

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am29827/Am29828

High Performance Buffers

DISTINCTIVE CHARACTERISTICS

- High-speed buffers and inverters
 - Noninverting tpD = 5.0ns typ
 - Inverting tpp = 4.5ns typ
- · 200mV minimum input hysteresis on input data ports
- Three-state outputs glitch-free during power-up and down. Outputs have Schottky clamp to ground
- 48mA commercial IOL, 32mA military IOL
- High capacitance load capability
- · Low capacitance inputs and outputs

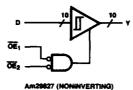
GENERAL DESCRIPTION

The Am29827 and Am29828 10-bit bus buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR-ed output enables for maximum control flexibility. All buffer data inputs have 200mV minimum input hysteresis to provide improved noise rejection.

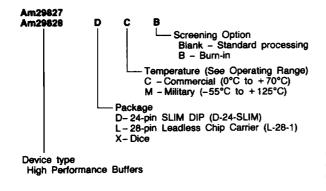
All of the Am29800 high performance interface family are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottky diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.

BLOCK DIAGRAM

Am29827/Am29828 10-BIT BUFFERS



Am29827/Am29828 10-BIT BUS DRIVERS


LOGIC SYMBOL

LS000390

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations				
Am29827 Am29828	DC, DCB, DM, DMB LC, LCB, LM, LMB XC, XM			

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

PIN DESCRIPTION Pin No. Name 1/0 Description ŌE; When both are LOW the outputs are enabled. When either one or both are HIGH the outputs are HI-Z. Di 1 10-bit data input. Υi 0

FUNCTION TABLES

Am29827 (Noninverting)

10-bit data output.

Inp	uts	Outputs	
ŌĒ	Di	Yj	Function
L	Н	н	Transparent
L	L	L	Transparent
н	Х	Z	HI-Z

Am29828 (Inverting)

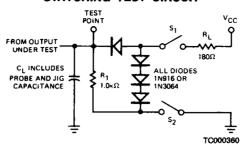
Inp	uts	Outputs	
ŌĒ	Dį	Ψì	Function
L	Н	L	Transparent
L	7	н	Transparent
Н	X	Z	HI-Z

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C Ambient Temperature with
Power Applied55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs
for High Output State1.5V to VCCmax
DC Input Voltage0.5V to +5.5V
Output Current, into Outputs100mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES


Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	+ 4.75V to +5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to +5.5V
Operating ranges define those limits	s over which the function-
ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

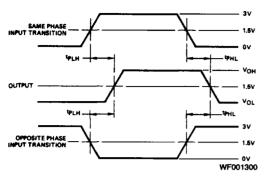
Parameters	Description	Tes	Conditions	Min	Typ (Note 1)	Max	Units
	_	V _{CC} = MIN	I _{OH} = −15mA	2.4			
VOH	Output HIGH Voltage	VIN - VIH or VIL	I _{OH} = ~24mA	2.0			1 V
		V _{CC} = MIN	MIL, IOL = 32mA			0.5	T
VOL	Output LOW Voltage	VIN = VIH or VIL	COM'L, IOL = 48mA			0.5	1 ′
VIH	Input HIGH Level	Guaranteed input logic for all inputs	al HIGH voltage	2.0			٧
V _{IL}	Input LOW Level	Guaranteed input logic for all inputs	Guaranteed input logical LOW voltage for all inputs			0.8	٧
VI	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -18mA				-1.2	V
VHYST	Input Hysteresis	Output under test connected to Switching Test Circuit		200			m∨
hL.	Input LOW Current	V _{CC} = MAX V _{IN} = 0.4V	V _{CC} = MAX V _{IN} = 0.4V			-1.0	mA
ŀН	Input HIGH Current	V _{CC} = MAX, V _{IN} = 2.7V	V _{CC} = MAX, V _{IN} = 2.7V			50	μA
l _l	Input HIGH Current	V _{CC} = MAX, V _{IN} = 5.5V	V _{CC} = MAX, V _{IN} = 5.5V			1.0	mA
lоzн	Output Off-State Output Current (HI-Z)	V _{CC} = MAX, V ₀ = 2.4V	V _{CC} = MAX, V ₀ = 2.4V			50	μΑ
lozL	Output Off-State Output Current (HI-Z)	V _{CC} = MAX, V ₀ = 0.4V	V _{CC} = MAX, V ₀ = 0.4V			-50	μΑ
lsc	Output Short Circuit Current	V _{CC} = MAX	V _{CC} = MAX			- 250	mA
		Current Vcc = MAX	Over Temperature Range			80	
lcc	Supply Current		+ 70°C			75	mA
		Outputs Open	Outputs Open + 125°C			70	

Note: 1 Typical Units are V_{CC} = 5V, T_A = 25°C

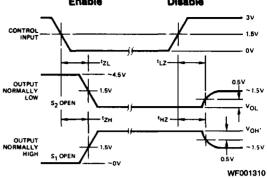
SWITCHING TEST CIRCUIT

Note: Pulse Generator for All Pulses: Rate ≤ 10MHz;

SWITCHING CHARACTERISTICS (T_A = +25°C, V_{CC} = 5.0V)


Parameters	Description	Test Conditions	Min	Тур	Max	Units
t _Р LH		C _L = 50pF		4.8	6.0	ns
tpHL	Data (D _i) to Output (Y _i)	CL = 50pF		5.2	6.2	ns
tры	Am29827 (Noninverting)	C _t = 300pF		8.0	11	ns
†PHL		CE = 300pr		10.8	13.2	ns
tplH	Data (D _i) to Output (Y _i) Am29828 (Inverting)	C - 50-5		4.0	5.2	ns
tpHL		C _L ≈ 50pF		4.9	5.9	ns
tры		0 000.5		7.3	10	ns
tpHL		C _L = 300pF		10.5	12.9	ns
tzH		0 - 50-5		6.5	12	ns
tzı	Output Enable Time OE to Yi	C _L = 50pF		9.5	12	ns
tzH		D - 000-F		11	17	ns
tzı		C _L = 300pF		18	21	ns
tuz		0 - 5-5		3.5	8.0	ns
1LZ	Output Disable Time OE to Yi	C _L = 5pF		3.5	8.0	ns
tuz		C - 50-F		11.2	16	ns
t_z		C _L = 50pF		4.5	11	ns

SWITCHING CHARACTERISTICS over operating range unless otherwise specified


Parameters	Description	Test Conditions	COMMERCIAL		MILITARY		
			Min	Max	Min	Max	Units
tplH		C _L = 50pF		8		10	ns
tpHL .	Data (Di) to Output (Yi)	CL = SUPF		8		10	ns
tрын	Am29827 (Noninverting)	C _L = 300pF		15		17	nŝ
tpHL	7	CL = 300pr		15		17	ns
tp _L H		C _L = 50pF		7.0		9.0	ns
tpHL	Data (D _i) to Output (Y _i) Am29828 (Inverting)	CL = sopr		7.5		9.5	ns
tpuH		C 200-F		14		16	ns
teht.	7	C _L = 300pF		14		16	ns
tzH		C _L = 50pF		15		17	ns
tzı	Output Enable Time OE to Yi	CL = SOPE		15		17	ns
tzH	7	G _ 000=E		20		22	ns
tzL	7	C _L = 300pF		23		25	ns
tuz		0 - 5-5		9		10	ns
tLZ	Output Disable Time OE to Yi	C _L = 5pF		9		10	ns
tHZ	7	0 - 50-5		17		19	กร
tı.z	7	C _L = 50pF		12		12	ns

SWITCHING WAVEFORMS

PROPAGATION DELAY

ENABLE AND DISABLE TIMES Enable Disable

- Notes: 1. Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.
 - S₁ and S₂ of Load Circuit are closed except where shown.