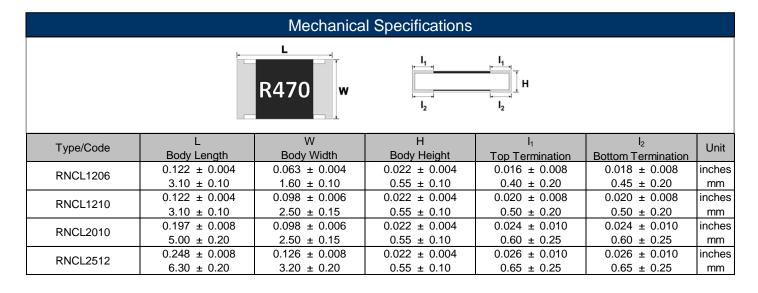
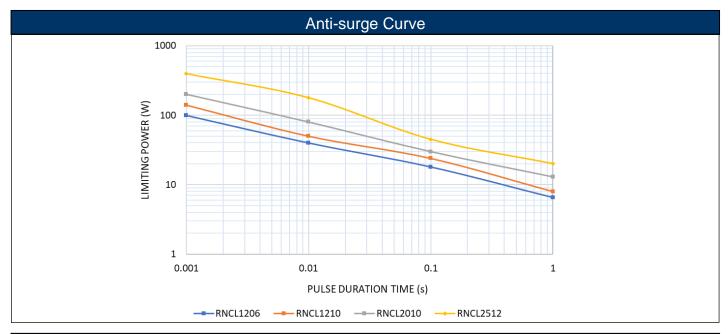
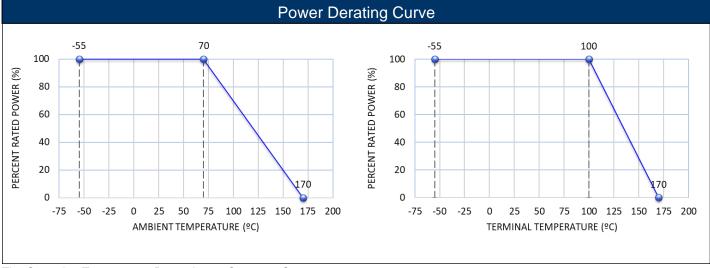

Features:

- Low resistance
- Low TCR
- Inductance of ≤ 5nH
- Excellent long-term stability
- · High precision current sensing
- High rated power capability and excellent anti-surge
- AEC-Q200 qualified
- 100% RoHS compliant and lead free without exemption
- Halogen free
- REACH compliant

Applications:


- Consumer electronics
- Computer and relative products
- Communication devices
- Measuring instruments
- Industrial / Power supplies
- Battery management systems


Electrical Specifications								
Type/Code	Power Rating (W) @ 70°C	Max Rated Current (A)	Max Overload (A)	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance			
					0.5%, 1%, 2%, 5%			
RNCL1206	1	4.47	10	± 100	0.05 - 0.976			
				± 50	0.1 - 33			
RNCL1210	1	4.47	10	± 100	0.05 - 0.976			
				± 50	0.1 - 33			
RNCL2010	1.5	5.48	12.25	± 50	0.05 - 50			
RNCL2512	2	6.32	14.14	± 50	0.05 - 50			


Non-standard parts may be available. Please contact Stackpole Electronics.

Operating temperature range is -55°C ~ +170°C

1

The Operating Temperature Range is -55°C ~ +170°C.

Power rating or current rating is based on continuous full-load at ambient temperature of 70°C. For operation at ambient temperature above 70°C, the load should be derated in accordance with the Power Derating Curve. (Terminal temperature derating from 100°C.

Rated Current

Resistance Range: $< 1\Omega$

Rated Current: The resistor shall have a DC continuous working current or an AC (rms) continuous working current at commercial-line frequency and wave form corresponding to the power rating, as per formula below:

$$I = \sqrt{P/R}$$

I = Rated current (A)

P = Rated power (W)

 $R = Nominal resistance (\Omega)$

Stackpole Electronics, Inc.

Thin Film High Power Anti-surge Chip Resistor

Resistive Product Solutions

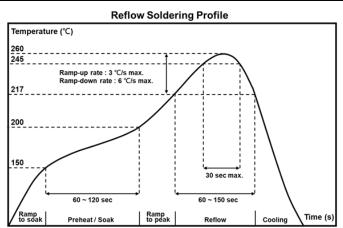
Rated Voltage

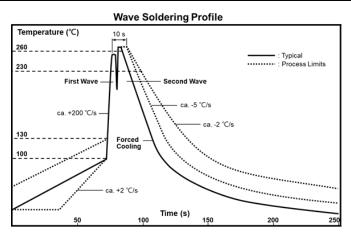
Resistance Range: $\geq 1 \Omega$

Rated Voltage: The resistor shall have a DC continuous working voltage or an RMS AC continuous working voltage at commercial-line frequency and wave form corresponding to the power rating, as per formula below:

$$V = \sqrt{P*R}$$

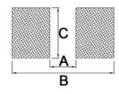
V = Rated voltage (V)


P = Rated power (W)


 $R = Nominal resistance (\Omega)$

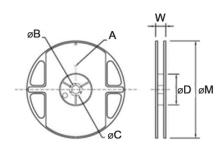
		Performance Characteristics		
Test Item	Test Method	Test Condition	Test Limits	
Temperature Coefficient of Resistance (TCR)	JIS C-5201-1 4.8 IEC-60115-1 4.8	At 25°C / +125°C, 25°C is the reference temperature.	Refer to Electrical Specifications table	
Short Time Overload	JIS C-5201-1 4.13 IEC-60115-1 4.13	5 times rated power whichever is less for 5 seconds	± (1% + 0.001Ω)	
Insulation Resistance	JIS C-5201-1 4.6 IEC-60115-1 4.6	Applied 100 VDC for 1 minute	≥ 10GΩ	
Dielectric Withstanding Voltage	JIS C-5201-1 4.7	Applied 500 VAC for 1 minute	No short or burned on the appearance	
Core Body Strength	JIS C-5201-1 4.15	Central part pressurizing force: 10N for 10 seconds	No breakage.	
Solderability	JIS C-5201-1 4.17 IEC-60115-1 4.17	245°C ± 5°C for 3 seconds	>95% coverage no visual damage	
Resistance to Soldering Heat	JIS C-5201-1 4.18 IEC-60115-1 4.18	260°C ± 5°C for 10 seconds	\pm (1% + 0.001Ω) No visual damage	
Leaching	JIS C5201-1 4.18 IEC-60068-2-58 8.2.1	260°C ± 5°C for 30 seconds	>95% coverage no visual damage	
Rapid Change of Temperature	JIS C-5201-1 4.19 IEC-60115-1 4.19	-55°C to +155°C, 300 cycles	± (1% + 0.001Ω) No visual damage	
Damp Heat with Load	JIS C-5201-1 4.24 IEC-60115-1 4.24	40°C ± 2°C, 90 ~ 95% R.H., RCWV or max. working current whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"	± (1% + 0.001Ω)	
Biased Humidity	MIL-STD-202 Method 103	1000 hours; 85°C/85% RH, 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.	± (1% + 0.05Ω)	
Load Life (Endurance)	JIS C-5201-1 4.25 IEC-60115-1 4.25.1	70°C ± 2°C, rated power or max. working current whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hours "OFF"	± (1% + 0.001Ω)	
High Temperature Exposure	JIS C-5201-1 4.23.2 IEC 60068-2-2	At +170 ± 5°C for 1000 hours	± (1% + 0.001Ω)	
Resistance to Solvent	JIS C-5201-1 4.29	The tested resistor will be immersed into isopropyl alcohol of 20°C ~ 25°C for 60 seconds. Then the resistor is left in room for 48 hours	± (1% + 0.001Ω) No visual damage	
Terminal Strength	JIS C-5201-1 4.32 AEC Q200-006	Pressurizing force for 60 seconds. 1206 and above 17.7N	No breakage	
Bending Strength	JIS C-5201-1 4.33 IEC-60115-1 4.33	Bending once for 5 seconds. D: 1206-1210 = 3mm; 2010-2512 = 2mm	\pm (1% + 0.001Ω) No visual damage	

Temperature coefficient of resistance test to -55°C and AEC-Q200 test reports available upon request. Contact Stackpole Electronics. Storage time at environment temperature is 25 ± 5 °C and R.H. of 60 ± 20 %.

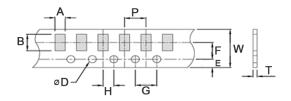

Rework temperature (hot air equipment): 350°C, 3 ~ 5 seconds

Recommended reflow methods:

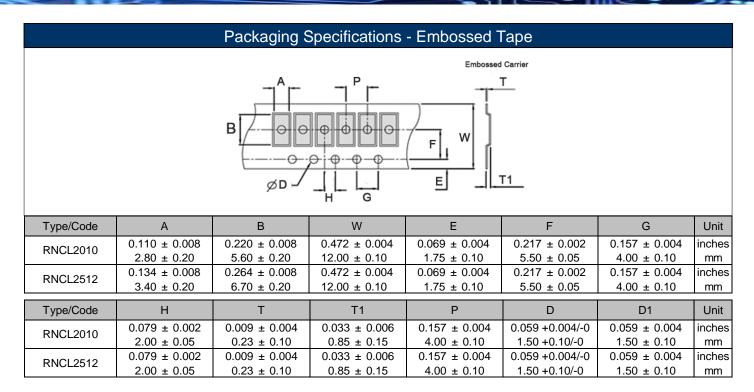
IR, vapor phase oven, hot air oven


If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

Recommended Pad Layout


Type/Code	A	В	С	Unit
RNCL1206	0.087	0.165	0.071	inches
	2.20	4.20	1.80	mm
RNCL1210	0.079	0.173	0.106	inches
RNGLIZIO	2.00	4.40	2.70	mm
RNCL2010	0.150	0.260	0.106	inches
KNCL2010	3.80	6.60	2.70	mm
RNCL2512	0.193	0.319	0.134	inches
KNCL2512	4.90	8.10	3.40	mm

Reel Specifications



Type/Code	А	В	С	D	W	М	Unit
RNCL1206	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.453 ± 0.079	7.008 ± 0.079	inches
KINGLIZUU	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	11.50 ± 2.00	178.00 ± 2.00	mm
RNCL1210	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.453 ± 0.079	7.008 ± 0.079	inches
KNCLIZIU	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	11.50 ± 2.00	178.00 ± 2.00	mm
RNCL2010	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.630 ± 0.079	7.008 ± 0.079	inches
KINCLZUIU	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	16.00 ± 2.00	178.00 ± 2.00	mm
RNCL2512	0.079 ± 0.020	0.531 ± 0.039	0.827 ± 0.039	2.362 ± 0.039	0.630 ± 0.079	7.008 ± 0.079	inches
	2.00 ± 0.50	13.50 ± 1.00	21.00 ± 1.00	60.00 ± 1.00	16.00 ± 2.00	178.00 ± 2.00	mm

Packaging Specifications - Paper Tape

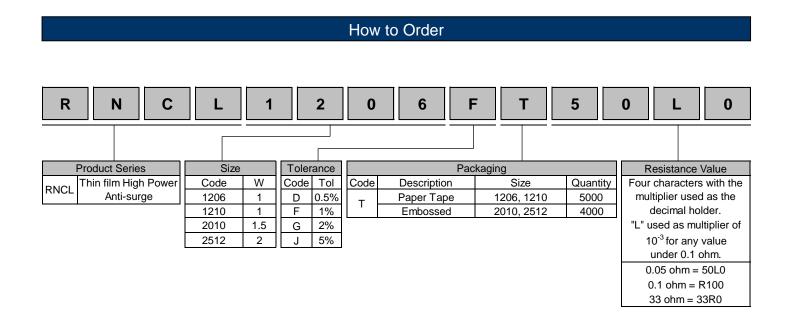
Type/Code	A	В	W	E	F	Unit
RNCL1206	0.075 ± 0.008	0.120 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KNCL1200	1.90 ± 0.20	3.05 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RNCL1210	0.112 ± 0.008	0.120 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KINCLIZIO	2.85 ± 0.20	3.05 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
Type/Code	G	Н	Т	Р	D	Unit
RNCL1206	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.059 +0.004/-0	inches
KINCL 1200	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	1.50 +0.10/-0	mm
RNCL1210	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.157 ± 0.004	0.059 +0.004/-0	inches
KNCL1210	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	4.00 ± 0.10	1.50 +0.10/-0	mm

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
RNCL	Thin Film High Power Anti-surge	SMD	YES	100% Matte Sn over Ni	Always	Always			

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

