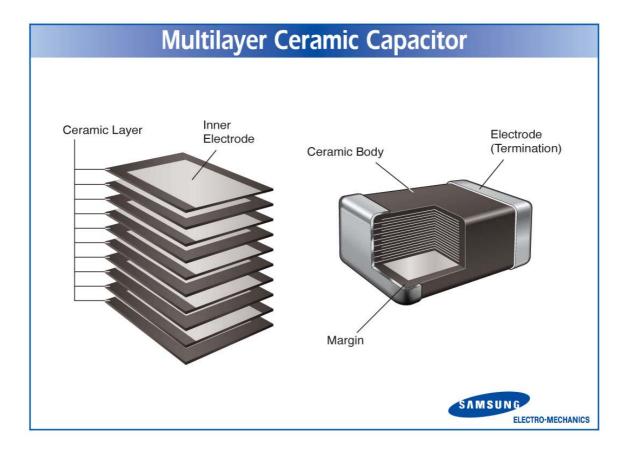


INTRODUCTION

MLCC for high frequency application is made of many layers of Class I(COG, etc) ceramic and Cu inner electrodes like sandwich. Class I(COG, etc) ceramic has a small TCC(Temperature Coefficient of Capacitance), a better frequency performance and a low ESR(Equivalent Series Resistance) value. Therefore, it is used in RF applications such as cellular phone, tuner, and so on.

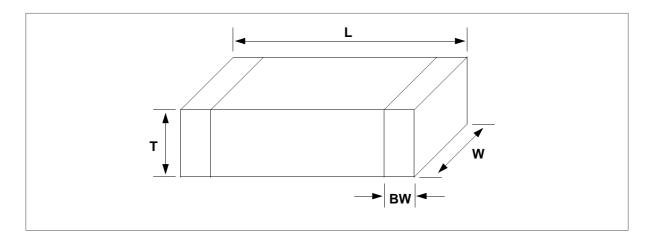
■ FEATURE AND APPLICATION

• Feature


- Miniature Size
- Wide Capacitance and Voltage Range
- Highly Reliable Performance
- Tape & Reel for Surface Mount Assembly
- Low ESR
- High Q at High Frequencies
- Stable Temperature Dependence of Capacitance

• Application

- High frequency module and high power circuit



STRUCTURE

■ APPEARANCE AND DIMENSION

CODE	EIA CODE		DIMENSIC	ON (mm)			
		L	W	T (MAX)	BW		
03	0201	0.6 ± 0.03	$0.3~\pm~0.03$	$0.3~\pm~0.03$	$0.15~\pm~0.05$		
05	0402	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.2+0.15/-0.1		

■ PREVIOUS PART NUMBERING

- **1** SAMSUNG Multilayer Ceramic Capacitor
- 2 Type(Size)
- 3 Capacitance Temperature Characteristics("C" only)
- **4** Nominal Capacitance
- **6** Capacitance Tolerance
- 6 Rated Voltage
- Code "G" : Cu-Inner electrode
- 8 Packaging Type

③ TEMPERATURE CHARACTERISTICS

CLASS I (Temperature Compensating type)

Symbol	EIA Code	Temperature Coefficient(PPM/℃)	TemperatureCharacteristics	Operation Temperature Range
С	C0G(CH)	0 ± 30	CΔ	-55 ~ +125℃

***** Temperature Characteristics

Temperature					☞ K : ±250 PPM/℃
Characteristics	below 2.0pF	2.2 ~ 3.9pF	above 4.0pF	above 10pF	J:±120 PPM/℃
CΔ	C0G	C0G	C0G	C0G	H : ±60 PPM/℃
PΔ	-	P2J	P2H	P2H	G : ±30 PPM/℃
RΔ	-	R2J	R2H	R2H	
SΔ	-	S2J	S2H	S2H	
TΔ	-	T2J	T2H	T2H	
UΔ	-	U2J	U2J	U2J	

O NOMINAL CAPACITANCE

The nominal capacitance value is expressed in pico-farad(pF) and identified by three-digits. The first two digits represent significant figures and the last digit specifies the number of zeros to follow. For values below 1pF, the letter "R" is used as the decimal point.

example)					
100 : 10 $ imes$					
102 : 10 $ imes$	$10^{2} =$	1000pF			
020 : 2 \times	10° =	2pF			
1R5 : 1.5pF					

O CAPACITANCE TOLERANCE

Temperature Characteristics	Symbol	Capacitance tolerance	Capacitance range	capacitance step
	В	+0.1n⊑	0.5~2.0pF	0.1pF
	D	±0.1pF	2.0~5.0pF	E-24 step
C0G(NPO) or T.C Series	С	±0.25pF	40-F	
	D	±0.50pF	<10pF	E-24 step
	F	±1%		E-24 step
	J	±5%	≥10pF	E-12 step

* Please consult us for special tolerances.

6 RATED VOLTAGE

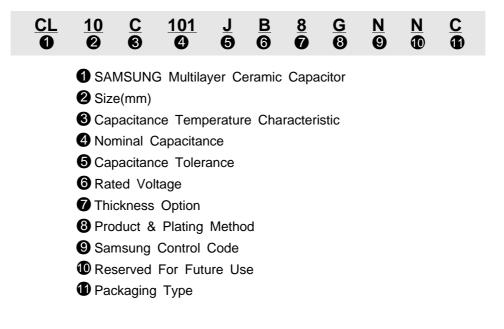
Symbol	Rated Voltage(Vdc)
Α	25V
В	50V

• Type of Inner electrode

Symbol	Description of the Code
G	Copper inner electrode-standard thickness

8 PACKAGING TYPE

Symbol	ool Packaging		Packaging
В	Bulk	F	Embossed Tape, 13" Reel
Р	Cassette	L	Paper 13" Reel
С	Paper Tape, 7" Reel	0	Paper 10" Reel
D	Paper Tape, 13" Reel	S	Embossed Tape, 10" Reel
E	Embossed Tape, 7" Reel		


► STANDARD CAPACITANCE STEP

Series	Capacitance step											
E- 3	1.0			2.2			4.7					
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
F 94	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

℁ Standard Capacitance is " Each step ×10ⁿ "

NEW PART NUMBERING

O PRODUCT ABBREVIATION

Symbol	Product Abbreviation			
CL	SAMSUNG Multilayer Ceramic Chip Capacitor			

2 SIZE(mm)

Cumhal	Size(mm)				
Symbol	Length	Width			
03	0.6	0.3			
05	1.0	0.5			

③ TEMPERATURE CHARACTERISTICS

CLASS I (Temperature Compensating type)

Symbol	EIA Code	Temperature Coefficient(PPM/ $^{\circ}$)	TemperatureCharacteristics	Operation Temperature Range
С	C0G(CH)	0 ± 30	CΔ	-55 ~ +125℃

***** Temperature Characteristics

Temperature	bolow 20pE	2.2 2.0pE	above 4.0pF	above 10pF	☞ K : ±250 PPM/℃
Characteristics		z.z ~ 5.9pi		above ropi	J:±120 PPM/℃
C∆	C0G	C0G	C0G	C0G	H : ±60 PPM/℃
PΔ	-	P2J	P2H	P2H	G : ±30 PPM/℃
RΔ	-	R2J	R2H	R2H	
SΔ	-	S2J	S2H	S2H	
TΔ	-	T2J	T2H	T2H	
UΔ	-	U2J	U2J	U2J	

O NOMINAL CAPACITANCE

Nominal capacitance is identified by 3 digits.

The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. 'R' identifies a decimal point.

• Example

Symbol	Nominal Capacitance
1R5	1.5pF
103	10,000pF, 10nF, 0.01 µ F
104	100,000pF, 100nF, 0.1 µ F

G CAPACITANCE TOLERANCE

Symbol	Tolerance	Nominal Capacitance
В	±0.1pF	
С	±0.25pF	Less than 10pF (Including 10pF)
D	±0.5pF	(moldaling ropi)
F	±1%	Mara than 1005
J	±5%	More than 10pF

6 RATED VOLTAGE

Symbol	Rated Voltage	Symbol	Rated Voltage
Α	25V	В	50V

O THICKNESS OPTION

Туре	Symbol	Thickness(T)	Spec
0603	3	0.30	±0.03
1005	5	0.50	±0.05

③ PRODUCT & PLATING METHOD

Symbol	Electrode	Termination	Plating Type
Α	Pd	Ag	Sn_100%
N	Ni	Cu	Sn_100%
G	Cu	Cu	Sn_100%

③ SAMSUNG CONTROL CODE

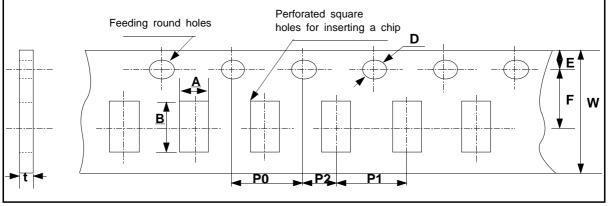
Symbol	Description of the code	Symbol	Description of the code
А	Array (2-element)	Ν	Normal
В	Array (4-element)	Р	Automotive
C	High - Q	W	3 Terminal EMI Filter
L	LICC		

1 RESERVED FOR FUTURE USE

Symbol	Description of the code
Ν	Reserved for future use

1 PACKAGING TYPE

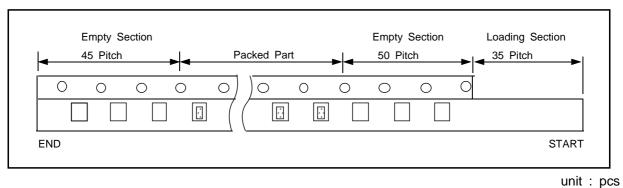
Symbol	Packaging Type	Symbol	Packaging Type
В	Bulk	F	Embossing 13" (10,000EA)
Р	Bulk Case	L	Paper 13" (15,000EA)
С	Paper 7"	0	Paper 10"
D	Paper 13" (10,000EA)	S	Embossing 10"
E	Embossing 7"		


D	escription		0603 type (0201)	1005 type (0402)
		L	0.6±0.03	1.0±0.05
Dimension(Dimension(mm)		0.3±0.03	0.5±0.05
			0.3±0.03	0.5±0.05
МАХ	C	25V	20	-
CAPACITANCE(pF)	C	50V	-	10

► CAPACITANCE vs CHIP THICKNESS STANDARD

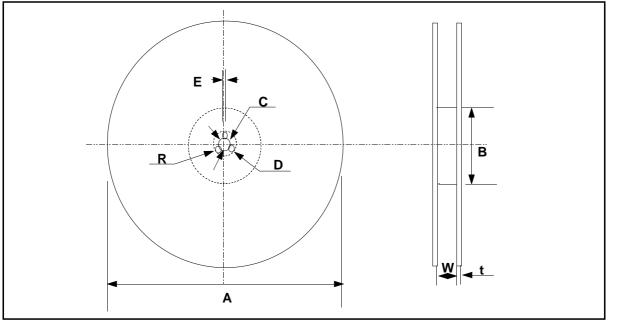
PACKAGING

• CARDBOARD PAPER TAPE



unit : mm

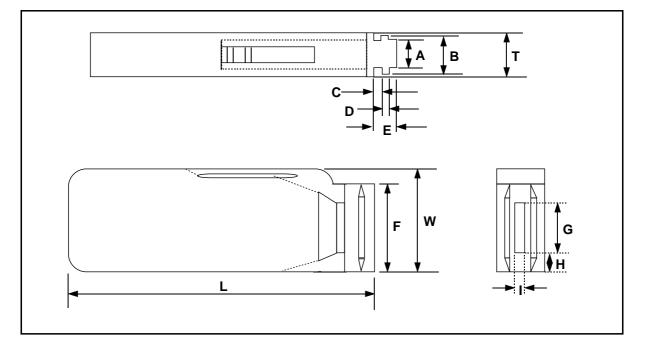
-	mbol ype	w	F	Е	P1	P2	P0	D	t	Α	В
D i m e	03	8.0	3.5	1.75	2.0	2.0	4.0	Ф1.5	0.37 ±0.03	0.38 ±0.03	0.68 ±0.03
n s i o n	05	±0.3	±0.05	±0.1	±0.05	±0.05	±0.1	+0.1/-0	0.6 ±0.05	0.65 +0.05 -0.10	1.15 +0.05 -0.10



• TAPING SIZE

Symbol	Cardboard Paper Tape
7" Reel	10000
13" Reel	10000

• REEL DIMENSION


unit : mm

Symbol	Α	В	С	D	Е	W	t	R
7" Reel	φ178±2.0	min.¢50						
13" Reel	\$330±2.0	min.¢70	φ13±0.5	21±0.8	2.0±0.5	10±1.5	0.8±0.2	1.0

BULK CASE PACKAGING

- Bulk case packaging can reduce the stock space and transportation costs.
- The bulk feeding system can increase the productivity.
- It can eliminate the components loss.

Symbol	Α	В	Т	С	D	Е
Dimension	6.8±0.1	8.8±0.1	12±0.1	1.5+0.1/-0	2+0/-0.1	4.7±0.1
Symbol	F	W	G	Н	L	I

QUANTITY

Size	03(0201)	05(0402)
Quantity	N/A	50,000

* N/A : Not adapted

■ CHARACTERISTIC MAP

• CAPACITANCE RANGE

► CLASS I

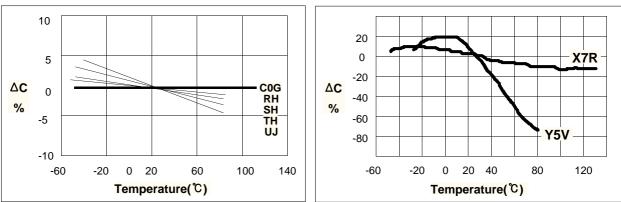
Temperature		Voltage	Capacitance Range (pF)									
Characteristics	teristics Size		0.5 1	0 10	0 10	00 10	000 100	0000 10	00000 10	000000	100000000	
	03 (0201)	25V		20								
C(COG)	05 (0402)	50V		10								

■ RELIABILITY TEST DATA

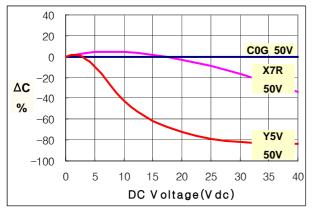
NO	ITEM		PERFORMANCE	TES	T CONDITION		
1	APPEARAN	ICE	NO ABNORMAL EXTERIOR APPEARANCE.	THROUGH MICROSC	OPE(×10)		
2	2 INSULATION RESISTANCE		10,000 OR $500 \text{M}_{\text{P}}\mu\text{F}$ PRODUCT WHICHEVER IS SMALLER. (RATED VOLTAGE IS BELOW 16V : 10,000 OR 100 M Ω · μF)	RATED VOLTAGE SHALL BE APPLIED. MEASUREMENT TIME IS 60 ~ 120sec RATED VOLTAGE TIME 60 SEC.			
3	WITHSTAND VOLTAGE	-	NO DIELECTRIC BREAKDOWN OR MECHANICAL BREAKDOWN.	CLASS I : 300% OF TH	GE FOR 1~5SEC,		
				CAPACITANCE	FREQUENCY	VOLTAGE	
4	CAPACITANCE	CLASS I	WITHIN THE SPECIFIED TOLERANCE	1,000 pF AND BELOW	11111年10%	0.5 ~ 5 Vrms	
				MORE THAN 1,000 pF	1脸±10%	0.5 ~ 5 Vins	
				CAPACITANCE	FREQUENCY	VOLTAGE	
5	Q	CLASS I	OVER 30 pF : Q ≥1,000 LESS THAN 30 pF: Q ≥400 +20C (C : CAPACITANCE)	1,000 pF AND BELOW	1Mz±10%	0.5 ~ 5 Vrms	
				MORE THAN 1,000 pF	1朏10%	0.0 ~ 0 11113	
	6 ADHESIVE STRENGTH OF TERMINATION		NO INDICATION OF PEELING DHESIVE STRENGTH OCCUR ON THE TERMINAL		SHALL BE SECOND.		
6			ELECTRODE.	500g.f			
7	ESR		$\begin{array}{l} 2pF < C \eqref{Gamma} \le 5pF \ : \mbox{BELOW } 200m\Omega \\ 5pF < C \eqref{Gamma} \le 10pF \ : \ \mbox{BELOW } 150m\Omega \\ 10pF < C \eqref{Gamma} \le 33pF \ : \ \mbox{BELOW } 100m\Omega \end{array}$	TEST EQUIPMENT : CONDITION: FREQUE ROOM TEMPERATUR	ENCY 1GHz, Osc	5 100m AT	

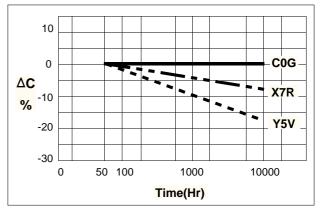
NO	П	ГЕМ	PERFOR	MANCE		TEST CONDI	TION	
		APPEARANCE	NO MECHANICAL OCCUR.	DAMAGE SHALL		SHALL BE APF T(1mm) WITH 0. 20		
			CHARACTER	CHANGE OF CAPACITANCE	50		: <u>340</u>	
8	BENDING STRENGTH	CAPACITANCE	WITHIN $\pm 5\%$ OR \pm CLASS I 0.5pF WHICHEVER IS LARGER					
9	SOLDE	RABILITY	SURFACE IS TO NEWLY, SO MET/ NOT COME OUT	AL PART(A) DOES OR DISSOLVE.	SOLDER TEMPERATURE : 230 ± 5 °C DIP TIME : 3 ± 1 Sec SOLDER : H63A FLUX : RMA TYPE *PB-FREE SOLDER TEMPERATURE : 260 ± 5 °C SOLDER : Sn96.5-3Ag-0.5Cu Flux : RMA TYPE DIP TIME : 3 ± 0.1 Sec * PRE-HEATING : AT 80~120 °C FOR			
		APPEARANCE	NO MECHA SHALL OCC	NICAL DAMAGE CUR.	DIP : SOLDER TEMPERATURE OF 270 ± 5 °C			
			CHARACTERISTIC	C CAP. CHANGE	DIP TIME : 10±1 SEC. EACH TERMINATION SHALL BE FULLY			
10	RESISTANCE TO	CAPACITANCE	CLASS I	WITHIN $\pm 2.5\%$ OR $\pm 0.25 \text{pF}$ WHICHEVER IS LARGER		D AND PREHEA		
	SOLDERING HEAT				2	150~180	60	
		Q CLASS I	30 pF AND OVER LESS THAN 30 pF		MEASURE	E AT ROOM TEI	MP. AFTER	
		INSULATION RESISTANCE	TO SATISFY THE INITIAL VALUE.	SPECIFIED	COOLING CLASS I	FOR : 24 ± 2 HOUR	S	
		WITHSTANDING VOLTAGE	TO SATISFY THE INITIAL VALUE.	SPECIFIED				

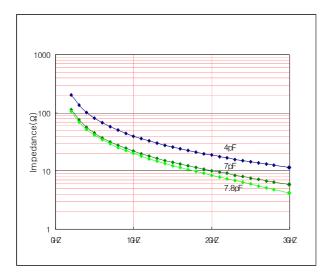
NO	Π	ГЕМ	PER	FORMANCE	TEST	CONDITION		
		APPEARANCE	NO MECHANICAL	DAMAGE SHALL OCCUR.	THE CAPACITO	DR SHALL BE		
			CHARACTERISTI	CAP. CHANGE		D A HARMONIC		
		CAPACITANCE	CLASS I	WITHIN $\pm 2.5\%$ OR \pm 0.25 pF WHICHEVER IS LARGER	MOTION HAVIN AMPLITUDE OF	⁻ 1.5mm.		
11	VIBRATION		CLASS B	WITHIN ±5% WITHIN ±20%	THE ENTIRE FREQUENCY RANGE FROM 10 TO 55Hz AND RETURN TO 10Hz, SHALL BE TRAVERSED			
	TEST	Q CLASS I	30pF AND OVER LESS THAN 30pF		THIS CYCLE SHALL BE PERFORM 2 HOURS IN EACH THERE			
		INSULATION RESISTANCE	TO SATISFY THE INITIAL VALUE.	E SPECIFIED	MUTUALLY PERPENDICULAR DIRECTION FOR TOTAL PERIOD O 6 HOURS.			
		APPEARANCE	NO MECHANICAL	DAMAGE SHALL OCCUR.	TEMPERATURE	: 40±2 °C		
			CHARACTERISTI C	CAPACITANCE CHANGE	RELATIVE HUMIDITY : 90~95 %F TEST TIME : 500 +12/-0 Hr.			
	HUMIDITY	CAPACITANCE	CLASS I	WITHIN ±5% OR ±0.5 pF WHICHEVER IS LARGER	AFTER COOLIN			
12	(STEADY STATE)	Q CLASS I	30 pF AND OVER 10 ~30 pF : Q ² LESS THAN 10pF		CLASS I	: 24±2 Hr.		
		INSULATION RESISTANCE	MINIMUM INSULA 1,000 M2 OR 50M2 WHICHEVER IS					
		APPEARANCE	NO MECHANICAL	DAMAGE SHALL OCCUR.	APPLIED VOLTAG RATED VOLTAG TEMPERATURE : RELATIVE HUMID TEST TIME : 500	E 40±2 ℃ ITY:90~95%RH		
			CHARACTERISTI C	CAPACITANCE CHANGE	CURRENT APPLIE	ED : 50mA MAX.		
13	MOISTURE	CAPACITANCE	CLASS I	WITHIN \pm 7.5% OR \pm 0.75 pF WHICHEVER IS LARGER	<pre><initial measurement=""> CLASS II SHOULD BE MEASURED IN VALUE AFTER BE HEAT-TREATED FO HR IN 150℃+0/-10℃ AND BE LEFT FC</initial></pre>			
	RESISTANCE	Q CLASS I	30 pFANDOVER30 pFANDBELOW	: Q≥ 200 /: Q≥ 100 + 10/3×C	48±4HR AT ROO	M TEMPERATURE. REMENT>		
		INSULATION RESISTANCE	MINIMUM INSULA 500 MΩ OR 25MΩ·µ WHICHEVER IS S	·	CLASS I SHOULD BE MEASURED AN LEFT FOR 24±2 HRS IN ROOM TEMPERATURE AND HUMIDITY. CLASS II SHOULD BE MEASURED LATTER VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C+ °C AND BE LEFT FOR 48±4HR AT R TEMPERATURE.			



NO	ITE	M	PERF	ORMANCE		TEST CONDITIO	N		
		APPEARANCE	NO MECHANICAI OCCUR.	L DAMAGE SHALL	20 TEST TI) VOLTAGE : 0% OF RATED VOL ME : 1000 +48/-0 H	r.		
			CHARACTERIS TIC	CAP. CHANGE		CURRENT APPLIED : 50mA MAX. Temp :125 $\pm 3^{\circ}$ C			
14	HIGH TEMPERATURE RESISTANCE	CAPACITANCE	CLASS I	WITHIN \pm 3% OR \pm 0.3 pF, WHICHEVER IS LARGER	<initial measurement=""> CLASS II SHOULD BE MEASURED INITIAL VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C+0/-10 °C AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE.</initial>				
		Q CLASS I	30 pF AND OVER 10 ~ 30 pF : C LESS THAN 10 pF		CLASS I LEFT FO	<pre><latter measurement=""> CLASS I SHOULD BE MEASURED AFTER LEFT FOR 24±2 HRS IN ROOM TEMPERATURE AND HUMIDITY.</latter></pre>			
		INSULATION RESISTANCE	MINIMUM INSUL/ 1,000 № OR 50M WHICHEVER IS		LATTER VALUE AFTER BE HEAT-TREATED FOR 1 HR IN 150°C+0/-10 °C AND BE LEFT FOR 48±4HR AT ROOM TEMPERATURE.				
		APPEARANCE	NO MECHANICAI OCCUR.	L DAMAGE SHALL	TO FIVE	CYCLES OF THE ATURE CYCLE AS	IBJECTED		
			CHARACTERISTIC CAP. CHANGE		STEP	TEMP.(℃)	TIME (MIN)		
		CAPACITANCE	CLASS I $CLASS I$ $OR \pm 0.25 \text{pF}$ WHICHEVER IS LARGER		1	MIN. RATED TEMP. +0/-3	30		
15	TEMPERATURE CYCLE	Q	30 pF AND OVER	$R : Q \ge 1000$	2	25	2~3		
		CLASS I	LESS THAN 30 pF	5:Q ≥400 +20×C	3	MAX. RATED TEMP. +3/-0	30		
					4	25	2~3		
		INSULATION RESISTANCE	TO SATISFY THE	E SPECIFIED	MEASURE AT ROOM TEMPERATURE AFTER COOLING FOR CLASS I : 24±2 Hr. CLASS II : 48±4 Hr.				


CHARACTERISTIC GRAPH


ELECTRICAL CHARACTERISTICS


► CAPACITANCE - TEMPERATURE CHARACTERISTICS

▶ IMPEDANCE - FREQUENCY CHARACTERISTICS

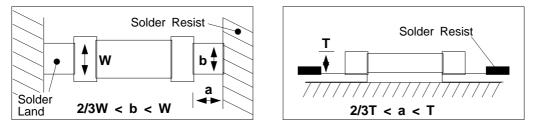
APPLICATION MANUAL

Storage Condition

Storage Environment

The electrical characteristics of MLCCs were degraded by the environment of high temperature or humidity. Therefore, the MLCCs shall be stored in the ambient temperature and the relative humidity of less than 40° C and 70%, respectively. Guaranteed storage period is within 6 months from the outgoing date of delivery.

Corrosive Gases


Since the solderability of the end termination in MLCC was degraded by a chemical atmosphere such as chlorin, acid or sulfide gases, MLCCs must be avoid from these gases.

Temperature Fluctuations

Since dew condensation may occur by the differences in temperature when the MLCCs are taken out of storage, it is important to maintain the temperature-controlled environment.

• Design of Land Pattern

When designing printed circuit boards, the shape and size of the lands must allow for the proper amount of solder on the capacitor. The amount of solder at the end terminations has a direct effect on the crack. The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently. Use the following illustrations as guidelines for proper land design. Recommendation of Land Shape and Size

Adhesives

When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions.

Requirements for Adhesives

They must have enough adhesion, so that, the chips will not fall off or move during the handling of the circuit board.

They must maintain their adhesive strength when exposed to soldering temperature.

They should not spread or run when applied to the circuit board.

They should harden quickly.

They should not corrode the circuit board or chip material.

They should be a good insulator.

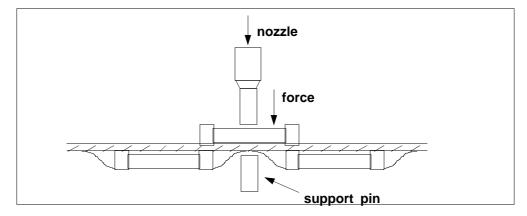
They should be non-toxic, and not produce harmful gases, nor be harmful when touched.

Application Method

It is important to use the proper amount of adhesive. Too little and much adhesive will cause poor adhesion and overflow into the land, respectively.

Adhesive hardening Characteristics

To prevent oxidation of the terminations, the adhesive must harden at 160° C or less, within 2 minutes or less.


Mounting

Mounting Head Pressure

Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.

Bending Stress

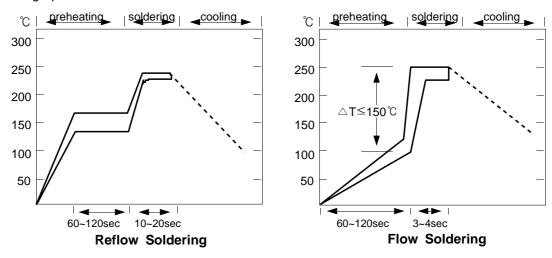
When double-sided circuit boards are used, MLCCs first are mounted and soldered onto one side of the board. When the MLCCs are mounted onto the other side, it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCs by the bending stress.

• Flux

Although the solderability increased by the highly-activated flux, increase of activity in flux may also degrade the insulation of the chip capacitors. To avoid such degradation, it is recommended that a mildly activated rosin flux(less than 0.2% chlorine) be used.

• Soldering

Since a multilayer ceramic chip capacitor comes into direct contact with melted solder during soldering, it is exposed to potentially mechanical stress caused by the sudden temperature change. The capacitor may also be subject to silver migration, and to contamination by the flux. Because of these factors, soldering technique is critical.


Soldering Methods

Method		Classification
Reflow	- Overall heating	Infrared raysHot plateVPS(vapor phase)
soldering	- Local heating	- Air heater - Laser - Light beam
Flow soldering	Single waveDouble wave	-

* We recommend the reflow soldering method.

Soldering Profile

To avoid crack problem by sudden temperature change, follow the temperature profile in the adjacent graph.

Manual Soldering

Manual soldering can pose a great risk of creating thermal cracks in chip capacitors. The hot soldering iron tip comes into direct contact with the end terminations, and operator's carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic body of the capacitor. Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip.

Amount of Solder

Too much Solder	Cracks tend to occur due to large stress
Not enough Solder	Weak holding force may cause bad connections or detaching of the capacitor
Good	

Cooling

Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference($\triangle T$) must be less than 100°C

6-6. Cleaning

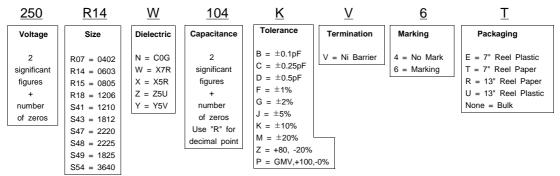
If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new.

▶ Notes for Separating Multiple, Shared PC Boards.

A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bending of the circuit board.

CROSS REFERENCE

P/N	COMPANY	SAMSUNG	AVX	JOHANSON	KEMET	KYOCERA	MURATA	NOVACAP	PANASONIC	ROHM	TAIYO - YUDEN	TDK	VITRAMO
① COMPANY	MODEL(MLCC)	CL	-	-	С	СМ	GRM	-	ECJ	MCH	МК	С	VJ
	0201(0603)	03	-	-	-	03	33	-	Z	-	063	0603	-
	0402(1005)	05	0402	R07	0402	05	36	0402	0	15	105	1005	0402
	0603(1608)	10	0603	R14	0603	105	39	0603	1	18	107	1608	0603
	0805(2012)	21	0805	R15	0805	21	40	0805	2	21	212	2012	0805
② SIZE (EIA/JIS)	1206(3216)	31	1206	R18	1206	316	42-6	1206	3	31	316	3216	1206
	1210(3225)	32	1210	S41	1210	32	42-2	1210	4	32	325	3225	1210
	1808(4520)	42	1808	R29	1808	42	-	1808	-	-	-	4520	1808
	1812(4532)	43	1812	S43	1812	43	43-2	1812	-	43	432	4532	1812
	2220(5750)	55	-	-	2220	55	44-1	2221	-	-	550	5650	-
	COG(NPO)	с	A	N	G	CG	COG/CH	N	С	A	С	COG/CH	А
	P2H(N150)	Р	S	-	-	Р	P2H	-	Р	-	Ρ	PH	-
	R2H(N220)	R	1	-	-	R	R2H	-	R	-	R	RH	-
	S2H(N330)	S	3	-	-	S	S2H	-	S	-	S	SH	-
3	T2H(N470)	т	0	-	-	т	T2H	-	т	-	т	тн	-
TEMPERATURE CHARACTERISTIC	U2J(N750)	U	z	-	-	U	U2J	-	U	UJ	U	UJ	-
	S2L	L	Y	-	-	SL	SL	-	G	SL	SL	SL	-
	X7R	В	с	w	R(X)	X7R	X7R	в	В	С	BJ	X7R(B)	Y(X)
	Z5U	E	E	z	U	-	Z5U	z	-	E	-	Z5U	U
	Y5V	F	G	Y	v	Y5V	Y5V	Y	F	F	F	Y5V	-
NOMINAL	CAPACITANCE			EX	() 103=10,0	00pF 221=	=220pF 22	5=2,200,000pF=	2.2 <i>µ</i> F 1R5=1.5	5pF 010=1	pF		
CAPACITAN	CE TOLERANCE			B:±0.1pF C:	±0.25pF	D:±0.5pF F	:±1% G:±	±2% J:±5%	6 K:±10%	M:±20%	Z:-20~+80%	,	
	6.3V	Q	6	-	9	06	6.3	-	0J	-	J	OJ	-
	10 V	Р	z	100	-				1A	4			
			-	100	8	10	10	-		4	L	1A	-
	16 V	0	Y	160	8	10 16	10 16	- 160	1C	3	E	1A 1C	- J
	16 V 25 V												
		0	Y	160	4	16	16	160	1C	3	E	1C	J
	25 V	O	Y 3	160 250	4	16 25	16 25	160 250	1C 1E	3 2	E	1C 1E	J
⑥ RATED	25 V 50 V	O A B	Y 3 5	160 250 500	4 3 5	16 25 50	16 25 50	160 250 500	1C 1E 1H	3 2 5	E T U	1C 1E 1H	J X A
	25 V 50 V 100 V	O A B C	Y 3 5 1	160 250 500 101	4 3 5 1	16 25 50 100	16 25 50 100	160 250 500 101	1C 1E 1H 2A	3 2 5	E T U	1C 1E 1H	J X A B
	25 V 50 V 100 V 200V	O A B C D	Y 3 5 1 2	160 250 500 101 201	4 3 5 1 2	16 25 50 100 200	16 25 50 100 200	160 250 500 101 201	1C 1E 1H 2A 2D	3 2 5 1 -	E T U -	1C 1E 1H 2A -	J X A B C
	25 V 50 V 100 V 200V 250V	O A B C D E	Y 3 5 1 2 V	160 250 500 101 201 -	4 3 5 1 2 -	16 25 50 100 200 250	16 25 50 100 200 250	160 250 500 101 201 251	1C 1E 1H 2A 2D	3 2 5 1 -	E T U - -	1C 1E 1H 2A - 2E	J X A B C -
	25 V 50 V 100 V 200V 250V 500V	O A B C D E G	Y 3 5 1 2 V 7	160 250 500 101 201 - 501	4 3 5 1 2 - -	16 25 50 100 200 250 500	16 25 50 100 200 250 500	160 250 500 101 201 251 501	1C 1E 1H 2A 2D - -	3 2 5 1 - -	E T U - - -	1C 1E 1H 2A - 2E -	J X A B C - E
	25 V 50 V 100 V 200V 250V 500V 630V	O A B C D E G H	Y 3 5 1 2 V 7 -	160 250 500 101 201 - 501 -	4 3 5 1 - - -	16 25 50 100 200 250 500 630	16 25 50 100 200 250 500 630	160 250 500 101 201 251 501 -	1C 1E 1H 2A 2D - -	3 2 5 1 - - -	E T U - - - -	1C 1E 1H 2A - 2E - 2J	J X A B C C - E
	25 V 50 V 100 V 200V 250V 500V 630V 1000V	O A B C D E G H I	Y 3 5 1 2 V 7 - A	160 250 500 101 201 - 501 - 102	4 3 5 1 2 - - - -	16 25 50 200 250 500 630 1000	16 25 50 100 200 250 500 630 1K	160 250 500 101 201 251 501 - 102	1C 1E 1H 2A 2D - - - - -	3 2 5 1 - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A	J X A B C C - E E G
	25 V 50 V 100 V 200V 250V 500V 630V 1000V 2000V	O A B C D E G H I J	Y 3 5 1 2 V 7 - A G	160 250 500 101 201 - 501 - 102 202	4 3 5 1 - - - - -	16 25 50 200 250 500 630 1000 2000	16 25 50 100 200 250 500 630 1K 2K	160 250 500 101 251 251 501 - 102 202	1C 1E 1H 2A 2D - - - - - -	3 2 5 1 - - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A 3D	J X A B C C - E C - G G
VOLTAGE	25 V 50 V 100 V 200V 250V 500V 630V 1000V 2000V 3000V	О А В С D Е G H I J К	Y 3 5 1 2 V 7 - A G H	160 250 500 101 201 - 501 - 102 202	4 3 5 1 2 - - - - - - - -	16 25 50 100 200 250 500 630 1000 2000 3000	16 25 50 100 200 250 500 630 1K 2K 3K	160 250 500 101 201 251 501 - 102 202 302	1C 1E 1H 2A 2D - - - - - - - - - - -	3 2 5 1 - - - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F	J X A B C C - E C C C C C C C H
	25 V 50 V 100 V 200V 250V 500V 630V 1000V 2000V 3000V	0 A B C D E G H I J K K	Y 3 5 1 2 V 7 7 - 4 G G H	160 250 500 101 201 - 501 - 102 202 302	4 3 5 1 - - - - - - - - - - - -	16 25 50 200 250 500 630 630 1000 2000 3000 4000	16 25 50 200 250 500 630 1K 2K 3K -	160 250 500 101 251 501 - 102 202 302 402	1C 1E 1H 2A 2D - - - - - - - - - - - - -	3 2 5 1 - - - - - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F -	J X A B C C - E C C - C C - C F C - C H H -
VOLTAGE	25 V 50 V 100 V 200V 250V 500V 630V 630V 1000V 2000V 3000V 4000V NICKEL BARRIER	O A B C D E G H I J K K N	Y 3 5 1 2 V 7 7 - A G G H J T	160 250 500 101 201 - 501 - 102 202 302 V	4 3 5 1 - - - - - - - - - - - - - - - - - -	16 25 50 200 250 500 630 1000 2000 3000 4000 A	16 25 50 200 250 500 630 1K 2K 3K - (GRM)	160 250 500 101 251 501 - 102 202 302 402 N	1C 1E 1H 2A 2D - - - - - - - - - - - - -	3 2 5 1 - - - - - - - - - - - - - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F - -	J X A B C C - E C - C - C - H C - H X
VOLTAGE	25 V 50 V 100 V 200V 250V 500V 630V 1000V 2000V 3000V 4000V NICKEL BARRIER Ag/Pd	O A B C D E G H I J K K C N P	Y 3 5 1 2 V 7 - A 6 G H J T 1	160 250 500 101 201 - 501 - 102 202 302 302 V -	4 3 5 1 - - - - - - - - - - - - - - - - - -	16 25 50 100 200 250 500 630 1000 2000 3000 4000 A B	16 25 50 200 250 500 630 1K 2K 3K 2K (GRM) (GR)	160 250 500 101 201 251 501 - 102 202 302 402 N P	1C 1E 1H 2A 2D - - - - - - - - - - - - -	3 2 5 1 - - - - - - - - - - - - - - - - - -	E T U	1C 1E 1H 2A - 2E - 2J 3A 3D 3F - - -	J X A B C C - E C - G G - H H - X F
VOLTAGE	25 V 50 V 200V 250V 500V 630V 630V 2000V 2000V 3000V 4000V NICKEL BARRIER Ag/Pd BULK(VINYL)	O A B C D E G H I J K S N P B	Y 3 5 1 2 V 7 7 7 7 7 7 7 7 8 8 8 9	160 250 500 101 201 - 501 - 102 202 302 202 302 V - (NONE)	4 3 5 - - - - - - - - - - - - - - - - - -	16 25 50 200 250 500 630 1000 2000 3000 4000 A B B	16 25 50 100 250 500 630 1K 2K 3K 2K 3K (GRM) (GR) PB	160 250 500 101 251 501 - 102 202 302 402 N P P	1C 1E 1H 2A 2D - - - - - - - - - - - - -	3 2 5 1 - - - - - - (MCH) (MC) -	E T U	1C 1E 1H 2A - 2E 2J 3A 3D 3F - - - - B	J X A B C C - E C - C - H C X F B


SAMSUNG : CL10B104KA8NNNC

<u>CL</u>	<u>10</u>	<u>B</u>	<u>104</u>	K	<u>A</u>	<u>8</u>	<u>N</u>	<u>N</u>	<u>N</u>	<u>C</u>
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Thickness	Electrode/	Products	Special	Packaging
							Termination/			
	03 = 0201	C = C0G	2	A = $\pm 0.05 pF$	Q = 6.3V	3 = 0.30	Plating	A = Array	Various	B = Bulk
	05 = 0402	P = P2H	significant	$B = \pm 0.1 pF$	P = 10V	5 = 0.50		(2-element)		P = Cassette
	10 = 0603	R = R2H	figures	$C = \pm 0.25 pF$	O = 16V	8 = 0.80	A = Pd/Ag/	B = Array		C = Paper 7"
	21 = 0805	S = S2H	+	$D = \pm 0.5 pF$	A = 25V	A = 0.65	Sn 100%	(4-element)		D = Paper 13"
	31 = 1206	T = T2H	number	$F = \pm 1\%$	B = 50V	C = 0.85	N = Ni/Cu/	C = High - Q		(10,000EA)
	32 = 1210	U = U2H	of zeros	$G = \pm 2\%$	C = 100V	H = 1.60	Sn 100%	L = LICC		E = Embossing 7"
	43 = 1812	L = S2L	Use "R" for	$J = \pm 5\%$	D = 200V	I = 2.00	G = Cu/Cu/	N = Normal		F = Embossing 13"
	55 = 2220	B = X7R	decimal point	$K = \pm 10\%$	E = 250V	J = 2.50	Sn 100%	P = Automotive		L = Paper 13"
	II	A = X5R		$M = \pm 20\%$	G = 500V	L = 3.20		W = 3 terminal		(15,000EA)
		F = Y5V		Z = +80,-20%	H = 630V		1	chip		O = Paper 10"
					I = 1000V				_	S = Embossing 10"

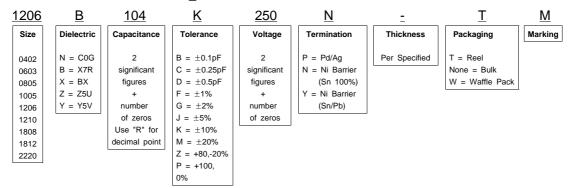
► AVX : 06033C104KAT2A

<u>0603</u>	<u>3</u>	<u>C</u>	<u>104</u>	K	<u>A</u>	T	<u>2</u>	<u>A</u>
Size	Voltage	Dielectric	Capacitance	Tolerance	Failure Rate	Termination	Packaging	Special
0201 0402 0603 0805 1206 1210 1812 2220 2225	$\begin{array}{l} 4 \ = \ 4V \\ 6 \ = \ 6.3V \\ Z \ = \ 10V \\ Y \ = \ 16V \\ 3 \ = \ 25V \\ B \ = \ 50V \\ C \ = \ 100V \\ D \ = \ 200V \\ E \ = \ 250V \\ G \ = \ 500V \\ I \ = \ 1000V \end{array}$	A = COG C = X7R D = X5R E = Z5U G = Y5V	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = GMV, +100$		T = Sn 100% 7 = Gold Plated 1 = Pd/Ag	2 = 7" Reel 4 = 13" Reel 7 = Cassette 9 = Bulk	A = Standard T = 0.66mm S = 0.56mm R = 0.46mm

▶ JOHANSON : 250R14W104KV6T

▶ KEMET : C0603C104K3RAC

<u>C</u>	0603	<u>C</u>	<u>104</u>	K	<u>3</u>	<u>R</u>	<u>A</u>	<u>C</u>
Series	Size	Specification	Capacitance	Tolerance	Voltage	Dielectric	Failure Rate	Termination
	0402 0603 0805 1206 1210 1812 2220 2225	$\begin{array}{l} C = Standard \\ A = GR900 \\ P = Mil-C-55681 \\ CDR01-CDR06 \\ N = Mil-C-55681 \\ CDR31-CDR35 \\ Z = Mil-C-123 \\ E = Mil Equivalent \\ (Group A Only) \end{array}$	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = +100, 0\%$	9 = 6.3V 8 = 10V 4 = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V	G = C0G $R = X7R$ $P = X5R$ $U = Z5U$ $X = BX(MiI)$ $V = Y5V$		C = Ni w/Tin Plate H = Ni w/Solder T = Silver G = Gold Plated


KYOCERA : CM105X7R104K25AT

<u>CM</u>	<u>105</u>	<u>X7R</u>	<u>104</u>	<u>K</u>	<u>25</u>	A	I
Series	Size	Dielectric	Capacitance	Tolerance	Voltage	Termination	Packaging
	$\begin{array}{l} 03 = 0201 \\ 05 = 0402 \\ 105 = 0603 \\ 21 = 0805 \\ 316 = 1206 \\ 32 = 1210 \\ 42 = 1808 \\ 43 = 1812 \\ 55 = 2220 \end{array}$	CG X8R X7R X5R Z5U Y5V Y5U	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ Z = +80, -20% P = +100, 0%	04 = 4V 06 = 6.3V 10 = 10V 16 = 16V 25 = 25V 50 = 50V 100 = 100V 250 = 250V 500 = 500V 1000 = 1000V	A = Ni Barrier	T = 7" Reel (4mm Pitch) L = 13" Reel (4mm Pitch) H = 7" Reel (2mm Pitch) N = 13" Reel (2mm Pitch) B = Bulk (Vinyl Bags) C = Bulk Cassette

MURATA : GRM188R71E104KA01D

<u>GRM</u>	<u>18</u>	<u>8</u>	<u>R7</u>	<u>1E</u>	<u>104</u>	<u>K</u>	<u>A01</u>	D
Series	Size	Thickness	Dielectric	Voltage	Capacitance	Tolerance	Individual Specification	Packaging
Ni Barrier	03 = 0201	3 = 0.3mm	5C = C0G	0J = 6.3V	2	$B = \pm 0.1 pF$	Code	D = 7" Reel Paper
	15 = 0402	5 = 0.5mm	R7 = X7R	1A = 10V	significant	$C = \pm 0.25 pF$	I	L = 7" Reel Plastic
	18 = 0603	8 = 0.8mm	R6 = X5R	1C = 16V	figures	$D = \pm 0.5 pF$		J = 13" Reel Paper
	21 = 0805	A = 1.0mm	E4 = Z5U	1E = 25V	+	$F = \pm 1\%$		K = 13" Reel Plastic
	31 = 1206	B = 1.25mm	F5 = Y5V	1H = 50V	number	$G = \pm 2\%$		B = Bulk
	32 = 1210	C = 1.6mm		2A = 100V	of zeros	$J = \pm 5\%$		C = Bulk Cassette
	42 = 1808	D = 2.0mm		2E = 250V	Use "R" for	$K = \pm 10\%$		T = Bulk Tray
	43 = 1812	E = 2.5mm		2H = 500V	decimal	$M = \pm 20\%$		
	55 = 2220	F = 3.2mm		3A = 1000V	point	Z = +80,-20%		
	I					P = +100, 0%		

▶ NOVACAP : 0603B104K250N_TM

▶ PANASONIC : ECJ1EB1E104K

<u>ECJ</u>	<u>1</u>	E	<u>B</u>	<u>1E</u>	<u>104</u>	K
Series	Size	Packaging	Dielectric	Voltage	Capacitance	Tolerance
	Z = 0201 0 = 0402 1 = 0603 2 = 0805 3 = 1206 4 = 1210	$\begin{array}{llllllllllllllllllllllllllllllllllll$	C = C0G B = X7R, X5R F = Y5V	0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V 2A = 100V 2D = 200V	2 significant figures + number of zeros Use "R" for decimal point	$\begin{array}{l} C = \pm 0.25 p F \\ D = \pm 0.5 p F \\ F = \pm 1 \% \\ J = \pm 5 \% \\ K = \pm 10 \% \\ M = \pm 20 \% \\ Z = +80, -20 \% \end{array}$

▶ ROHM : MCH182C104KKN

<u>MCH</u>	<u>18</u>	<u>2</u>	<u>C</u>	<u>104</u>	<u>K</u>	K	N
Series	Size	Voltag	Dielectric	Capacitance	Tolerance	Packaging	Marking/Thickness
	15 = 0402 18 = 0603 21 = 0805 31 = 1206 32 = 1210 43 = 1812	e 4 = 10V 3 = 16V 2 = 25V 5 = 50V	A = C0G C = X7R F = Y5V	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 \text{pF}$ $C = \pm 0.25 \text{pF}$ $D = \pm 0.5 \text{pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	K = 7" Reel Paper P = 7" Reel Plastic L = 13" Reel Plastic Q = 13" Reel Plastic B = Bulk C = Bulk Cassette	N = Marked Special Thickness
					Z = +80,-20% P = +100, 0%		

► TAIYO-YUDEN : TMK107BJ104K_T

T	M	<u>K</u>	<u>107</u>	<u>BJ</u>	104	<u>K</u>	-	T
Voltage	Туре	Termination	Size	Dielectric	Capacitance	Tolerance	Special	Packaging
$\begin{array}{l} A \;=\; 4V \\ J \;=\; 6.3V \\ L \;=\; 10V \\ E \;=\; 16V \\ T \;=\; 25V \\ U \;=\; 50V \end{array}$	M = Multilayer V = Hi Q	K = Ni Barrier	105 = 0402 $107 = 0603$ $212 = 0805$ $316 = 1206$ $325 = 1210$ $432 = 1812$ $550 = 2220$	$\begin{array}{l} CG \ = \ COG \\ CH \ = \ COH \\ CJ \ = \ COJ \\ CK \ = \ COK \\ BJ \ = \ X5R, \\ X7R \\ F \ = \ Y5V \end{array}$	2 significant figures + number of zeros Use "R" for decimal point	$C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ Z = +80,-20%	Various	T = Reel B = Bulk

▶ TDK : C1608X7R1E104KT

<u>C</u>	<u>1608</u>	<u>X7R</u>	<u>1E</u>	<u>104</u>	K	Ţ
Series	Size	Dielectric	Voltage	Capacitance	Tolerance	Packaging
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	CG X7R Z5U Y5V	0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V	2 significant figures + number of zeros Use "R" for decimal point	$\begin{array}{l} C = \pm 0.25 p F \\ D = \pm 0.5 p F \\ F = \pm 1\% \\ G = \pm 2\% \\ J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\% \\ Z = +80, -20\% \end{array}$	T = Reel B = Bulk

► VITRAMON : VJ0603Y104KXXMC

<u>VJ</u>	<u>0603</u>	<u>Y</u>	<u>104</u>	<u>K</u>	<u>X</u>	<u>X</u>	<u>M</u>	<u>C</u>
Series	Size	Dielectric	Capacitance	Tolerance	Termination	Voltage	Marking	Packaging
	0402 0603 0805 1206 1210 1812 2225	X = BX A,N = C0G Y = X7R U = Z5U H = X8R	2 significant figures + number of zeros Use "R" for decimal point	$B = \pm 0.1 pF$ $C = \pm 0.25 pF$ $D = \pm 0.5 pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $Z = +80, -20\%$ $P = +100, 0\%$	X = Silver, Ni Barrier Tin Plated	J = 16V X = 25V A = 50V B = 100V C = 200V	M = Marking A = No Marking	C = 7" Reel Paper T = 7" Reel Plastic P = 13" Reel Paper R = 13" Reel Plastic B = Bulk

