

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74F365 Hex Buffer/Driver with 3-STATE Outputs

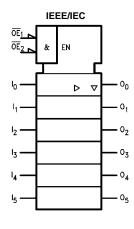
FAIRCHILD

SEMICONDUCTOR

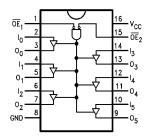
74F365 Hex Buffer/Driver with 3-STATE Outputs

General Description

Features


- The 74F365 is a hex buffer and line driver designed to be employed as a memory and address driver, clock driver and bus-oriented transmitter/receiver.
- 3-STATE buffer outputs
 Outputs sink 64 mA
- Bus-oriented

Ordering Code:


Order Number	Package Number						
74F365SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow					
74F365PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Function Table

l	nputs		Output
OE ₁	OE ₂	I	0
L	L	L	L
L	L	н	н
х	н	х	Z
н	Х	Х	Z
= LOW Voltage Level	Χ :	 Immaterial 	

L = LOW Voltage LevelX = ImmaterialH = HIGH Voltage LevelZ = High Impedance

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input (Active LOW)	1.0/0.033	20 µA/20 µA		
I _n	Inputs	1.0/0.033	20 μA/20 μA		
O _n	Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)		

74F365

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\mbox{\scriptsize CC}}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $I_{OL} \mbox{(mA)}$

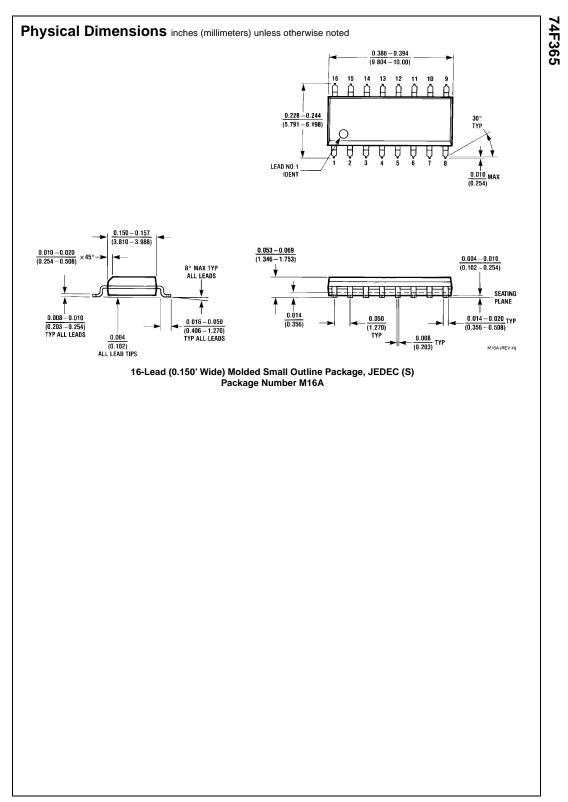
Recommended Operating Conditions

Free Air Ambient Temperature
Supply Voltage

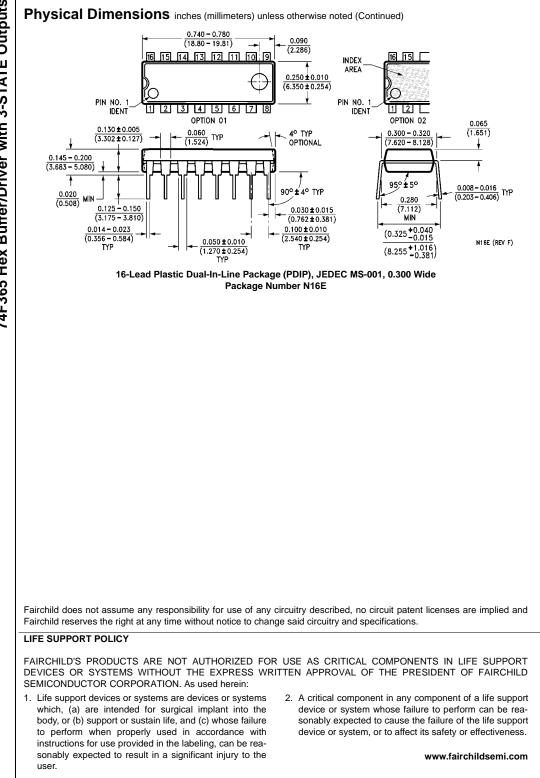
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH 10% V _{CC}	2.4					I _{OH} = -3 mA
	Voltage 10% V _{CC}	2.0			V	Min	I _{OH} = -15 mA
	5% V _{CC}	2.7					I _{OH} = -3 mA
V _{OL}	Output LOW 10% V _{CC}			0.55	V	Min	I _{OL} = 64 mA
	Voltage						
IIH	Input HIGH Current			20	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current			400			V 7 0V
	Breakdown Test			100	μA	0.0	V _{IN} = 7.0V
IIL	Input LOW Current			-20	μA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current			50	μA	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current			-50	μA	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
I _{CEX}	Output HIGH Leakage Current			250	μA	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test			500	μA	0.0V	V _{OUT} = 5.25V
I _{CCH}	Power Supply Current		25	35	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		44	62	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current		35	48	mA	Max	V _O = HIGH Z


AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.6	6.5	2.0	7.0	2.0	7.0	ns
t _{PHL}	I _n to O _n	2.5	4.9	7.0	2.0	7.0	2.0	7.5	
t _{PZH}	Enable Time	2.5	5.1	9.5	2.0	8.5	2.5	10.0	20
t _{PZL}		2.5	5.7	9.0	2.0	8.5	2.5	9.5	ns
t _{PHZ}	Disable Time	2.0	3.6	6.5	1.5	6.5	2.0	7.0	
t _{PLZ}		2.0	4.4	6.5	1.5	9.0	2.0	7.0	ns

www.fairchildsemi.com

www.fairchildsemi.com

74F365 Hex Buffer/Driver with 3-STATE Outputs

www.fairchildsemi.com