruments to sustain life
 - / Submarine transmitters
 - / Power stations and related
 - / Fire work equipment and security equipment
 - / Traffic control equipment
 - / And others requiring equivalent reliability.
- · All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective.

11.Contact us

http://www5.epsondevice.com/en/contact/