Middle Power LED Series Flip Chip Package

LM101B

New technology provides high performance and energy conservation

Features & Benefits

- Greater freedom of design with compact package size
- High degree of reliability with plastic-free structure
- Low thermal resistance
- High efficiency providing optimized solution

Table of Contents

1.	Characteristics	 3
2.	Product Code Information	 6
3.	Typical Characteristics Graphs	 15
4.	Outline Drawing & Dimension	 18
5.	Reliability Test Items & Conditions	 20
6.	Soldering Conditions	 21
7.	Tape & Reel	 22
8.	Label Structure	 24
9.	Packing Structure	 25
10.	Precautions in Handling & Use	 27

1. Characteristics

a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Operating Temperature	Ta	-40 ~ +105	°C	-
Storage Temperature	T _{stg}	-40 ~ +120	°C	-
LED Junction Temperature	Tj	125	°C	-
Forward Current	lF	350	mA	-
Assembly Process Temperature	-	260 <10	°C S	-
ESD (HBM)	-	±2	kV	-

b) Electro-optical Characteristics ($I_F = 150 \text{ mA}, T_s = 85 \text{ °C}$)

Item	Unit	Rank	Bin	Min.	Тур.	Max.
	V	<u>م</u> ۲	6A	2.7	-	2.9
Forward Voltage (V _F)	V	6E	AE	2.9	-	3.1
Reverse Voltage (@ -10 μA)	V			-10.0	-	-
Color Rendering Index (R_a)	-	8		80	-	-
Special CRI (R9)	-			0	-	-
Thermal Resistance (junction to chip point)	KW			-	2	-
Beam Angle	0			-	120	-

Note: Samsung maintains measurement tolerance of : Forward voltage = ± 0.1 V, Luminous flux = ± 5 %, CRI = ± 3 , R9 = ± 6.5

c) Luminous Flux Characteristics ($I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

		Nominal	S	A	S	В	S	SC	S	D	S	E	S	SF	S	G	S	H
Item	CRI	CCT (K)	Min.	Max.														
			43	47	47	51	51	55	55	59	59	63	63	67	67	71	71	75
		2700																
		3000																
		3500																
	70	4000																
		5000																
		5700																
		6500																
		2700																
		3000																
Luminous Flux		3500																
(Φv)	80	4000																
		5000																
		5700																
		6500																
		2700																
		3000																
	90	3500																
		4000																
		5000																

Note:

1) The LM101B is tested in pulsed condition at rated test current (10 ms pulse width)

- 2) Calculated flux values are for reference only
- 3) Samsung maintains measurement tolerance of: luminous flux = $\pm 5 \%$

2. Product Code Information ($I_F = 150 \text{ mA}, T_s = 85 \text{ °C}$)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S																	

Digit	PKG Information	Code	Specification
1 2 3	Samsung Chip	SCP	
		7	Min. 70
4	CRI	8	Min. 80
		9	Min. 90
		w	2700
		v	3000
		U	3500
5	CCT (K)	т	4000
		R	5000
		Q	5700
		Р	6500
6	Chip Shape	т	Square
789	Chip Code	78H	
10 11 12	Product Purpose	EL1	FeC for Lighting
		w	2700K
		v	3000K
		U	3500K
13	CCT (K)	т	4000K
		R	5000K
		Q	5700K
		Р	6500K
14	MacAdam Step	L	Single Bin for MacAdam 5-step L(MacAdam 5-step Bin)
		U	Single Bin for MacAdam 3-step U(MacAdam 3-step Bin)
15 16	Luminous Flux (Im)	S0	Code: 51, 52, 54, 56, 50, 57, 56, 51
17 18	Forward Voltage (V)	6E	6A 2.7~2.9 2.7~3.1 Bin Code: AE 2.9~3.1

a) Luminous Flux Bins ($I_F = 150 \text{ mA}, T_s = 85 \text{ °C}$)

CRI (R₂) Min.	Nominal CCT (K)	Product Code	Flux Bin	Flux Range (Φ _ν , Im)
	0700		SE	59 ~ 63
	2700	SCP7WT78HEL1W☆S06E	SF	63 ~ 67
	3000		SF	63 ~ 67
	3000	SCP7VT78HEL1V☆S06E	SG	67 ~ 71
	3500	SCP7UT78HEL1U☆S06E	SF	63 ~ 67
		SCFT0TTOHELT0×S00E	SG	67 ~ 71
	4000	SCP7TT78HEL1T☆S06E	SG	67 ~ 71
70		SGF71176IILETT#S00L	SH	71 ~ 75
		SCP7RT78HEL1R☆S06E	SG	67 ~ 71
	5000	36F7KT70HEETK#300E	SH	71 ~ 75
	5700	SCP7QT78HEL1Q☆S06E	SF	63 ~ 67
	5100	SUF TOTILLIQX SUDE "	SG	67 ~ 71
	6500		SF	63 ~ 67
	6500	SCP7PT78HEL1P☆S06E ···	SG	67 ~ 71

Note: "☆" can be "L" (Single bin for MacAdam 5-step), "U" (Single bin for MacAdam 3-step)

CRI (R _a) Min.	Nominal CCT (K)	Product Code	Flux Bin	Flux Range (Φ _v . lm)
			SD	55 ~ 59
	2700	SCP8WT78HEL1W☆S06E	SE	59 ~ 63
	2000		SE	59 ~ 63
	3000	SCP8VT78HEL1V☆S06E	SF	63 ~ 67
	2500		SE	59 ~ 63
	3500	SCP8UT78HEL1U☆S06E	SF	63 ~ 67
20	4000	SCP8TT78HEL1T☆S06E	SF	63 ~ 67
80	4000	SCPOTITORELITESUBE	SG	67 ~ 71
	5000	SCP8RT78HEL1R☆S06E	SF	63 ~ 67
		SOLOKI AULELIKA SOOL	SG	67 ~ 71
	5700	SCP8QT78HEL1Q☆S06E	SE	59 ~ 63
	5700	SCFORTFOILLIQNOUE	SF	63 ~ 67
	6500	SCP8PT78HEL1P☆S06E	SE	59 ~ 63
	0000	Servi Hanten Adde	SF	63 ~ 67

a) Luminous Flux Bins (I_F = 150 mA, T_s = 85 °C)

Note: "☆" can be "L" (Single bin for MacAdam 5-step) "U" (Single bin for MacAdam 3-step)

CRI (R₂) Min.	Nominal CCT (K)	Product Code	Flux Bin	Flux Range (Φ _v , Im)
	2700	SCP9WT78HEL1W☆S06E	SA	43 ~ 47
	2700	SUF3W170HELIW×SUGE	SB	47 ~ 51
	2000		SA	43 ~ 47
	3000 SCP9	SCP9VT78HEL1V☆S06E ···	SB	47 ~ 51
00	0500		SB	47 ~ 51
90	3500	SCP9UT78HEL1U☆S06E	SC	51 ~ 55
		SCP9TT78HEL1T☆S06E	SB	47 ~ 51
	4000	SCP91176HELIT#SUGE	SC	51 ~ 55
	5000	SCP9RT78HEL1R☆S06E	SB	47 ~ 51
	5000	SCHARI LAHELIKESODE	SC	51 ~ 55

a) Luminous Flux Bins $(I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C})$

Note: "aa" can be "L" (Single bin for MacAdam 5-step), "U" (Single bin for MacAdam 3-step)

b) Color Bins ($I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

CRI Min	Nominal CCT (۲۱)	Product Code	Color Rank	Chromaticity Bins
	2700	SCP7WT78HEL1W ☆ S06E	VL	VL
	2700	SCPTW178HELIW X SUBE	VU	VU
	2000		VL	VL
	3000	SCP7VT78HEL1V☆S06E	VU	VU
	2500		UL	UL
	3500	SCP7UT78HE1U☆S06E	UU	UU
70	4000		TL	TL
70	4000	SCP7TT78HEL1T☆S06E	TU	TU
	5000		RL	RL
	5000	SCP7RT78HEL1R ☆ S06E	RU	RU
			QL	QL
	5700	SCP7QT78HEL1Q ☆ S06E	QU	QU
			PL	PL
	6500	SCP7PT78HEL1P☆S06E	PU	PU
			WL	WL
	2700	SCP8WT78HEL1W ☆ S06E	WU	WU
			VL	VL
	3000	SCP8VT78HEL1V☆S06E	VU	VU
			UL	UL
	3500	SCP8UT78HEL1U ☆ S06E	UU	UU
			TL	TL
80	4000	SCP8TT78HEL1T☆S06E	TU	TU
			RL	RL
	5000	SCP8RT78HEL1R☆S06E	RU	RU
			QL	QL
	5700	SCP8QT78HEL1Q☆ S06E	QU	QU
			PL	PL
	6500	SCP8PT78HEL1P☆S06E	PU	PU
			WL	WL
	2700	SCP9WT78HEL1W ☆ S06E	WU	WU
			VL	VL
	3000	SCP9VT78HEL1V☆S06E	VU	VU
			UL	UL
90	3500	SCP9UT78HEL1U☆S06E	UU	UU
			UL	UL
	4000	SCP9TT78HEL1T☆S06E	UU	UU
	5000 SCP9RT78HEL1R x S06E		UL	UL
			UU	UU

Note: "☆" can be "L" (Single bin for MacAdam 5-step), "U" (Single bin for MacAdam 3-step)

c) Voltage Bins ($I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

Nominal CCT (K)	CRI Min.	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
				6A	2.7 ~ 2.9
			6E	AE	2.9 ~ 3.1

d) Chromaticity Region & Coordinates ($I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

	ССТ	Cente	er point	Major-axis	Minor-axis	Rotation
	(K)	CIE x	CIE y	а	b	Φ
	2700	0.4578	0.4101	0.0081	0.0042	53.70
	3000	0.4338	0.4030	0.0083	0.0041	53.22
	3500	0.4073	0.3917	0.0093	0.0041	54.00
3 step (U code)	4000	0.3818	0.3797	0.0094	0.0040	53.72
	5000	0.3447	0.3553	0.0082	0.0035	59.62
	5700	0.3287	0.3417	0.0075	0.0032	59.10
	6500	0.3123	0.3282	0.0067	0.0029	58.57
	2700	0.4578	0.4101	0.0135	0.0070	53.70
	3000	0.4338	0.4030	0.0138	0.0068	53.22
	3500	0.4073	0.3917	0.0155	0.0068	54.00
5 step (L code)	4000	0.3818	0.3797	0.0157	0.0067	53.72
	5000	0.3447	0.3553	0.0137	0.0058	59.62
	5700	0.3287	0.3417	0.0125	0.0053	59.10
	6500	0.3123	0.3282	0.0112	0.0048	58.57

Note: Samsung maintains measurement tolerance of: Cx, Cy = ± 0.005

3. Typical Characteristics Graphs

a) Spectrum Distribution ($I_F = 150 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

CCT: 2700 K, CRI80

Relative intensity vs. Wave length

b) Forward Current Characteristics (T_s = 85 °C)

c) Temperature Characteristics (I_F = 150 mA)

CCT: 5000 K, CRI80

d) Color Shift Characteristics

T_s = 85 °C

e) Derating Curve

R_{th} is measured after soldering of LED chip on the metal based substrate. *metal: aluminum (refer to page 17)

f) Beam Angle Characteristics (I_F =150 mA)

16

4. Outline Drawing & Dimension

- 1. Tolerance is ±0.10 mm
- 2. Do not place LEDs with pressure

• Measurement unit: mm

• Tolerance: ±0.10 mm

Precautions:

- 1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
- 2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
- Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

T_s Point & Measurement Method:

Measure nearest point from the center of LED chip (δ) as shown below.

Distance between chip center and T_s point (δ) = 3.5 mm

 $T_j = T_s + Power x$ Thermal resistance at $T_s (R_{j-s})$

Precautions:

- 4) This LED chip PKG does not contain built-in ESD protection device.
- 5) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
- 6) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
- Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items & Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle
Room Temperature Life Test	25 °C, Derated max current	1000 h
High Temperature Life Test	85 °C, Derated max current	1000 h
High Temperature Humidity Life Test	85 °C, 85 % RH, Derated max current	1000 h
Low Temperature Life Test	-40 °C, DC Derated max current	1000 h
Powered Temperature Cycle Test	-45 °C / 20 min \leftrightarrow 85 °C / 20 min, sweep 100 min cycle on/off: each 5 min, Derated max current	100 cycles
Temperature Cycling	-45 ºC / 15 min ↔ 125 ºC / 15 min → Hot plate 180 ºC	500 cycles
High Temperature Storage	120 °C	1000 h
Low Temperature Storage	-40 °C	1000 h
ESD (HBM)	B1 B2 11 10 ΜΩ 22 1.5 kΩ 2 1.00 pF 2 ±5 kV	5 times
Vibration Test	20~2000~20 Hz, 200 m/s², sweep 4 min X, Y, Z 3 direction, each 1 cycle	4 cycles
Mechanical Shock Test	1500 g, 0.5 ms	5 cycles

b) Criteria for Judging the Damage

ltem	Symbol	Test Condition (T _s = 25 °C)	Limit	
	Symbol		Min	Max
Forward Voltage	V _F	I_F = Derated max current	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φv	I _F = Derated max current	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions

a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. 300 °C, under soldering iron

7. Tape & Reel

a) Taping Dimension

(unit: mm)

b) Reel Dimension

Notes:

- 1) Quantity: The quantity/reel is 4,000 pcs
- 2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is ±0.2 mm
- 3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag

8. Label Structure

a) Label Structure

Note: Denoted product code and bin code above is only an example

Bin Code:

- (a) (b): Chromaticity bin (refer to page 10-14)
- ©d: Luminous Flux bin (refer to page 7-9)
- (e)(f): Forward Voltage bin (refer to page 11)

LM101B [CRI] [CCT]

The lot number is composed of the following characters:

SCP8WT78HEL1WLS06E WLSD6A

123456789/labc / 4,000 pcs

- (1)(2) : Production site (GB: Nanchang China)
- (3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
- (4) : Year (Y: 2014, Z: 2015, A: 2016, ...)
- (5) : Month (1~9, A, B, C)
- (6) : Day (1~9, A, B~V)
- (7)(8)(9) : Product serial number (001 ~ 999)

9. Packing Structure

a) Packing Process

b) Aluminum Vinyl Packing Bag

c) Silica Gel & Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling & Use

- 1) For over-current-proof function, customers are recommended to apply resistors to prevent sudden change of the current caused by slight shift of the voltage.
- 2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.
- 3) When the LEDs illuminate, operating current should be decided after considering the ambient maximum temperature.
- 4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed by a sealed container with nitrogen gas injected (shelf life of sealed bags: 12 months, temperature ~40 °C, ~90 % RH).
- After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
 a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30 °C / 60 % RH, or
 - b. Stored at <10 % RH
- 6) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.
- 7) Devices require baking before mounting, if humidity card reading is >60 % at 23 ± 5 °C.
- 8) Devices must be baked for 1 hour at 60 ± 5 °C, if baking is required.
- 9) The LEDs are sensitive to the static electricity and surge. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leak current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
- 10) VoCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
- 11) Risk of sulfurization (or tarnishing)

The LED from Samsung does not use a silver-plated lead frame but if the LED is attached in silver-plated substrate, the surface color of substrate may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of substrate may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit, It requires caution. Due to possible sulfurization of substrate, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities for people everywhere. Through relentless innovation and discovery, we are transforming the worlds of TVs, smartphones, tablets, PCs, cameras, home appliances, printers, LTE systems, medical devices, semiconductors and LED solutions. We employ 286,000 people across 80 countries with annual sales of US\$216.7 billion. To discover more, please visit www.samsungled.com.

Copyright © 2017 Samsung Electronics Co., Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co., Ltd. Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd. 95, Samsung 2-ro Giheung-gu Yongin-si, Gyeonggi-do, 446-711 KOREA

www.samsungled.com

