

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

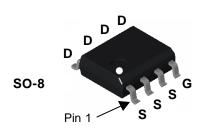
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

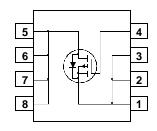
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FDS9435A

30V P-Channel PowerTrench MOSFET

General Description


This PChannel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V-25V).


Applications

- · Power management
- · Load switch
- · Battery protection

Features

- -5.3 A, -30 V $R_{DS(ON)} = 50 \text{ m}\Omega$ @ $V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 80 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$
- · Low gate charge
- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- · High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V_{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±25	V
l _D	Drain Current - Continuous	(Note 1a)	-5.3	Α
	- Pulsed		-50	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1	
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range	-55 to +175	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	125	°C/W
R ₀ JC	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS9435A	FDS9435A	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		-23		mV/°C
l _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
Igssf	Gate-Body Leakage, Forward	$V_{GS} = 25 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -25 \text{ V}$ $V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1	-1.7	-3	V
ΔV _{GS(th)} ΔT _J	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μA, Referenced to 25°C		4.5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -10 \text{ V}, I_D = -5.3 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -4 \text{ A}$ $V_{GS} = -10 \text{ V}, I_D = -5.3 \text{ A}, T_J = 125^{\circ}\text{C}$		42 65 57	50 80 77	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-25			Α
g FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -5.3 \text{ A}$		10		S
Dynamic	Characteristics			I		
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$		528		pF
Coss	Output Capacitance	f = 1.0 MHz		132		pF
C _{rss}	Reverse Transfer Capacitance			70		pF
Switchin	g Characteristics (Note 2)			I		-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, \qquad I_{D} = -1 \text{ A},$		7	14	ns
t _r	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		13	24	ns
t _{d(off)}	Turn-Off Delay Time			14	25	ns
t _f	Turn-Off Fall Time			9	17	ns
Qg	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -4 \text{ A},$		10	14	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -10 V		2.2		nC
Q _{gd}	Gate-Drain Charge	1		2		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings		1	1	
ls	Maximum Continuous Drain-Source				-2.1	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -2.1 A (Note 2)		-0.8	-1.2	V

Notes:

R_{BA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BAC} is guaranteed by design while R_{BCA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s,$ Duty Cycle < 2.0%

Typical Characteristics

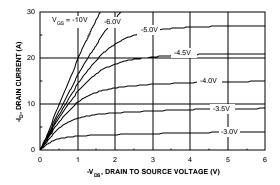


Figure 1. On-Region Characteristics.

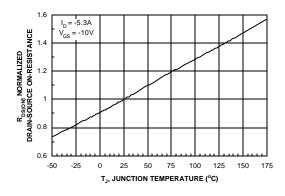


Figure 3. On-Resistance Variation with Temperature.

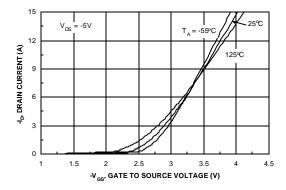


Figure 5. Transfer Characteristics.

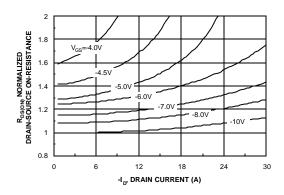


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

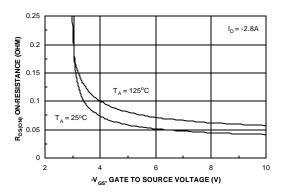


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

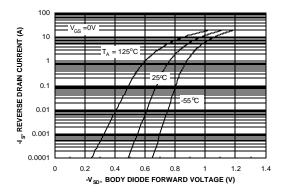
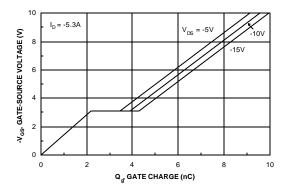



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

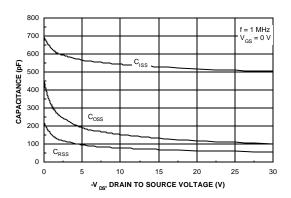
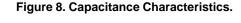
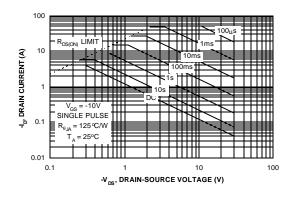




Figure 7. Gate Charge Characteristics.

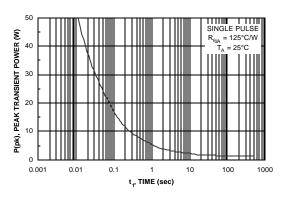


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

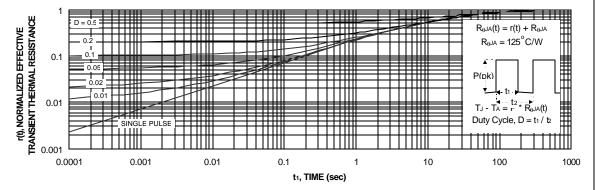


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™
FACT™ MicroPak™ Quiet Series™ UHC™
FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Preliminary	First Production	supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			

Rev. H4

Search:

Go

DATASHEETS, SAMPLES, BUY TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Home >> Find products >>

FDS9435A

30V P-Channel PowerTrench MOSFET

Contents

- General description
- Features
- Applications
- Order Samples
- Models
- Qualification Support
- Product status/pricing/packaging

General description

This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V – 25V).

back to top

Features

- -5.3 A, -30 V
 - \circ R_{DS(ON)} = 50 m Ω @ V_{GS} = -10 V
 - \circ R_{DS(ON)} = 80 m Ω @ V_{GS} = -4.5 V.
- Low gate charge
- Fast switching speed
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability

back to top

Applications

- Power management
- Load switch
- Battery protection

BUY

Datasheet Download this

e-mail this datasheet

This page Print version

This product Use in FETBench Analysis

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

back to top

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FDS9435A	Full Production	Full Production	\$0.393	<u>SO-8</u>	8	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 2 (2-Digit Date Code) & T (Die Trace Code) Line 2: FDS Line 3: 9435A

^{*} Fairchild 1,000 piece Budgetary Pricing

^{**} A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDS9435A is available. Click here for more information .

back to top

Models

Package & leads Condition Temperature range Software version Revision						
PSPICE						
SO-8-8 Electrical 25°C to 125°C Orcad 9.1 Oct 2, 2003						

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FDS9435A

back to top

© 2007 Fairchild Semiconductor

