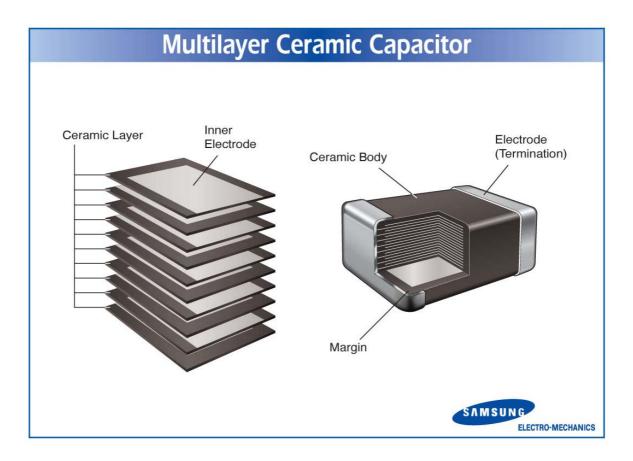
Multilayer Ceramic Capacitor - High Voltage -SAMSUNG **ELECTRO-MECHANICS**

INTRODUCTION

SAMSUNG (Electro-Mechanics) mid/high voltage MLCC products with C0G(NP0) and X7R temperature characteristics are designed for commercial and industrial applications up to DC 3 KV, including power supply and voltage multiplier circuits applications. The specially-designed internal and external structures are capable of enhancing high voltage performance of chips. Various sizes and voltage ratings are available for corresponding capacitance ranges. Please contact and consult the local offices/headquarter of SAMSUNG Electro-Mechanics.

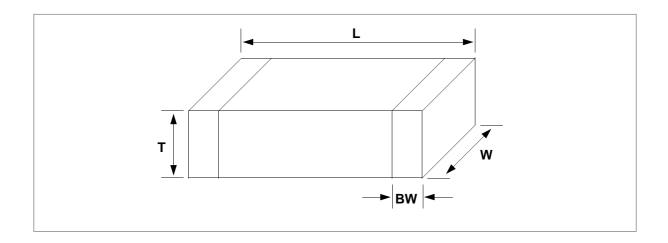
■ FEATURE AND APPLICATION

Feature


- Miniature Size
- Wide Capacitance and Voltage Range
- Highly Reliable Performance in High-voltage
- Tape & Reel for Surface Mount Assembly
- Low ESR

Application

- Input Signal Filtering Circuit of Modem and LAN Interface
- General High Voltage Circuits
- Inverter Circuits with a Liquid Backlight



■ STRUCTURE

■ APPEARANCE AND DIMENSION

CODE	EIA CODE	DIMENSION (mm)						
CODE	LIA CODE	L	w	T (MAX)	BW			
10	0603	1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.3 + 0.2/-0.1			
21	0805	2.0 ± 0.1	1.25 ± 0.1	1.25± 0.1	0.5 + 0.2/-0.3			
31	1206	3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.5 + 0.2/-0.3			
32	1210	3.2 ± 0.3	2.5 ± 0.2	2.5 ± 0.2	0.6 + 0.2/-0.1			
42	1810	4.5 ± 0.4	2.0 ± 0.2	2.0 ± 0.2	0.8 + 0.2/-0.1			
43	1812	4.5 ± 0.4	3.2 ± 0.3	2.5 ± 0.2	0.8 + 0.2/-0.1			
55	2220	5.7 ± 0.4	3.2 ± 0.4	2.5 ± 0.2	0.8 + 0.2/-0.1			

■ PREVIOUS PART NUMBERING

CL 42 C 270 J K N E

1 2 8 4 6 6 7 8

- 1 SAMSUNG Multilayer Ceramic Capacitor
- 2 Type(Size)
- 3 Capacitance Temperature Characteristics
- 4 Nominal Capacitance
- **6** Capacitance Tolerance
- 6 Rated Voltage
- **7** Thickness Option
- 8 Packaging Type

3 CAPACITANCE TEMPERATURE CHARACTERISTIC

► CLASS I (Temperature Compensation)

Symbol	EIA Code	Temperature Coefficient(PPM/℃)	* Temperature Characteristics	Operation Temperature Range
С	C0G(CH)	0 ± 30	CΔ	-55 ~ +125℃

***** Temperature Characteristics

Temperature Characteristics	below 2.0pF	2.2 ~ 3.9pF	above 4.0pF	above 10pF
CΔ	C0G	C0G	C0G	C0G

► CLASS II (High Dielectric Constant)

Symbol	EIA Code	Capacitance Change (ΔC : %)	Operation Temperature Range
В	X7R	± 15	-55 ~ +125℃

4 NOMINAL CAPACITANCE

The nominal capacitance value is expressed in pico-Farad(pF) and identified by three-digit number, first two digits represent significant figures and last digit specifies the number of zeros to follow. For values below 1pF, the letter "R" is used as the decimal point and the last digit becomes significant.

example)

100 : 10 ×	10° =	10pF	
102 : 10 ×	$10^2 =$	1000pF	
020 : 2 ×	10° =	2pF	
1R5 : 1.5pF	•		

6 CAPACITANCE TOLERANCE

Temperature Characteristics	Symbol	Tolerance	Applicable Capacitance & Range
	С	± 0.25pF	0.5 1005
•	D	± 0.5pF	0.5 ~ 10pF
C (C0G)	J	± 5%	
(COG)	K	± 10%	E-24 Series for over 10pF
	М	± 20%	
	J	± 5%	
B(X7R)	K	± 10%	E-12 Series
	М	± 20%	

^{*} Please Consult us for special tolerances.

6 RATED VOLTAGE

Symbol	Rated Voltage(Vdc)	Symbol	Rated Voltage(Vdc)
С	100Vdc	Н	630Vdc
D	200Vdc	I	1000Vdc
E	250Vdc	J	2000Vdc
G	500Vdc	K	3000Vdc

^{* :} Option

7 THICKNESS OPTION

Symbol	Description of the Code					
N	Standard thickness (please refer to standard thickness table on next page)					
Α	Thinner than standard thickness					
В	Thicker than standard thickness					

^{*} Please consult us for other termination type.

8 PACKAGING TYPE

Symbol	Symbol Packaging		Packaging
В	Bulk	D	Paper Tape, 13" Reel
Р	Cassette	E	Embossed Tape, 7" Reel
С	Paper Tape, 7" Reel	F	Embossed Tape, 13" Reel

▶ STANDARD CAPACITANCE STEP

Series		Capacitance Step										
E- 3		1.0 2.2				4	.7					
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
F 24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

[※] Standard Capacitance is " Each step ×10" "

■ NEW PART NUMBERING

 CL
 42
 C
 270
 J
 K
 F
 N
 N
 N
 C

 1
 2
 3
 4
 6
 6
 7
 8
 9
 10
 10

- 1 SAMSUNG Multilayer Ceramic Capacitor
- 2 Size(mm)
- 3 Capacitance Temperature Characteristic
- 4 Nominal Capacitance
- **6** Capacitance Tolerance
- 6 Rated Voltage
- **7** Thickness Option
- 8 Product & Plating Method
- 9 Samsung Control Code
- The Reserved For Future Use
- 1 Packaging Type

1 PRODUCT ABBREVIATION

Symbol	Product Abbreviation
CL	SAMSUNG Multilayer Ceramic Capacitor

2 SIZE(mm)

Cumbal	Size(mm)					
Symbol	Length	Width				
10	1.6	0.8				
21	2.0	1.2				
31	3.2	1.6				
32	3.2	2.5				
42	4.5	2.0				
43	4.5	3.2				
55	5.7	5.0				

3 CAPACITANCE TEMPERATURE CHARACTERISTIC

Symbol		Temperatu	re Character	istics	Temperature Range
С	Class	COG	C△	0±30(ppm/°C)	-55 ~ +125℃
В	Class II	X7R	X7R	±15%	-55 ~ +125℃

***** Temperature Characteristic

Temperature Characteristics	Below 2.0pF	2.2 ~ 3.9pF	Above 4.0pF	Above 10pF
CΔ	C0G	C0G	C0G	C0G

4 NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. 'R' identifies a decimal point.

Example

Symbol	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 μ F
104	100,000pF, 100nF, 0.1 µ F

6 CAPACITANCE TOLERANCE

Symbol	Tolerance	Nominal Capacitance
С	±0.25pF	Less than 10pF
D	±0.5pF	(Including 10pF)
J	±5%	
K	±10%	More than 10pF
М	±20%	

6 RATED VOLTAGE

Symbol	Rated Voltage	Symbol	Rated Voltage
С	100V	Н	630V
D	200V		1,000V
E	250V	J	2,000V
G	500V	K	3,000V

7 THICKNESS OPTION

Туре	Symbol	Thickness(T)	Spec		
1608	8	0.80	±0.10		
	Α	0.65	1040		
2012	С	0.85	±0.10		
	F	1.25	±0.10		
	С	0.85	±0.15		
3216	F	1.25	±0.15		
	Н	1.6	±0.20		
	F	1.25			
2005	Н	1.6	10.00		
3225	I	2.0	±0.20		
	J	2.5			
4500	F	1.25	10.00		
4520	Н	1.6	±0.20		
	F	1.25			
4500	Н	1.6	10.00		
4532	I	2.0	±0.20		
	J	2.5			
	F	1.25			
F750	Н	1.6	10.00		
5750	I	2.0	±0.20		
	J	2.5			

PRODUCT & PLATING METHOD

Symbol	Electrode	Termination	Plating Type			
Α	Pd	Ag	Sn_100%			
N	Ni	Cu	Sn_100%			
G	Cu	Cu	Sn_100%			

SAMSUNG CONTROL CODE

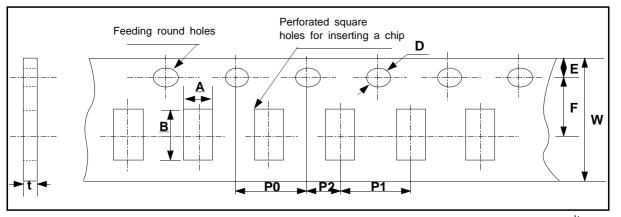
Symbol	Description of the code	Symbol	Description of the code
Α	Array (2-element)	N	Normal
В	Array (4-element)	Р	Automotive
С	High - Q	W	3 Terminal EMI Filter
L	LICC		

RESERVED FOR FUTURE USE

Symbol	Description of the code
N	Reserved for future use

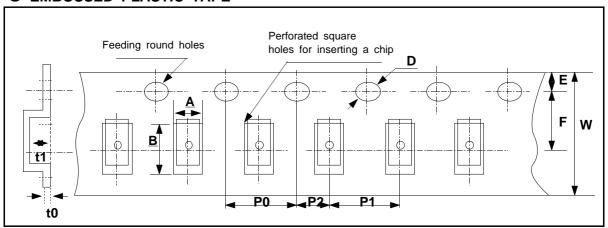
PACKAGING TYPE

Symbol	Packaging Type	Symbol	Packaging Type		
В	Bulk	F	Embossing 13" (10,000EA)		
Р	Bulk Case	L	Paper 13" (15,000EA)		
С	Paper 7"	0	Paper 10"		
D	Paper 13" (10,000EA)	S	Embossing 10"		
E	Embossing 7"				

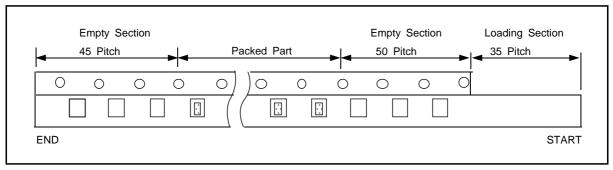

► CAPACITANCE vs CHIP THICKNESS STANDARD

	Description		1608 (0603)	20 1	2 Ty 0805)	ре	32	16 Ty (1206)	pe		3225 Type (1210)			Ty	520 7pe 508)		4532 (18	Type 312)		5750 Type (2220)		
		L	1.6 ±0.1	2	2.0±0.1		3.2±	0.15	3.2± 0.2		3.2±	:0.3		4.5	±0.4		4.5	±0.4			1	
Di	mension (mm)	w	0.8 ±0.1	1.	25±0.1		1.6±	0.15	1.6± 0.2		2.5±	0.2		2.0	±0.2		3.2	±0.3		5.0±0.4		
		т	0.8 ±0.1	0.65 ±0.1	0.85 ±0.1	1.25 ±0.1	0.85 ±0.15	1.25 ±0.15	1.6 ±0.2	1.25 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2	1.25 ±0.2	1.6 ±0.2	1.25 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2	1.6 ±0.2	2.0 ±0.2	2.5 ±0.2
	SL	100V	0.5~ 680	0.5~ 560	620~ 910	1000	0.5~ 1500	1600~ 3300	3600~ 3900	-	-	-	-	-	-	-	-	-	-	-	-	-
		100V	0.5~ 390	0.5~ 390	470~ 820	1000	0.5~ 2200	2700~ 3300	3900~ 6800	4700~ 6800	8200~ 10000	12000	15000 18000	-	-	10000 15000	18000	22000	27000~ 33000	-	-	-
C A P		200V	-	-	33~ 470	560~ 1000	220~ 680	820~ 1200	1500~ 2700	3300	3900	4700	5600~ 8200	-	-	-	-	-	10000~ 18000	-	-	-
CAPACITANCE		250V	-	-	-	680		-	2200	-	-	-	6800	-	-	-	-	-	12000	•	-	22000
	C, TC	500V	-	-	-	-	-	10~ 560	680~ 1000	470~ 1000	1200~ 1500	-	-	-	-	470~ 1500	1800~ 2200	2700	3300~ 5600	-	6800	8200~ 10000
R A N G E	(Except SL,UJ)	630V	-	-	-	-	-	-	820	-	-	-	2200	-	-	-	-	-	4700	-	-	10000
(pH)		1kV	-	-	-	-	-	10~ 150	180~ 270	-	470~ 560	680	820	-	-	470~ 680	820~ 1000	1200	1500~ 1800	-	-	2200~ 3600
		2kV	-	-	-	-	-	-	10~47	47~ 180	220	270~ 330	470	10~ 150	180~ 220	47~ 120	150~ 180	220	270~ 390	-	-	-
		3kV	-	-	-	-	-	-	-	-	-	-	-	10~ 100	,	-	100~ 180	220	270~ 390	-	-	470~ 820
		100V	0.47~ 10	0.22~ 10	15	22~ 68	1~ 47	68~ 100	150	2.2~ 150	220	-	-	-	-	100~ 330	470	-	-	680~ 1000	1500	-
C A P		200V	-	•	0.22~1 0	-	0.47~	33~ 47	68~ 100	-	-	-	-	-	,	47~ 100	-	-	-	,	-	-
CAPACITA		250V	-	•	1~ 3.3	4.7~1 5	,	22	33~ 47	-	-	68	100	-	,	-	-	-	150~ 220	,	-	330~ 470
N C E	(X7R)	500V	-	-	-	-	-	0.47~ 15	22~ 33	10~ 33	470	-	-	-	-	10~ 47	68	100	-	150	220	-
R A N G E		630V	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
(n F)		1kV	-	•	-	-	•	0.47~ 3.3	-	3.3~ 6.8	-	-	-	-		1.5~ 10	15~ 22	-	33	,	47	68
		2kV	-	1	,	-	1	-	0.47~ 1	0.47~ 1	-	,	-	1	i	1~ 3.3	-	-	-	3.3~ 10	-	-

■ PACKAGING

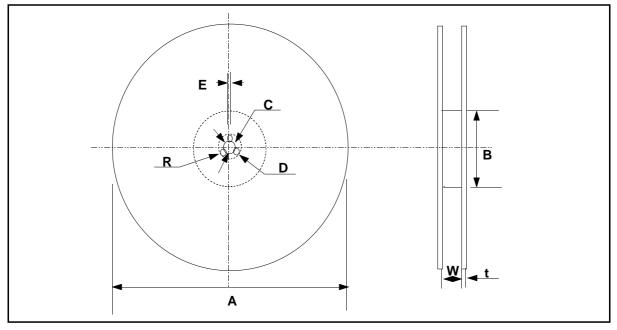

● CARDBOARD PAPER TAPE

unit: mm


Symbol Type		w	F	E	P1	P2	P0	D	t	Α	В
D e m	10									1.1 ±0.2	1.9 ±0.2
e n s	21	8.0 ±0.3	3.5 ±0.05	1.75 ±0.1	4.0 ±0.1	2.0 ±0.05	4.0 ±0.1	φ1.5 +0.1/-0	1.1 Max	1.6 ±0.2	2.4 ±0.2
0 n	31									2.0 ±0.2	3.6 ±0.2

● EMBOSSED PLASTIC TAPE

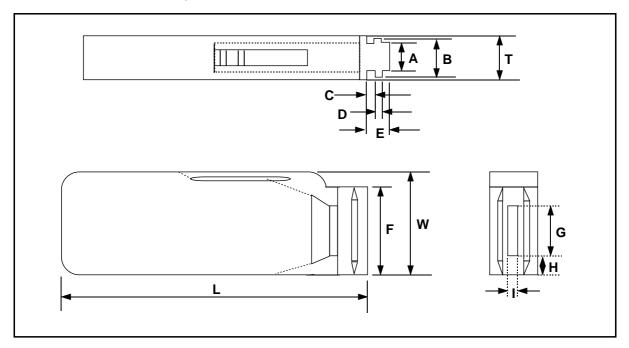
											ui	<u> 11t : mm</u>
	mbol ype	W	F	E	P1	P2	P0	D	t0	t1	A	В
D	21										1.45 ±0.2	2.3 ±0.2
m e	31	8.0 ±0.3	3.5 ±0.05	1.75	4.0 ±0.1	2.0	4.0	Ф1.5	0.6	2.5 max	2.0 ±0.2	3.6 ±0.2
n s i	32			±0.1		±0.05	±0.1	+0.1/-0	Max		2.9 ±0.2	3.6 ±0.2
o n	43 (42)	12 ±0.3	5.6 ±0.05		8.0 ±0.1					3.8 max	2.5(3.6) ±0.2	4.9 ±0.2


● TAPING SIZE

unit : pcs

Symbol	Cardboard Paper Tape	Embossed Plastic Tape		
7" Reel	4000	2000		
13" Reel	15000	-		

REEL DIMENSION


unit: mm

Symbol	Α	В	С	D	E	W	t	R
7" Reel	φ178±2.0	min.¢50	412±0 Ε	21 + 0.0	20+05	10±1 F	0.0+0.2	1.0
13" Reel	ф330±2.0	min.¢70	Ψ13±0.5	21±0.8	2.0±0.5	10±1.5	0.8±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

Symbol	Α	В	T	С	D	E
Dimension	6.8±0.1	8.8±0.1	12±0.1	1.5+0.1/-0	2+0/-0.1	4.7±0.1
Symbol	F	W	G	н	L	ı

QUANTITY

Size	05(0402)	10/0602\	21(0805)			
Size	05(0402)	10(0603)	T≤0.85mm	T≥1.0mm		
Quantity	80,000	10,000~15,000	10,000	5,000		

■ CHARACTERISTIC MAP

• CLASS I

Temperature Characteristics	Size	Voltage	0.5 1	0 1	00 10		citance 000 100			10000000	100000000
	10	100V	0.5		390	10	100		1000000	1000000	10000000
	(0603)				390						
	21	100V				1000					
	(0805)	200V	;	33		1000					
		250V			■ 68						
		100V			00	68	300				
		200V 250V			20	2700 2200					
	31	500V	10			1000					
	(1206)	630V	10								
		1000V	10		270	820					
		2000V	10		210						
		100V	10	47		4700	10000				
		200V				4700 47 00 8 00 8 00 8 00					
	32 (1210)	250V			33	= 68					
		500V			470	1500					
		630V				2200					
COG		1000V			470						
		2000V		47	470						
	42 (1808)	2000V	10		220						
		3000V	10		100						
		100V				10000	3300	0			
		200V					18000				
		250V					1 2000				
	43	500V			470	560	0				
	(1812)	630V				470 0	0				
		1000V			470	1800					
		2000V		47	390						
		3000V		100	390						
		250V					22000	0			
		500V				6800	10000				
	55 (2220)	630V					1 0000				
	` ,	1000V			2200	3600					
		3000V			470	320					

lacktriangle CLASS II , B(X7R)

Temperature	21	.,	Capacitance Range (pF)
Temperature Characteristics	Size	Voltage	10 100 1000 10000 1000000 10000000 1000000
	10 (0603)	100V	470 10000
		100V	220 68000
	21 (0805)	200V	220 10000
		250V	1000
		100V	1000
		200V	470 100000
	31	250V	22000 47000
	(1206)	500V	470 33000
		1000V	470 3300
		2000V	470 1000
		100V	2200 220000
	32 (1210) R)	250V	68000 100000
		500V	10000 470000
B(X7R)		1000V	3300 6800
		2000V	470 1000
	42(1808)	2000V	■ 1000
		100V	100000 330000
		200V	47000 100000
	43	250V	150000 ■ 220000
	(1812)	500V	10000 100000
		1000V	1500 33000
		2000V	1000 3300
		100V	680000 1500000
		250V	330000 ■ 470000
	55 (2220)	500V	150000 = 220000
	, ,	1000V	47000 ■ 68000
		2000V	3300 10000

■ RELIABILITY TEST DATA

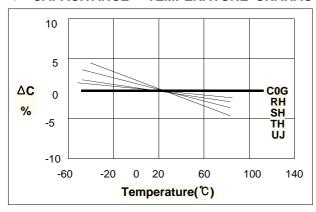
NO	ITEM			PERFORMA	ANCE		TEST CONDITION	N	
1	APPEARAN	CE		ABNORMAL EXTE	RIOR	THROUGH MIC	ROSCOPE(×10)		
2	INSULATIO RESISTANO		WHI	OOMΩ OR 500MΩ·μΓ CHEVER IS SMAL FED VOLTAGE IS ,000MΩ OR 100MΩ·)	LER BELOW 16V	RATED VOLTAGE SHALL BE APPLIED. MEASUREMENT TIME IS 60 ~ 120sec RATED VOLTAGE TIME 60 SEC.			
3	WITHSTAND VOLTAGE	_	NO DIELECTRIC BREAKDOWN OR MECHANICAL BREAKDOWN			Rated voltage Applied voltage Vr<500Vdc 200% of Vr 500Vdc≤Vr<1000Vdc 150% of Vr 1000Vdc≤Vr 120% of Vr VOLTAGE APPLIED in 1~5 sec CURRENT APPLIED : 50mA BELOW			
-	01.400					CAPACITAN	ICE FREQUENCY	VOLTAGE	
		CLASS		WITHIN THE SPE	CIFIED	1,000 pF AND B	ELOW 1 Mz ± 10%	0.5 ~ 5 Vrms	
4	CAPACITANCE	1		TOLERANCE		MORE THAN 1	,000pF 1kHz±10%	1.0±0.2Vrms	
		CLASS		WITHIN THE SPE	CIFIED	FRE	EQUENCY	VOLTAGE	
		П		TOLERANCE		1 k	1.0±0.2Vrms		
		01.400	OVE	R 30pF : Q ≥1,00	00	CAPACITAN	ICE FREQUENCY	VOLTAGE	
5	Q	CLASS	LES	5 THAN 30 pF: Q ≥400 +20C		1,000 pF AND B	ELOW 1Mz±10%	0.5 ~ 5 Vrms	
		•		(C : CAPACIT	ANCE)	MORE THAN 1	,000 pF 1 kHz ± 10%	0.5 ~ 5 VIIIS	
6	Tanδ	CLASS	B :	2.5% Max (0.025	Max)	FRE	EQUENCY	VOLTAGE	
	(DF)	П	C :	0.1% MAx (0.001N	/lax)	1kl	Hz±10%	1.0±0.2Vrms	
							TURE COEFFICIENT GIVEN TEMPERATU		
		TEMPERATURE		TEMP		Step	TEMPERAT	URE(℃)	
	TEMPERATI			TEMPERATURE C COEFFICIE		COEFFICIENT	0±30(ppm/°C)	1	25±
7	COEFFICIE					2	MIN. OPERATIN		
	CHARACTERIS	STICS				3	MAX. OPERATIN		
						5	MAX. OPERATION 25±		
							HE CAPACITANCE II		
			В	CAPACITANCE CHANGE	±15%	AT THERMAL E			
8	ADHESIVE STR OF TERMINA		occ	INDICATION OF F CUR ON THE TER CTRODE.			SURE SHALL BE 10±1 SECONDS.	500g.f	

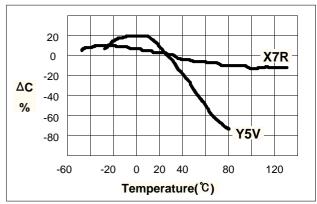
NO	TI	ЕМ	PER	RFORM	MANCE		TEST COND	ITION
		APPEARANCE	NO MECHAN	IICAL D	DAMAGE SHALL		SHALL BE AP T(1mm) WITH 0	_
		CAPACITANCE	CHARAC	TER	CHANGE OF CAPACITANCE	20 R=340		
9	BENDING STRENGTH		C(C00	C(C0G) WITHIN $\pm 5\%$ OR \pm 0.5 pF WHICHEVER IS LARGER			BENDING LIMIT	
			B(X7R) WITHIN ±12.5%					
10	SOLDE	MORE THAN 75% OF THE TERMINAL SURFACE IS TO BE SOLDERED NEWLY. THERE MAY BE PINHOLES, SPOTS. BUT THESE MUST NOT BE AT ONE POINT IN PBFREE PART, MORE THAN 95% OF THE TERMINAL SURFACE IS TO BE SOLDERED NEWLY			SOLDER TEMPERATURE : 230±5℃ IMMERSED DEPTH : 10 ~15 mm SOLDER : H63A FLUX : ROSIN *PB-FREE SOLDER TEMPERATURE : 260±5℃ SOLDER : Sn96.5-3Ag-0.5Cu Flux : RMA TYPE DIP TIME : 3±0.1Sec PRE-HEATING : AT 80~120℃ FOR 10~30SEC.			
		APPEARANCE	NO MECHANICAL DAMAGE SHALL OCCUR			DIP : SOLDER TEMPERATURE OF 270 $\pm 5^{\circ}\mathrm{C}$		
			CHARACTER	RISTIC	CAP. CHANGE	DIP TIME : 10±1 SEC.		
			CLASS	I	WITHIN ±2.5% OR ±0.25pF WHICHEVER IS		ED AND PREHE	ATED
		CAPACITANCE			LARGER	STEP	TEMP.(℃)	TIME (SEC.)
	RESISTANCE TO		CLASS II	В	WITHIN ±7.5%	1	80~100	60
11	SOLDERING .			F	WITHIN ±20%	2	150~180	60
	HEAT	Q CLASS I	30 pF AND O		Q≥ 1000 : Q≥ 400+20×C			
		Tan δ	TO SATISFY		SPECIFIED	MEASURE AT ROOM TEMP. AFTER COOLING FOR CLASS I : 24 ± 2 HOURS CLASS II : 48 ± 4 HOURS		
		INSULATION RESISTANCE	TO SATISFY		SPECIFIED			
		WITHSTANDING VOLTAGE	TO SATISFY		SPECIFIED			

NO	l.	TEM	PERF	ORMANCE	TEST	CONDITION		
		APPEARANCE	NO MECHANICAL D	AMAGE SHALL OCCUR.	THE CAPACITO	OR SHALL BE		
	•		CHARACTERISTIC	CAP. CHANGE	SUBJECTED TO	O A HARMONIC		
		CAPACITANCE	CLASS I	WITHIN $\pm 2.5\%$ OR \pm 0.25 pF WHICHEVER IS LARGER		MOTION HAVING A TOTAL AMPLITUDE OF 1.5mm.		
			CLASS II WITHIN ±5%			REQUENCY RANGE,		
12	VIBRATION TEST	Q CLASS I	30pF AND OVER : LESS THAN 30pF :		TO 10Hz, SHAL	55Hz AND RETURN LL BE TRAVERSED		
		Tanδ	TO SATISFY THE	SPECIFIED	IN 1 MINUTE.			
		CLASS II	INITIAL VALUE		THIS CYCLE S	HALL BE PERFORMED		
		INSULATION RESISTANCE	TO SATISFY THE	SPECIFIED	2 HOURS IN EACH THERE MUTUALLY PERPENDICULAR DIRECTION, FOR TOTAL PERIOD OF 6 HOURS			
		APPEARANCE	NO MECHANICAL D	DAMAGE SHALL OCCUR				
			CHARACTERISTIC CAPACITANCE CHANGE					
		CAPACITANCE	CLASS I	WITHIN ±5% OR ±0.5 pF WHICHEVER IS LARGER	TEMPERATURE RELATIVE HUM TEST TIME :	MIDITY: 90~95 %RH		
	HUMIDITY		CLASS II	WITHIN ±12.5%	MEASURE AT ROOM TEMPERATUR AFTER COOLING FOR CLASS I : 24±2 Hr. CLASS II : 48±4 Hr.			
13	(STEADY STATE)	Q CLASS I	$30 \mathrm{pF}$ AND OVER : $10 \sim\! 30 \mathrm{pF}$: $Q \geq$ LESS THAN $10 \mathrm{pF}$:	275 + 2.5×C				
		Tanδ	B : 5% N	MAX (0.05 MAX)				
		CLASS II	C : 0.1 M	IAX (0.001 MAX)				
	-	INSULATION RESISTANCE	MINIMUM INSULATI 1,000 MΩ OR 50MΩ·μl WHICHEVER IS SM	FPRODUCT				

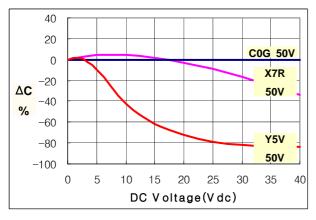
^{*} THE INITIAL VALUE OF HIGH DIELECTRIC CONSTANT SERIES SHALL BE MEASURED AFTER THE HEAT TREATMENT OF 150 +0/-10 $^{\circ}$ C, 1Hr AND SITTING OF 48 \pm 4hr AT ROOM TEMPERATURE & ROOM HUMIDITY.

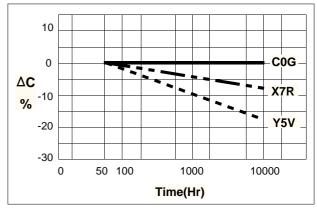
NO	ITE	M	PER	FORMANCE	TEST CONDITION		
		APPEARANCE	NO MECHANICAL OCCUR	. DAMAGE SHALL	1KV TO 3KV PRODUCTS ARE NOT APPLIED TO THIS TEST WITHOUT		
		CARACITANCE	CHARACTERIST IC	CAPACITANCE CHANGE WITHIN ±7.5% OR	COATING THE TESTED SAMPLES WITH EPOXY FOR INSULATION		
		CAPACITANCE	CLASS I ±0.75pF WHICHEVER IS LARGER		APPLIED VOLTAGE : RATED VOLTAGE TEMPERATURE : 40 ± 2 °C		
			CLASS II	WITHIN ±12.5%	RELATIVE HUMIDITY:90~95%RH		
		Q CLASS I	30 pF AND OVER 30 pF AND BELOW	: Q≥ 200 V : Q≥ 100 + 10/3×C	TEST TIME : 500 +12/-0 Hr. CURRENT APPLIED : 50mA MAX.		
14	MOISTURE	Tanδ CLASS II		MAX (0.05 MAX) MAX (0.001 MAX)	<pre><initial measurement=""> CLASS II SHOULD BE MEASURED</initial></pre>		
	RESISTANCE	INSULATION RESISTANCE	MINIMUM INSULA 500 MΩ OR 25MΩ·µ WHICHEVER IS S	,	CLASS II SHOULD BE MEASURED INITIAL VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C +0/-10°C AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE. <latter measurement=""> CLASS I SHOULD BE MEASURED AFTE LEFT FOR 24±2 HRS IN ROOM TEMPERATURE AND HUMIDITY. CLASS II SHOULD BE MEASURED LATTER VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C +0/-10°C AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE.</latter>		
		APPEARANCE	NO MECHANICAL	. DAMAGE SHALL	APPLIED VOLTAGE: for Vr<500Vdc,200% OF Vr for 500Vdc≤Vr<1000Vdc,120% OF Vr for 1000Vdc≤Vr, Vr		
			CHARACTERIST IC	CAP. CHANGE	TEST TIME: 1000 +48/-0 Hr. CURRENT APPLIED: 50mA MAX.		
	HIGH	CAPACITANCE	CLASS I	WITHIN ±3% OR ±0.3 pF, WHICHEVER IS LARGER	TEMP: MAX OPERATING TEMP±2°C		
15	TEMPERATURE RESISTANCE		CLASS II	WITHIN ±12.5%	CLASS II SHOULD BE MEASURED INITIAL VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C		
		Q CLASS I	30 pF AND OVER 10 ~ 30 pF : Q LESS THAN 10 pF		+0/-10℃ AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE. <latter measurement=""> CLASS I SHOULD BE MEASURED</latter>		
		Tanδ		AX (0.05 MAX)	AFTER LEFT FOR 24±2 HRS IN ROOM TEMPERATURE AND HUMIDITY.		
		CLASS II	C : 0.1%	MAX (0.001 MAX)	CLASS II SHOULD BE MEASURED		
		INSULATION RESISTANCE	MINIMUM INSULA 1,000 M2 OR 50M2 WHICHEVER IS S		LATTER VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150℃ +0/-10℃ AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE.		

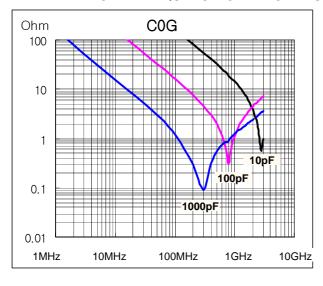

NO	ITE	:M	PERFO	RMANCE		TEST CONDITIO	N
		APPEARANCE	NO MECHANICAL I	DAMAGE SHALL		ORS SHALL BE SU	BJECTED
			CHARACTERISTIC	CAP. CHANGE	TEMPERATURE CYCLE AS		
				WITHIN $\pm 2.5\%$ OR $\pm 0.25 \mathrm{pF}$	FOLLOW	ING	
		CAPACITANCE	CLASS I	WHICHEVER IS LARGER	STEP	TEMP.(℃)	TIME (MIN)
			CLASS II WITHIN ±7.5%		1	MIN. RATED TEMP. +0/-3	30
16	TEMPERATURE CYCLE	Q CLASS I	30 pF AND OVER LESS THAN 30 pF:Q		2	25	2~3
		Tanδ CLASS II	TO SATISFY THE S	SPECIFIED	3	MAX. RATED TEMP. +3/-0	30
					4	25	2~3
		INSULATION RESISTANCE	TO SATISFY THE S	SPECIFIED	AFTER C	E AT ROOM TEMPI COOLING FOR LASS I : 24±2 Hr. LASS II : 48±4 Hr.	ERATURE

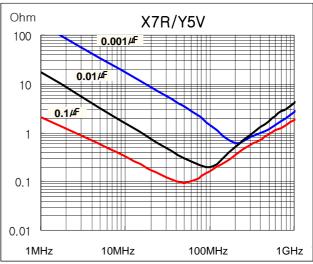


■ CHARACTERISTIC GRAPH


• ELECTRICAL CHARACTERISTICS


▶ CAPACITANCE - TEMPERATURE CHARACTERISTICS




► CAPACITANCE - DC VOLTAGE CHARACTERISTICS ► CAPACITANCE CHANGE - AGING

► IMPEDANCE - FREQUENCY CHARACTERISTICS

APPLICATION MANUAL

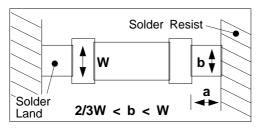
Storage Condition

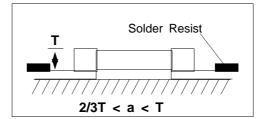
► Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40° C and 70%, respectively. Guaranteed storage period is within 6 months from the outgoing date of delivery.

Corrosive Gases

Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCs must be avoid from these gases.


► Temperature Fluctuations


Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

Design of Land Pattern

When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor. The amount of solder at the end terminations has a direct effect on the crack. The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently. Use the following illustrations as guidelines for proper land design.

Recommendation of Land Shape and Size

Adhesives

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

► Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.

They should not spread or run when applied to the circuit board.

They should harden quickly.

They should not corrode the circuit board or chip material.

They should be a good insulator.

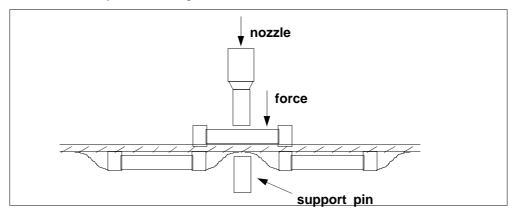
They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

► Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

► Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160° C or less, within 2 minutes or less.


Mounting

► Mounting Head Pressure

Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.

▶ Bending Stress

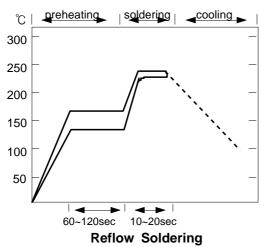
When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side, it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.

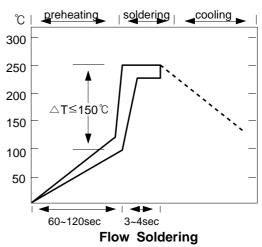
Flux

Although the solderability increased by the highly-activated flux, increase of activity in flux may also degrade the insulation of the chip capacitors. To avoid such degradation, it is recommended that a mildly activated rosin flux(less than 0.2% chlorine) be used.

Soldering

Since a multilayer ceramic chip capacitor comes into direct contact with melted solder during soldering, it is exposed to potentially mechanical stress caused by the sudden temperature change. The capacitor may also be subject to silver migration, and to contamination by the flux. Because of these factors, soldering technique is critical.

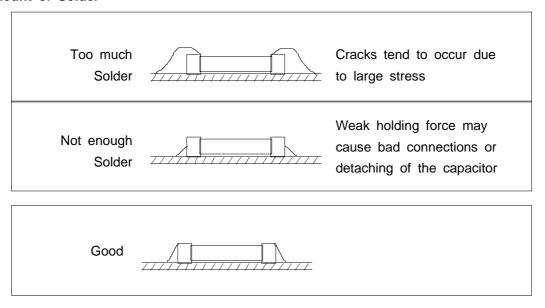

► Soldering Methods


Method	C	Classification			
Reflow	- Overall heating	Infrared raysHot plateVPS(vapor phase)			
soldering	- Local heating	- Air heater - Laser - Light beam			
Flow soldering	- Single wave - Double wave	-			

^{*} We recommend the reflow soldering method.

▶ Soldering Profile

To avoid crack problem by sudden temperature change, follow the temperature profile in the adjacent graph.



Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors. The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor. Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

► Amount of Solder

▶ Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference($\triangle T$) must be less than 100 $^{\circ}C$

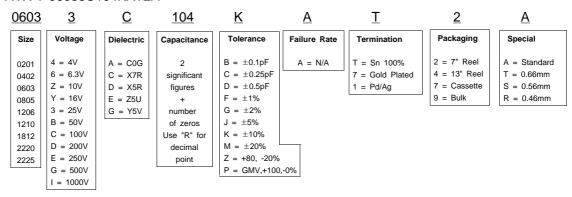
6-6. Cleaning

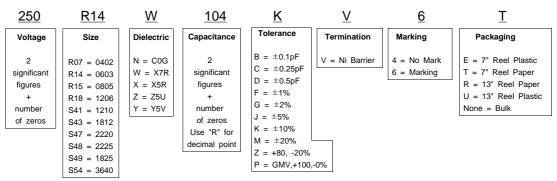
If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

▶ Notes for Separating Multiple, Shared PC Boards.

A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending of the circuit board.

■ CROSS REFERENCE


P/N	COMPANY	SAMSUNG	AVX	JOHANSON	KEMET	KYOCERA	MURATA	NOVACAP	PANASONIC	ROHM	TAIYO - YUDEN	TDK	VITRAMON
① COMPANY	MODEL(MLCC)	CL	-	-	С	СМ	GRM	-	ECJ	MCH	MK	С	۸٦
② SIZE (EIA/JIS)	0201(0603)	03	-	-	-	03	33	-	Z	-	063	0603	-
	0402(1005)	05	0402	R07	0402	05	36	0402	0	15	105	1005	0402
	0603(1608)	10	0603	R14	0603	105	39	0603	1	18	107	1608	0603
	0805(2012)	21	0805	R15	0805	21	40	0805	2	21	212	2012	0805
	1206(3216)	31	1206	R18	1206	316	42-6	1206	3	31	316	3216	1206
	1210(3225)	32	1210	S41	1210	32	42-2	1210	4	32	325	3225	1210
	1808(4520)	42	1808	R29	1808	42	-	1808	-	-	-	4520	1808
	1812(4532)	43	1812	S43	1812	43	43-2	1812	-	43	432	4532	1812
	2220(5750)	55	-	-	2220	55	44-1	2221	-	-	550	5650	-
	COG(NPO)	С	А	N	G	CG	COG/CH	N	С	А	С	COG/CH	А
	P2H(N150)	P	s	-	-	Р	P2H	-	Р	-	Р	PH	-
	R2H(N220)	R	1	-	-	R	R2H	-	R	-	R	RH	-
	S2H(N330)	s	3	-	-	s	S2H	-	S	-	s	SH	-
3	T2H(N470)	Т	0	-	-	Т	T2H	-	Т	-	Т	TH	-
TEMPERATURE CHARACTERISTIC	U2J(N750)	U	Z	-	-	U	U2J	-	U	UJ	U	UJ	-
	S2L	L	Υ	-	-	SL	SL	-	G	SL	SL	SL	-
	X7R	В	С	w	R(X)	X7R	X7R	В	В	С	BJ	X7R(B)	Y(X)
	Z5U	E	E	Z	U	-	Z5U	Z	-	E	-	Z5U	U
	Y5V	F	G	Y	V	Y5V	Y5V	Y	F	F	F	Y5V	-
NOMINAL	CAPACITANCE		EX) 103=10,000pF 221=220pF 225=2,200,000pF=2.2# 1R5=1.5pF 010=1pF										
(5) CAPACITAN	CE TOLERANCE			B:±0.1pF C:	±0.25pF	D:±0.5pF F	F:±1% G:±	:2% J:±5%	K:±10%	M:±20%	Z:-20~+80%	,	
	6.3V	Q	6	-	9	06	6.3	-	0J	-	J	0.0	-
	10 V	Р	Z	100	8	10	10	-	1A	4	L	1A	
	16 V	0	Υ	160	4	16	16		1C	3			
	25 V			050			16	160	10	3	E	1C	J
		Α	3	250	3	25	25	160 250	1E	2	E T		X J
	50 V	A B	3 5	500	5	25 50						1C	
	50 V 100 V						25	250	1E	2	Т	1C 1E	х
® RATED		В	5	500	5	50	25 50	250 500	1E 1H	2	T	1C 1E 1H	X
® RATED VOLTAGE	100 V	В	5	500	5	50	25 50 100	250 500 101	1E 1H 2A	5	T U	1C 1E 1H 2A	X A B
	100 V 200V	B C D	5 1 2	500 101 201	5 1 2	50 100 200	25 50 100 200	250 500 101 201	1E 1H 2A 2D	2 5 1	T U -	1C 1E 1H 2A -	X A B C
	100 V 200V 250V	B C D	5 1 2 V	500 101 201	5 1 2 -	50 100 200 250	25 50 100 200 250	250 500 101 201 251	1E 1H 2A 2D	2 5 1	T U -	1C 1E 1H 2A - 2E	X A B C
	100 V 200V 250V 500V	B C D E G	5 1 2 V 7	500 101 201 - 501	5 1 2	50 100 200 250 500	25 50 100 200 250 500	250 500 101 201 251 501	1E 1H 2A 2D .	2 5 1	T U	1C 1E 1H 2A - 2E -	X A B C -
	100 V 200V 250V 500V 630V	B C D E G H	5 1 2 V 7 -	500 101 201 - 501	5 1 2	50 100 200 250 500 630	25 50 100 200 250 500 630	250 500 101 201 251 501	1E 1H 2A 2D -	2 5 1	T U	1C 1E 1H 2A - 2E - 2J	X A B C - E
	100 V 200V 250V 500V 630V	B C D E G H I	5 1 2 V 7 - A	500 101 201 - 501 - 102	5 1 2	50 100 200 250 500 630 1000	25 50 100 200 250 500 630 1K	250 500 101 201 251 501 -	1E 1H 2A 2D	2 5 1	T U	1C 1E 1H 2A - 2E - 2J 3A	X A B C - E
	100 V 200V 250V 500V 630V 1000V	B C D E G H I J	5 1 2 V 7 - A G	500 101 201 - 501 - 102 202	5 1 2	50 100 200 250 500 630 1000 2000	25 50 100 200 250 500 630 1K 2K	250 500 101 201 251 501 - 102 202	1E 1H 2A 2D	2 5 1	T U	1C 1E 1H 2A - 2E - 2J 3A 3D	X A B C - E G
VOLTAGE	100 V 200V 250V 500V 630V 1000V 2000V	B C D E G H I J K	5 1 2 V 7 - A G H	500 101 201 - 501 - 102 202	5 1 2	50 100 200 250 500 630 1000 2000 3000	25 50 100 200 250 500 630 1K 2K 3K	250 500 101 201 251 501 - 102 202 302	1E 1H 2A 2D	2 5 1	T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F	X A B C - E - G H
	100 V 200V 250V 500V 630V 1000V 2000V 3000V	B C D E G H I J K	5 1 2 V 7 - A G H J	500 101 201 - 501 - 102 202 302	5 1 2	50 100 200 250 500 630 1000 2000 3000 4000	25 50 100 200 250 500 630 1K 2K 3K	250 500 101 201 251 501 - 102 202 302 402	1E 1H 2A 2D	2 5 1	T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F -	X A B C - E - G H
VOLTAGE	100 V 200V 250V 500V 630V 1000V 2000V 3000V 4000V	B C D E G H I J K N	5 1 2 V 7 - A G H J T	500 101 201 - 501 - 102 202 302	5 1 2 C	50 100 200 250 500 630 1000 2000 3000 4000 A	25 50 100 200 250 500 630 1K 2K 3K - (GRM)	250 500 101 201 251 501 - 102 202 302 402 N	1E 1H 2A 2D	2 5 1 (MCH)	T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F -	X A B C - E - G H - X
VOLTAGE TERMINATION	100 V 200V 250V 500V 630V 1000V 2000V 3000V 4000V NICKEL BARRIER Ag/Pd	B C D E G H I J K N P	5 1 2 V 7 - A G H J T 1	500 101 201 - 501 - 102 202 302 V -	5 1 2 C C	50 100 200 250 500 630 1000 2000 3000 4000 A B	25 50 100 200 250 500 630 1K 2K 3K - (GRM)	250 500 101 201 251 501 - 102 202 302 402 N P	1E 1H 2A 2D	2 5 1 (MCH) (MC)	T U U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F	X A B C - E - G H - X F
VOLTAGE	100 V 200V 250V 500V 630V 1000V 2000V 3000V 4000V NICKEL BARRIER Ag/Pd BULK(VINYL)	B C D E G H I J K N P B	5 1 2 V 7 - A G H J T 1 9	500 101 201 - 501 - 102 202 302 V (NONE)	5 1 2 C C	50 100 200 250 500 630 1000 2000 3000 4000 A B B	25 50 100 200 250 500 630 1K 2K 3K - (GRM) (GR) PB	250 500 101 201 251 501 - 102 202 302 402 N P	1E 1H 2A 2D	2 5 1 (MCH) (MC)	T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F - B	X A B C - E - G H - X F

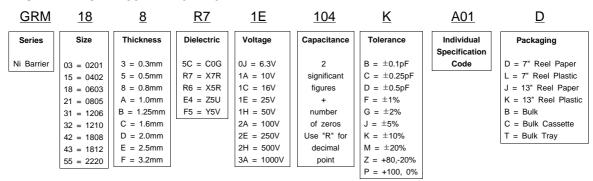

► SAMSUNG : CL10B104KA8NNNC

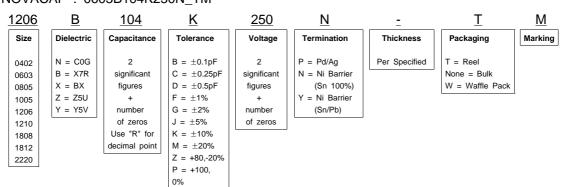
<u>CL</u>	<u>10</u>	<u>B</u>	<u>104</u>	<u>K</u>	<u>A</u>	<u>8</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>C</u>
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Thickness	Electrode/	Products	Special	Packaging
							Termination/			
	03 = 0201	C = C0G	2	$A = \pm 0.05pF$	Q = 6.3V	3 = 0.30	Plating	A = Array	Various	B = Bulk
	05 = 0402	P = P2H	significant	$B = \pm 0.1pF$	P = 10V	5 = 0.50		(2-element)		P = Cassette
	10 = 0603	R = R2H	figures	$C = \pm 0.25pF$	O = 16V	8 = 0.80	A = Pd/Ag/	B = Array		C = Paper 7"
	21 = 0805	S = S2H	+	$D = \pm 0.5pF$	A = 25V	A = 0.65	Sn 100%	(4-element)		D = Paper 13"
	31 = 1206	T = T2H	number	F = ±1%	B = 50V	C = 0.85	N = Ni/Cu/	C = High - Q		(10,000EA)
	32 = 1210	U = U2H	of zeros	$G = \pm 2\%$	C = 100V	H = 1.60	Sn 100%	L = LICC		E = Embossing 7"
	43 = 1812	L = S2L	Use "R" for	J = ±5%	D = 200V	I = 2.00	G = Cu/Cu/	N = Normal		F = Embossing 13"
	55 = 2220	B = X7R	decimal point	$K = \pm 10\%$	E = 250V	J = 2.50	Sn 100%	P = Automotive		L = Paper 13"
		A = X5R		$M = \pm 20\%$	G = 500V	L = 3.20		W = 3 terminal		(15,000EA)
		F = Y5V		Z = +80,-20%	H = 630V			chip		O = Paper 10"
					I = 1000V				_	S = Embossing 10"

► AVX: 06033C104KAT2A

▶ JOHANSON: 250R14W104KV6T

► KEMET: C0603C104K3RAC

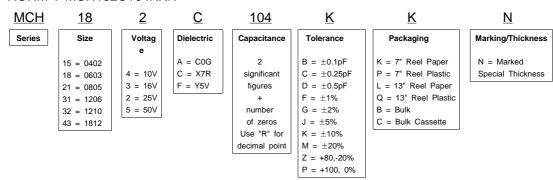

IVEIVIEI	NEWEY : GOODG TO-NONAG										
<u>C</u>	<u>0603</u>	<u>C</u>	<u>104</u>	<u>K</u>	<u>3</u>	<u>R</u>	<u>A</u>	<u>C</u>			
Series	Size	Specification	Capacitance	Tolerance	Voltage	Dielectric	Failure Rate	Termination			
	0402 0603 0805 1206 1210 1812 2220 2225	C = Standard A = GR900 P = Mil-C-55681 CDR01-CDR06 N = Mil-C-55681 CDR31-CDR35 Z = Mil-C-123 E = Mil Equivalent (Group A Only)	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = +100, 0\%$	9 = 6.3V 8 = 10V 4 = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V	G = C0G R = X7R P = X5R U = Z5U X = BX(Mil) V = Y5V	A = Standard M = 1.0 (Mil) P = 0.1 (Mil) R = 0.01 (Mil) S = 0.001 (Mil)	C = Ni w/Tin Plate H = Ni w/Solder T = Silver G = Gold Plated			


KYOCERA : CM105X7R104K25AT

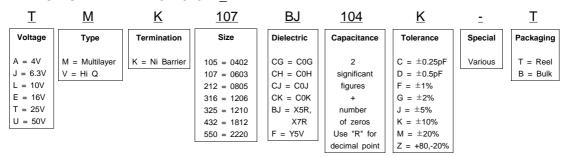
<u>CM</u>	<u>105</u>	<u>X7R</u>	<u>104</u>	<u>K</u>	<u>25</u>	<u>A</u>	I
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Termination	Packaging
	03 = 0201 05 = 0402 105 = 0603 21 = 0805 316 = 1206 32 = 1210 42 = 1808 43 = 1812	CG X8R X7R X5R Z5U Y5V Y5U	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	04 = 4V 06 = 6.3V 10 = 10V 16 = 16V 25 = 25V 50 = 50V 100 = 100V 250 = 250V	A = Ni Barrier	T = 7" Reel (4mm Pitch) L = 13" Reel (4mm Pitch) H = 7" Reel (2mm Pitch) N = 13" Reel (2mm Pitch) B = Bulk (Vinyl Bags) C = Bulk Cassette
	55 = 2220			Z = +80, -20% P = +100, 0%	500 = 500V 1000 = 1000V		

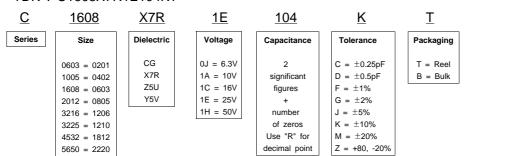
▶ MURATA : GRM188R71E104KA01D

► NOVACAP: 0603B104K250N TM



► PANASONIC : ECJ1EB1E104K


<u>ECJ</u>	<u>1</u>	<u>E</u>	<u>B</u>	<u>1E</u>	<u>104</u>	<u>K</u>
Series	Size	Packaging	Dielectric	Voltage	Capacitance	Tolerance
	Z = 0201 0 = 0402 1 = 0603 2 = 0805 3 = 1206 4 = 1210	X = Bulk E = Paper 2mm V = Paper 4mm F, Y = Plastic 4mm W = Large Reels 2mm Z = Large Reels 4mm C = Bulk Cassette	C = C0G B = X7R, X5R F = Y5V	0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V 2A = 100V 2D = 200V	2 significant figures + number of zeros Use "R" for	$C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 19\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$
					decimal point	


► ROHM: MCH182C104KKN

► TAIYO-YUDEN: TMK107BJ104K_T

► TDK: C1608X7R1E104KT

► VITRAMON: VJ0603Y104KXXMC

VIIIVA	VIII AMON . VS00051104KXXMC										
<u>VJ</u>	<u>0603</u>	<u>Y</u>	<u>104</u>	<u>K</u>	<u>X</u>	<u>X</u>	<u>M</u>	<u>C</u>			
Series	Size	Dielectric	Capacitance	Tolerance	Termination	Voltage	Marking	Packaging			
	0402 0603 0805 1206 1210 1812 2225	X = BX A,N = C0G Y = X7R U = Z5U H = X8R	2 significant figures + number of zeros Use "R" for decimal point	B = ±0.1pF C = ±0.25pF D = ±0.5pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20% Z = +80, -20% P = +100, 0%	X = Silver, Ni Barrier Tin Plated	J = 16V X = 25V A = 50V B = 100V C = 200V	M = Marking A = No Marking	C = 7" Reel Paper T = 7" Reel Plastic P = 13" Reel Paper R = 13" Reel Plastic B = Bulk			