M8751H-8

Rochester Electronics[®]

Single-Component 8-Bit Microcomputer

The M8751H-8 is a pin compatible EPROM version of M8051AH. Intel's advanced +5V, depletion load, N-channel, HMOS technology allows the M8751H-8 to remain fully compatible with its M8751H-8 predecessor in addition to incorporating two new features: A program memory security bit that can be used to protect the EPROM against unauthorized readout, and a programmable baud rate modification bit, which doubles the range of baud rates available to the serial port.

Specifically, the M8751H-8 features: 4K byte program memory space; 32 I/O lines; two 16-bit timer/event counters; a 5-source, 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented MCS-80 and MCS-85 peripherals can be used for I/O and memory expansion.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. n 🖬 4826175 0081770 8 1

PRELIMINARY

M8751H-8 T-49-19-59 SINGLE-COMPONENT 8-BIT MICROCOMPUTER

302

- 8 MHz Operation
- Program Memory Security
- 4K x 8 EPROM
- 🔳 128 x 8 RAM
- 32 I/O Lines (Four 8-Bit Ports)
- Two 16-Bit Timer/Counters
- Boolean Processor

- Military
 - Programmable Full-Duplex Serial Channel
 - 128K Accessible External Memory
 - Multiply and Divide
 - 256 User Bit-Addressable Locations
 - Military Temperature Range: -55°C to + 125°C (T_C)

The M8751H-8 is a pin compatible EPROM version of M8051AH. Intel's advanced +5V, depletion load, N-channel, HMOS* technology allows the M8751H-8 to remain fully compatible with its M8751-8 predecessor in addition to incorporating two new features: A program memory security bit that can be used to protect the EPROM against unauthorized readout, and a programmable baud rate modification bit, which doubles the range of baud rates available to the serial port.

Specifically, the M8751H-8 features: 4K byte program memory space; 32 I/O lines; two 16-bit timer/event counters; a 5-source, 2-level interrupt structure; a full duplex serial channel; a Boolean processor; and on-chip oscillator and clock circuitry. Standard TTL and most byte-oriented MCS®-80 and MCS-85 peripherals can be used for I/O and memory expansion.

The M8751H-8 is available in a hermetically sealed, ceramic, 40-lead dual in-line package which includes a window that allows for EPROM erasure when exposed to ultraviolet light (see Erasure Characteristics). During normal operation, ambient light may adversely affect the functionality of the chip. Therefore, applications which expose the M8751H-8 to ambient light may require an opaque label over the window.

*HMOS is a patented process of Intel Corporation.

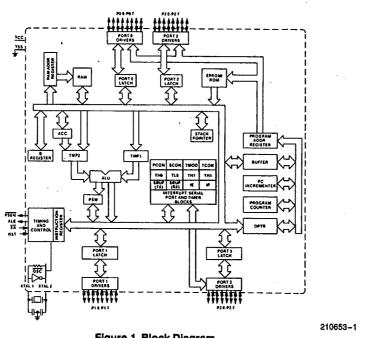
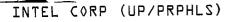
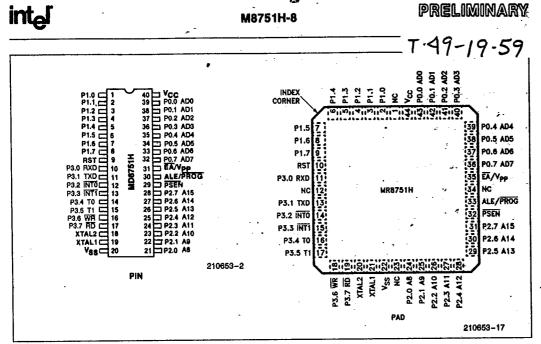




Figure 1. Block Diagram

10-15

December 1989 Order Number: 210653-004

302

Figure 2. Pin Configurations

M8751H PIN DESCRIPTIONS

Vss Circuit ground potential.

Vcc Supply voltage during programming, verification, and normal operation.

Port 0

Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus during accesses to external memory. It also receives the instruction bytes during EPROM programming, and outputs instruction bytes during program verification. (External pullups are required during program verification.) Port 0 can sink (and in bus operations can source) eight LS TTL inputs.

Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pullups. It receives the low-order address byte during EPROM programming and program verification. Port 1 can sink/source four LS TTL inputs. Port 2 Port 2 is an 8-bit bidirectional I/O port with internal

pullups. It emits the high-order address byte during accesses to external memory. It also receives the high-order address bits during EPROM programming and program verification. Port 2 can sink/source four LS TTL inputs.

4826175 0081771 T

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pullups. It also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupt)
P3.3	INT1 (external interrupt)
P3.4	T0 (Timer/counter 0 external input)
P3.5	T1 (Timer/counter 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

Port 3 can sink/source four LS TTL inputs.

20E D 🗰 4826175 0081772 1 1

M8751H-8

Preliminary

19-19.59

RST

intal

A high on this pin for two machine cycles while the oscillator is running resets the device. A small external pulldown resistor (\approx 8.2 K Ω) from RST to V_{SS} permits power-on reset when a capacitor (\approx 10 μ f) is also connected from this pin to V_{CC}.

ALE/PROG

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated at a constant rate of ½ the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs. This pin is also the program pulse input (PROG) during EPROM programming.

PSEN

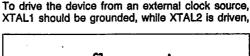
Program Store Enable output is the read strobe to external Program Memory. PSEN is activated twice each machine cycle during fetches from external Program Memory. (However, even when executing out of external Program Memory two activations of PSEN are skipped during each access to external data memory.)

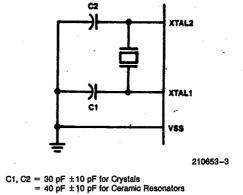
EA/VPP

External Access enable. \overline{EA} must be externally held low in order to enable the device to fetch code from external Program Memory locations 0000H to 0FFFH. Note, however, that if the Security Bit is programmed, the device will not fetch code from any location in external Program Memory.

This pin also receives the 21V programming supplyvoltage (V_{PP}) during EPROM programming.

XTAL1


Input to the inverting oscillator amplifier.


XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers", published in the Embedded Controller Handbook.

Figure 3. Oscillator Connections

as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

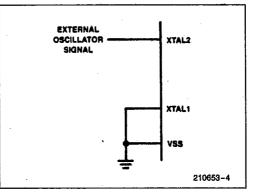


Figure 4. External Drive Configuration

Datum	Emitting Port s	Degraded I/O Lines	V _{OL} (Peak) (Max)
Address	P2, P0	P1, P3	V8.0
Write Data	P0	P1, P3, ALE	V8.0

m

^{20E} D M8751H-8

ABSOLUTE MAXIMUM RATINGS*

Case Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin to V _{SS} (Except V _{PP})0.5V to +7V
Voltage from V _{PP} to V _{SS} 21.5V
Power Dissipation2W

*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

4826175 0081773 3 🛲

PRELIMINARY

T.49-19-59

NOTICE: Specifications contained within the following tables are subject to change.

Operating Conditions

Symbol	Description	Min	Max	Units °C	
То	Case Temperature (Instant On)	- 55	+125		
Vcc	Digital Supply Voltage	4.50	5.50	V	

D.C. CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Parameter	Min	Max	Unit	Comments
VIL	Input Low Voltage	-0.5	0.7	V	
VIL1	Input Low Voitage to EA	0	0.7	V	
V _{IH}	Input High Voltage (Except XTAL2, RST)	2.2	$V_{\rm CC}$ + 0.5	v	
V _{IH1}	Input High Voltage to XTAL2, RST	2.5	V_{CC} + 0.5	V	$XTAL1 = V_{SS}$
VOL	Output Low Voltage Ports 1, 2, 3 (Note 1)		0.45	۷	l _{OL} = 1.2 mA
V _{OL1}	Output Low Voltage Port 0, ALE, PSEN (Note 1)		0.60 0.45	V V	$I_{OL} = 2.8 \text{ mA}$ $I_{OL} = 2.4 \text{ mA}$
VOH	Output High Voltage Ports 1, 2, 3	2.4		V	l _{OH} = −60 μA
V _{OH1}	Output High Voltage Port 0 (in External Bus Mode), ALE, PSEN	2.4		V	l _{OH} = −300 μA
Ι <u>Ι</u> .	Logical 0 Input Current P1, P2, P3		-500	μA	V _{IN} = 0.45V
IIL1	Logical 0 Input Current to EA/VPP		-15	mA	V _{IN} = 0.45V
I _{IL2}	Logical 0 Input Current to XTAL2		-4.5	mA	$XTAL1 = V_{SS}, V_{IN} = 0.45V$
l _{Li}	Input Leakage Current to Port 0		±125	μΑ	$0.45V < V_{IN} < V_{CC}$
Iн	Logical Input Current to EA/VPP		500	μA	$V_{IN} = 2.4V$
liH1	Input Current to RST/VPD to Activate Reset		500	μA	V _{IN} < (V _{CC} - 1.5V)
lcc	Power Supply Current		275	mA	All Outputs Disconnected, $\overline{EA} = V_{CC}$
CIO	Capacitance of I/O Buffers		10 ´	рF	f _c = 1 MHz, T _A = 25°C

NOTES:

1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

intel

20E D = 4826175 0081774 5 = PRELIMINARY

M8751H-8

T.99.19.59

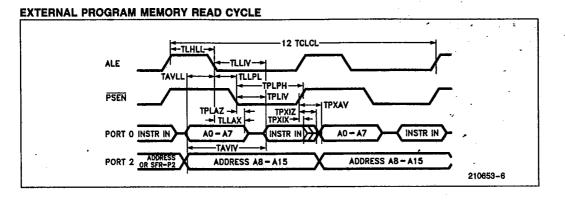
A.C. CHARACTERISTICS (Over Specified Operating Conditions), Load Capacitance for Port 0, ALE, T and $\overline{PSEN} = 100 \text{ pF}$; Load Capacitance for all other outputs = 80 pF

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

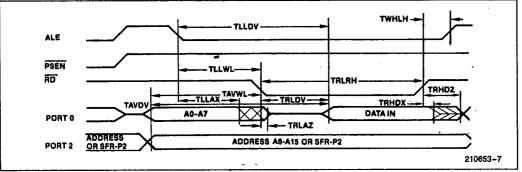
Symbol	Parameter	8 MHz Osc		Variable	Units	
	raiailietei	Min	Max	Min	Max	
1/TCLCL	Oscillator Frequency		-	3.5	8	MHz
TLHLL	ALE Pulse Width	195		2TCLCL-55		ns
TAVLL	Address Valid to ALE	70		TCLCL-55	~	ns
TLLAX	Address Hold after ALE	75		TCLCL-50	ı,	ns
TLLIV	ALE to Valid Instr In		335		4TCLCL-165	ns
TLLPL	ALE to PSEN	85	÷	TCLCL-40		ns
TPLPH	PSEN Pulse Width	300		3TCLCL-75		ns
TPLIV	PSEN to Valid Instr In		210		3TCLCL-165	ns
TPXIX	Input Instr Hold after PSEN	0		0		ns
TPXIZ	Input Instr Float after PSEN		90		TCLCL-35	ns
TPXAV	PSEN to Address Valid	100		TCLCL-25		ns
TAVIV	Address to Valid Instr In		460		5TCLCL-165	, ns
TPLAZ	PSEN Low to Address Float		20		20	ns

EXTERNAL DATA MEMORY CHARACTERISTICS

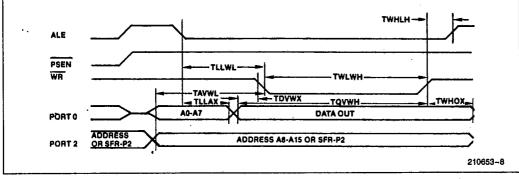
Symbol	Parameter	8 MH	z Osc	Variable	Units	
oynibol		Min	Max	Min	Max	Unita
TRLRH	RD Pulse Width	650		6TCLCL-100		ns
TWLWH	WR Pulse Width	650		6TCLCL-100		ns
TLLAX	Address Hold after ALE	75		TCLCL-50		ns
TRLDV	RD to Valid Data In		440		5TCLCL-185	ns
TRHDX	Data Hold after RD	0		0		ns
TRHDZ	Data Float after RD		165		2TCLCL-85	ns
TLLDV	ALE to Valid Data In		830		8TCLCL-170	ns
TAVDV	Address to Valid Data In		940		9TCLCL-185	ns
TLLWL	ALE to WR or RD	310	440	3TCLCL-65	3TCLCL+65	ns
TAVWL	Address to WR or RD	355		4TCLCL-145		ns
TQVWX	Data Valid to WR Transition	40		TCLCL-85		ns
TQVWH	Data Setup to WR High	800		7TCLCL-75		ns
TWHQX	Data Held after WR	60		TCLCL-65		ns
TRLAZ	RD Low to Address Float		20		20	ns
TWHLH	RD or WR High to ALE High	60	190	TCLCL-65	TCLCL+65	ns


me

4826175 0081775 7 🔳 -PRELIMINARY


^{-,}49.19.59

M8751H-8

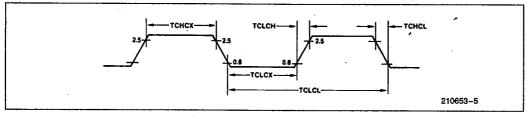

A.C. TIMING DIAGRAMS

EXTERNAL DATA MEMORY READ CYCLE

EXTERNAL DATA MEMORY WRITE CYCLE

intel

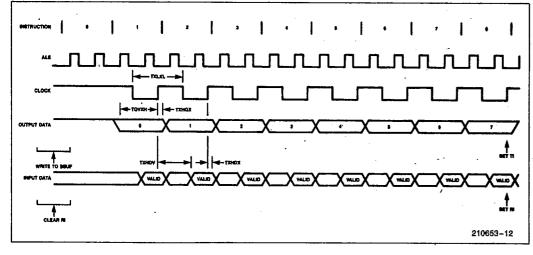
) <u>sõe</u> **D**


M8751H-8

■ 4826175 0081776 9 ■ PRELIMINARY

T.49-19.59

EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL2)

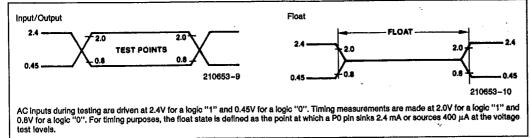

Symbol	Parameter	Min	Max	Units	
1/TCLCL	CL Oscillator Frequency 3.5		8	MHz	
TCHCX	High Time	20		ns	
TCLCX	Low Time	20	· · ·	ns	
TCLCH	Rise Time		20	ns	
TCHCL	Fall Time	· · · · · · · · · · · · · · · ·	20	ns	

SERIAL PORT TIMING-SHIFT REGISTER MODE Load Capacitance = 80 pF

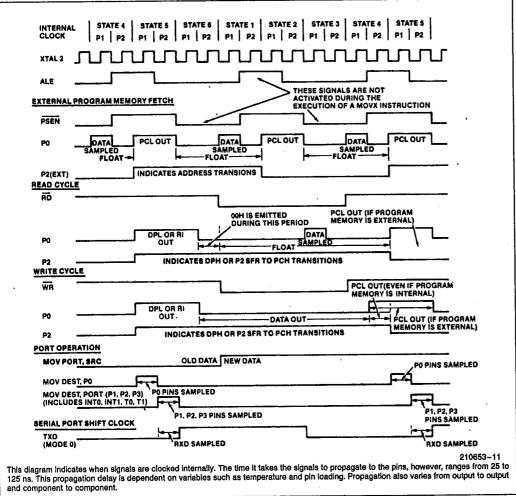
Symbol	Parameter	8 MHz Osc		Variable	Units	
		Min	Max	Min	Max	Quinta
TXLXL	Serial Port Clock Cycle Time	1.0	· ·	12TCLCL		μs
TQVXH	Output Data Setup to Clock Rising Edge	1117		10TCLCL-133		ns
TXHQX	Output Data Hold after Clock Rising Edge	133		2TCLCL-117		ns
TXHDX	Input Data Hold after Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		1117		10TCLCL-133	ns

SHIFT REGISTER TIMING WAVEFORMS

intel


20E D 💻

M8751H-8


4826175 0081777 0 ■ **PRELIMINARY**

49-19.59

A.C. TESTING INPUT/OUTPUT, FLOAT WAVEFORMS

CLOCK WAVEFORMS

4826175 0081778 2 🖬 ´ PRELIMINARY

T·49-19.59

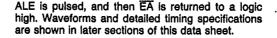
EPROM CHARACTERISTICS

Mode	RST	PSEN	ALE	ĒĀ	P2.7	P2.6	P2.5	P2.4
Program	1	0	0*	VPP	1	0 :	· X.	• ° X
Inhibit	1	0	1	Х	1	0	X	Х
Verify	1	0	1	1	0	0	X	X
Security Set	1	0	0*	V _{PP}	1	1	X	x

NOTES:

"1" = logic high for that pin

"0" = logic low for that pin "X" = "don't care"


"Vpp" = $+21V \pm 0.5V$

*ALE is pulsed low for 50 ms.

Programming the EPROM

To be programmed, the part must be running with a 4 to 6 MHz oscillator. (The reason the oscillator needs to be running is that the internal bus is being used to transfer address and program data to appropriate internal registers.) The address of an EPROM location to be programmed is applied to Port 1 and pins P2.0–P2.3 of Port 2, while the code byte to be programmed into that location is applied to Port 0. The other Port 2 pins, and RST, PSEN, and EA should be held at the "Program" levels indicated in Table 1. ALE is pulsed low for 50 ms to program the code byte into the addressed EPROM location. The setup is shown in Figure 5.

Normally \overline{EA} is held at a logic high until just before ALE is to be pulsed. Then \overline{EA} is raised to +21V,

Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level of 21.5V for any amount of time. Even a narrow glitch above that voltage level can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches.

Program Verification

If the Security Bit has not been programmed, the onchip Program Memory can be read out for verification purposes, if desired, either during or after the

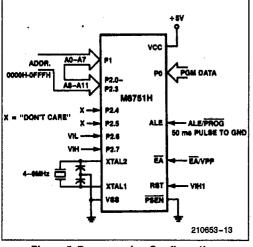


Figure 5. Programming Configuration

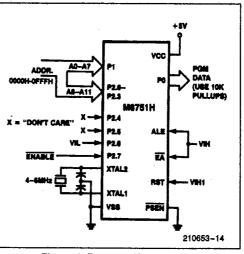
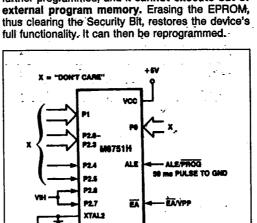


Figure 6. Program Verification

20E D 4826175 0081779 4 M

M8751H-8


programming operation. The address of the Program Memory location to be read is applied to Port 1 and pins P2.0–P2.3. The other pins should be held at the "Verify" levels indicated in Table 1. The contents of the addressed location will come out on Port 0. External pullups are required on Port 0 for this operation.

The setup, which is shown in Figure 6, is the same as for programming the EPROM except that pin P2.7 is held at a logic low, or may be used as an active-low read strobe.

EPROM Security

The security feature consists of a "locking" bit which when programmed denies electrical access by any external means to the on-chip Program Memory. The bit is programmed as shown in Figure 7. The setup and procedure are the same as for normal EPROM programming, except that P2.6 is held at a logic high. Port 0, Port 1, and pins P2.0–P2.3 may be in any state. The other pins should be held at the "Security" levels indicated in Table 1.

Once the Security Bit has been programmed, it can be cleared only by full erasure of the Program Mem-

ory. While it is programmed, the internal Program Memory cannot be read out, the device cannot be

further programmed, and it cannot execute out of

19 · 19 · 59

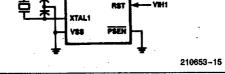


Figure 7. Programming the Security Bit

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V$

Symbol	Parameter	Min	Max	Units
Vpp	Programming Supply Voltage	20.5	21.5	V
lpp	Programming Supply Current		30	mA
1/TCLCL	Oscillator Frequency	4	6	MHz
·TAVGL	Address Setup to PROG Low	48TCLCL		
TGHAX	Address Hold after PROG	48TCLCL		
TDVGL	Data Setup to PROG Low	48TCLCL		
TGHDX	Data Hold after PROG	48TCLCL		
TEHSH	P2.7 (ENABLE) High to VPP	48TCLCL		
TSHGL	VPP Setup to PROG Low	10		μs
TGHSL	VPP Hold after PROG	10		μs
TGLGH	PROG Width	45	55	ms
TAVQV	Address to Data Valid		48TCLCL	
TELQV	ENABLE Low to Data Valid		48TCLCL	
TEHQZ	Data Float after ENABLE	0	48TCLCL	

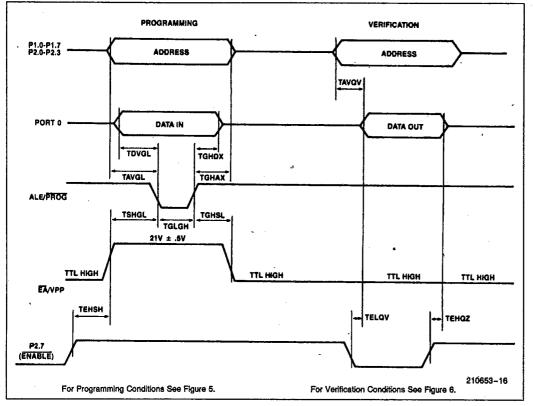
int

M8751H-8

30S

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 Angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window. The recommended erasure procedure is exposure to ultraviolet light (at 2537 Angstroms) to an integrated dose of at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 20 to 30 minutes, at a distance of about 1 inch, should be sufficient.


4826175 0081780 0 📟

PRELIMINARY

49-*19-5*9

Erasure leaves the array in an all 1s state.

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

me

20E D 🖬 4826122 0081281 2 🖬 / PRELIMINARY

M8751H-8

T :49-19-59

ARITHMETIC OPE	RATIONS		· 1	LOGICAL OPERA	TIONS (Continued)		
Mnemonic	Description	Byte	Cve	Mnemonic ·	Description	Byte	Cy
ADD A,Rn	Add register to	byto	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ORL A,@RÌ	OR indirect RAM to	-,	-,
	Accumulator	1	1	Onengon	Accumulator	1	1
	Add direct byte to	•	'	ORL A, #data	OR immediate data to	•	•
ADD A, direct	•	2	1	One A, * data	Accumulator	2	-1
	Accumulator	2		ORL direct,A	OR Accumulator to		•
ADD A,@RI	Add indirect RAM to	1	1	UNE UIIOULA	direct byte	[.] 2	1
	Accumulator	1	'	OBI direct #date		<u> </u>	
ADD A, #data	Add immediate data to	~	1	ORL direct, #data		3	2
	Accumulator	2	1		direct byte Exclusive-OR register to		2
ADDC A,Rn	Add register to			XRL A,Rn	Accumulator	ſ	1
	Accumulator with Carry	1	1				1
ADDC A, direct	Add direct byte to A	•		XRL A, direct	Exclusive-OR direct	~	
	with Carry flag	2	1		byte to Accumulator	2	• 1
ADDC A,@Ri	Add indirect RAM to A		•	XRL A,@Ri	Exclusive-OR indirect		
	with Carry flag	1	1		RAM to A	1	1
ADDC A, #data	Add immediate data to			XRL A, #data	Exclusive-OR	_	
	A with Carry flag	2	1		immediate data to A	2 .	1
SUBB A,Rn	Subtract register from A			XRL direct,A	Exclusive-OR Accumu-		
	with Borrow	1	1		lator to direct byte	2	1
SUBB A, direct	Subtract direct byte			XRL direct, # data	Exclusive-OR im-		
•	from A with Borrow	2	1		mediate data to direct	3	2
SUBB A,@Ri	Subtract Indirect RAM			CLR A	Clear Accumulator	1	1
· · · · ·	from A with Borrow	1	1	CPLA	Complement		
SUBB A, #data	Subtract immed data				Accumulator	1	1
	from A with Borrow	2	1	RLA	Rotate Accumulator Left	ή	1
INC A	Increment Accumulator	1	1	RLC A	Rotate A Left through		
INC Rn	Increment register	1	i		the Carry flag	1	1
INC direct	Increment direct byte	2	i	RR A	Rotate Accumulator	-	
INC @Ri	Increment Indirect RAM	1	i	1	Right	1	1
INC OPTR	increment Data Pointer	i	2	RRC A	Rotate A Right through	•	•
	Decrement Accumulator	1	1	1	Carry flag	1	1
DEC A		1	1	SWAP A	Swap nibbles within the	•	•
DEC Rn	Decrement register	2	1	SWAFA	Accumulator	1	1
DEC direct	Decrement direct byte	2		DATA TRANSFE		•	
DEC @Ri	Decrement indirect					Bide	~
	RAM	1	1	Mnemonic	Description	Byte	Cy
MUL AB	Multiply A & B	1	4	- MOV A,Rn	Move register to		
DIV AB	Divide A by B	1	4		Accumulator	1	1
DAÁ	Decimal Adjust			MOV A, direct	Move direct byte to	-	
•	Accumulator	1	1		Accumulator	2	1
LOGICAL OPERA				MOV A,@Ri	Move indirect RAM to		
Mnemonic	Destination	Byte	Cyc		Accumulator	1	1
ANL A,Rn	AND register to			MOV A, #data	Move immediate data		
	Accumulator	1	1		to Accumulator	2	1
ANL A, direct	AND direct byte to			MOV Rn,A	Move Accumulator to		
	Accumulator	2	1		register	1	1
ANL A,@RI	AND indirect RAM to			MOV Rn, direct	Move direct byte to		
	Accumulator	• 1	1		register	2	2
ANL A, #data	AND immediate data to			MOV Rn, #data	Move immediate data to		
	Accumulator	2	1		register	2	1
ANL direct,A	AND Accumulator to	-		MOV direct,A	Move Accumulator to		
	direct byte	2	1		direct byte	2	1
ANL direct, #data	•	5	•	MOV direct,Rn	Move register to direct	-	
ANL URBUL # UBLE		3	2		byte	2	:
	direct byte	3	2	MOV direct direct		~	•
ORL A,Rn	OR register to	4	4	MOV direct, direct	direct	3	. 2
	Accumulator	1	1	MOV direct @Di	Move indirect RAM to	0	4
ORL A, direct	OR direct byte to Accumulator	2	1	MOV direct,@Ri	direct byte	2	

me

20E D 🔲 4826175 0081782 4 Boog Invinve

M8751H-8

Preliminary T · 19 - 19 - 59

	Table 1. MCS®-5	1 Insi	truct	lon	Set Description (C	T·49 ontinued)	-19	7-5
DATA TRANSFER (· · · ·]	PROGRAM AND MA			
Mnemonic	Description	Byte	Cvc		Mnemonic	Description	Byte	Cve
MOV direct, # data	Move immediate data to	-,	-,-		ACALL addr11	Absolute Subroutine	0,10	0,0
	direct byte	3	2			Call	2	2
MOV @RI,A	Move Accumulator to	•	-	ŀ	LCALL addr16	Long Subroutine Call	3	2
	Indirect RAM	1	1		RET	Return from subroutine	1	2
MOV @Ri,direct	Move direct byte to	•	•		RETI	Return from interrupt	1	2
	indirect RAM	2	2		AJMP addr11	Absoute Jump	2	2
MOV @Ri,#data	Move immediate data to	_	-		LJMP addr16	Long Jump	3	2
	indirect RAM	2.	1	1	SJMP rel	Short Jump (relative		
MOV DPTR, #data16	Load Data Pointer with					addr)	2	2
	a 16-bit constant	3	2		JMP @A+DPTR	Jump indirect relative to		
MOVC A,@A+DPTR	Move Code byte relative					the DPTR	11	2
	to DPTR to A	1	2		JZ rel	Jump if Accumulator is		
MOVC A,@A+PC	Move Code byte relative				1	Zero	2	2
	to PC to A	1	2		JNZ rel	Jump if Accumulator is		
MOVX A,@Ri	Move External RAM (8-					Not Zero	2	2
	bit addr) to A	1	2		JC rel	Jump if Carry flag is set	2	2
MOVX A,@DPTR	Move External RAM (16-				JNC rel	Jump if No Carry flag	2	2
	bit addr) to A	1	2		JB bit,rel	Jump if direct Bit set	3	2-
MOVX @Ri,A	Move A to External RAM				JNB bit,rel	Jump if direct Bit Not	~	•
	(8-bit addr)	1	2		JBC bit,rel	set Iumn if direct Dit is not	3	2
MOVX @DPTR,A	Move A to External RAM				and pit'tel	Jump if direct Bit is set & Clear bit	•	~
	(16-bit addr)	1	2		CJNE A, direct, rel	Compare direct to A &	3	2
PUSH direct	Push direct byte onto					Jump if Not Equal	3	2
	stack	2	2		CJNE A, #data,rel	Comp, immed, to A &	3	2
POP direct	Pop direct byte from				Conte Ma Catalion	Jump if Not Equal	3	2
	stack	2	2		CJNE Rn, #data,rel	Comp, immed, to reg &	U	4
XCH A,Rn	Exchange register with					Jump if Not Equal	3	2
	Accumulator	1	1		CJNE @Ri. # data.rel	Comp, immed, to ind, &	Ū	-
XCH A, direct	Exchange direct byte					Jump if Not Equal	3	2
	with Accumulator	2	1		DJNZ Rn,rel	Decrement register &		-
XCH A,@Ri	Exchange indirect RAM					Jump if Not Zero	2	2
	with A	1	1		DJNZ direct, rel	Decrement direct &		
XCHD A,@Ri	Exchange low-order					Jump if Not Zero	3	2
	Digit ind RAM w A	1	1		NOP	No operation	1	1
						DDRESSING MODES		
BOOLEAN VARIABL	E MANIPULATION					ing register R0-R7		
Mnemonic	Description	Byte	Cyc		direct — 128 ir	nternal RAM locations, any	1/O pc	ort,
CLR C	Clear Carry Flag	1	1			ol or status register		
CLR bit	Clear direct bit	2	1			ct Internal RAM location a	ddress	ed
SETB C	Set Carry flag	1	1			gister R0 or R1		
SETB bit	Set direct bit	2	1	i		constant included in instruc		
CPL C	Complement Carry	•				constant included as byte	s 2 & 3	5 of
	flag	1	1		bit — 128 s			
CPL bit	Complement direct bit	2	1		1	oftware flags, any I/O pin,	contro	lot
ANL C,bit	AND direct bit to Carry				NOTES ON PROCE	s Dit AM ADDRESSING MODE	-	
	flag	2	2					
ANL C,/bit	AND complement of					nation address for LCALL a be anywhere within the 64-		
	direct bit to Carry	2	2			ory address space	r prog	ram
ORL C/bit	OR direct bit to Carry				addr11 — Desti	nation address for ACALL	2. A 13.41	0
001 0 // //	flag	2	2			e within the same 2-K page		r'
ORL C,/bit	OR complement of					am memory as the first by		A
	direct bit to Carry	2	2			ving instruction	e or up	-
MOV C,/bit	Move direct bit to Carry					and all conditional jumps	include	an
	flag	2	1		8-bit	offset byte, Range is + 12	7-128	- 411
MOV bit,C	Move Carry flag to				bytes	relative to first byte of the	followi	na
	direct bit	2	2		instru	ction		
						ighted Corporation	1979	
·····				10-27				

intel

M8751H-8

20E D 4826175 0081783 6 M8751H-8 PRELIMINARY

T.49-19-59

		Table	2. Instruction Opco	aes in nexi	adecimal U	ruer	
Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
0	1	NOP		33	1	RLC `	A
1	2	AJMP	code addr	34	2	ADDC	A,#data
)2	3	LIMP	code addr	35	2	ADDC	A,data addr
)3	1	RR	A	36	1	ADDC	A,@R0
	1	INC	Â	37	1	ADDC	A,@R1
04		INC	data addr	38	1	ADDC	A,R0
05	2		@R0	39	1 1	ADDC	A,R1
06	1	INC		38 3A	1		4 00
07	1	INC	@R1		1	ADDC	A,R2
08	1	INC	RO	3B	1	ADDC	A,R4
09	1	INC	R1	30			A,R5
0A	1	INC	R2	3D	1	ADDC	
0B	1	INC	R3	ЗE	1		< A,R6
0C	1	INC	R4	3F	1	ADDC	A,R7
0D	1	INC	R5	40	2	JC	code addr
0E	1	INC	R6	41	2	AJMP	code addr
0F	1	INC	R7	42	2	ORL	data addr,A
10	3	JBC	bit addr.code addr	43	3	ORL	data addr, # data
11	2	ACALL	code addr	44	2	ORL	A,#data
	3	LCALL	code addr	45	2	ORL	A,data addr
12		RRC	A	46	1	ORL	A,@R0
13	1		Â	47	1	ORL	A,@R1
14	1	DEC		48	1	ORL	A,R0
15	2	DEC	data addr	40	1	ORL	A,R1
16	1	DEC	@R0	1	1	ORL	A,R2
17	1	DEC	@R1	4A	-		•
18	1	DEC .	R0 .	48	1	ORL	A,R3
19	1	DEC	R1	4C	1	ORL	A,R4
1A [`]	1	DEC	R2	4D	1	ORL	A,R5
1B	1	DEC	R3	4E	1	ORL	A,R6
10	1	DEC	R4	4F	1	ORL	A,R7
1D	1	DEC	R5	50	2	JNC	code addr
1E	i	DEC	R6	51	2	ACALL	code addr
1F	1	DEC	B7	52	2	ANL ·	data addr,A
20	3	JB	bit addr.code addr	53	3	ANL	data addr, # dat
	2	AJMP	code addr	54	2	ANL	A.#data
21		RET	COUB addr	55	2	ANL	A,data addr
22	1			56	ĩ	ANL	A,@R0
23	1	RL	A	50	1	ANL	A,@R1
24	2	ADD	A,#data		1	ANL	A,R0
25	2	ADD	A,data addr	58	1		
26	1	ADD	A,@R0	59	-	ANL	A,R1
27	1	ADD	A,@R1	5A	1	ANL	A,R2
28	1	ADD	A,R0	5B	1	ANL	A,R3
29	1	ADD	A,R1	5C	1	ANL	A,R4
2Å	1	ADD	A,R2	5D	1	ANL	A,R5
2B	1	ADD	A,R3	5E	1	ANL	A,R6
20 20	1	ADD	A,R4	5F	1	ANL	A,R7
	1	ADD	A,R5	60	2.	JZ	code addr
2D		• •		61	2	AJMP	code addr
2E	1	ADD	A,R6	62	2	XRL	data addr,A
2F	1	ADD	A,R7	63	3	XRL	data addr, #da
30	з	JNB	bit addr,code addr			XRL	A,#data
31	2	ACALL	code addr	64	2		•
32	1	RETI		65	2	XRL	A,data addr

intel

M8751H-8

.

202 🌔 🖿 4826175 0081784 8 🖿 Preliminary

-								T-29-19-5	
T·19-19.59 Table 2. Instruction Opcodes in Hexadecimal Order (Continued)									
	Number of Bytes	Mnemonic	Operands		Hex Code	Number of Bytes	Mnemonic	Operands	
	1	XRL	A,@R0		99	1	SUBB	A,R1	
	1	XRL	A,@R1		9A	1	SUBB	A,R2	
	1	XRL	A,R0		9B	1	SUBB	A,R3	
	1	XRL	A,R1		9C	1	SUBB	A,R4	
	1	XRL	A,R2		9D	1	SUBB	A,R5	
	1 .	XRL	A,R3		9E	1.	SUBB	A,R6	
	1	XRL	A,R4		9F	1	SUBB	A,R7	
	1	XRL	A,R5		AO	2	ORL	C,/bit addr	
	¹ 1	XRL	A,R6		A1	2	AJMP	code addr	
	1	XRL	A,R7		A2	2	MOV	C,bit addr	
	2	JNZ	code addr		A3	1	INC	DPTR	
	2	ACALL	code addr		A4	1.	MUL	AB	
	2	ORL	C,bit addr		A5	•	reserved		
	1	JMP	@A+DPTR		A6	2	MOV	@R0,data addr	
	2	MOV	A,#data		A7	2	MOV	@R1,data addr	
	3	MOV	data addr. # data		AB	2	MOV	R0,data addr	
	2	MOV	@R0.#data		A9	2	MOV	R1.data addr	
	2	MOV	@R1,#data		AA	2	MOV	R2,data addr	
	2	MOV	R0, #data		AB	2	MOV	R3.data addr	
	2	MOV	R1,#data		AC	2	MOV	R4.data addr	
	2	MOV	R2, #data		AD	2	MOV	R5,data addr	
	2	MOV	R3,#data		AE	2	MOV	-	
	2	MOV	R4, #data		AF	. 2	MOV	R6,data addr	
	. 2	MOV	R5, #data		80	2		R7,data addr	
	2	MOV	R6, #data		B1	2	ANL ACALL	C,/bit addr	
	2	MOV	R7, #data		B2	2		code addr	
	2	SJMP	code addr		B2 B3	2	CPL	bit addr	
	2	AJMP	code addr		83 B4	-		C .	
	2					3	CJNE	A,#data,code addr	
	2	MOVC	C,bit addr		85	3	CJNE	A,data addr,code addr	
			A,@A+PC		86	3	CJNE	@R0,#data,code addr	
	1	DIV .	AB		B7	3	CJNE	@R1,#data,code addr	
	3	MOV	data addr, data addr		BB	3	CJNE	R0, # data, code addr	
	2	MOV .	data addr,@R0		B9	3	CJNE	R1,#data,code addr	
	2	MOV	data addr,@R1		BA	3	CJNE	R2, # data,code addr	
	2	MOV	data addr,R0		BB	3	CJNE	R3, # data, code addr	
	2	MOV	data addr,R1		BC	3	CJNE	R4, #data,code addr	
	2	MOV	data addr,R2		8D	3	CJNE	R5,#data,code addr	
-	2	MOV	data addr,R3		BE	3	CJNE	R6, #data,code addr	
	2	MOV	data addr,R4		BF	3	CJNE	R7, #data,code addr	
	2	MOV	data addr,R5		CO	2	PUSH	data addr	
	2	MOV	data addr,R6		C1	2	AJMP	code addr	
	2	MOV	data addr,R7		C2	2	CLR	bit addr	
	3	MOV	DPTR,#data		C3	1	CLR	С	
	2	ACALL	code addr		C4	1	SWAP	Α ι	
	2	MOV	bit addr,C		C5	2	XCH	A,data addr	
	1	MOVC	A,@A+DPTR		C6	1	XCH	A,@R0	
	2	SUBB	A, #data		C7	i	XCH	A.@R1	
	2	SUBB	A,data addr		C8	1	XCH	A,R0	
	1	SUBB	A,@R0		C9	1	XCH	A,R1	
	1	SUBB	A,@R1		ČĂ	1	XCH	A,R2	
	1	SUBB	A,R0		CB	1	XCH	A,R3	

R4,code addr

R6,code addr

R7,code addr

A,@DPTR

code addr

A,data addr

A,@R0

A,@R1

A

R5,code addr .

DJNZ

DJNZ

DJNZ

DJNZ

MOVX

AJMP

MOVX

MOVX

CLR

MOV

2

2

2

2

1

2

1

1

1

2

M8751H-8

20E D 📟 4826175 0081785 T 📖 PRELIMINARY

INTel

Hex

Code

cc CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA

DB

DC

DD

DE

DF

E0

E1

E2

E3

E4

E5

Table 2. Instruction Opcodes in Hexadecimal Order (Continued)										
Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands				
1	XCH	A.R4	E6	1	MOV	A,@R0				
i	XCH	A,R5	E7	1	MOV	A,@R1				
i	XCH	A,R6	E8	1	MOV	A,RO				
1	XCH	A.R7	E9	1	MOV	A,R1				
2	POP	data addr	EA	1	MOV	A,R2				
2	ACALL	code addr	EB	1	MOV	A,R3				
2	SETB	bit addr	É EC	1.4	MOV	A,R4				
1	SETB	C	ED	- 1	MOV	A,R5				
i	DA	A I	EE	1 1	MOV "	A,R6				
3	DJNZ	data addr.code addr	EF	1.	MOV ,	, A,R7				
1 .	XCHD	A.@R0	FO	. 1	MOVX	@DPTR,A				
i.	XCHD	A.@R1	F1	2	AĆALL	code addr				
2	DJNZ	R0.code addr	F2	1	MOVX	@R0,A				
2	DJNZ	R1.code addr	F3	. 1	MOVX	@R1,A				
2	DJNZ	R2,code addr	F4	1	CPL	Α				
2	DJNZ	R3.code addr	F5	2	MOV	data addr, A				
4	00114	11010000 0000			MOV	ADO A				

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

T. 19-19.59

@R0,A

@R1,A

R0,A

R1,A

R2,A

R3,A

R4,A

R5,A

R6,A

R7,A

MOV

1

1

1

1

1

1

1

1

1

1