

STRUCTURE	Silicon Monolithic Integrated G	Circuit	
PRODUCT SERIES	BTL Driver for car-CD		
TYPE	BA5814FM		
PACKAGE OUTLINES	Figure 1 (Plastic Mold)	POWER DISSIPATION	Figure 2
BLOCK DIAGRAM	Figure 3	APPLICATION	Figure 4
TEST CIRCUIT	Figure 5	SWITCH TABLE	Figure 6

FUCTIONS

- \odot 5ch Driver for BTL.
- $\odot\,$ Available in a HSOP-M28 power package
- $\ensuremath{\bigcirc}$ Incorporates a thermal shut down circuit.
- \bigcirc Wide dynamic range (6.0V (Typ.) at Vcc=8V,RL=8 Ω)
- ◎ Incorporates two trimmer regulator. (external PNP Tr.is necessary)

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Parameter	Symbol	Limit	Unit
Supply voltage	Vcc	13.5	V
Power dissipation	Pd	2.2*	W
Operating temperature	Topr	-40~85	°C
Strage temperature	Tstg	-55~150	°C

Reduce power by 17.6mW for each degree above 25° C, on a glass epoxy PCB (70mm×70mm,1.6mm thick).

GUARANTEED OPERATING RANGES

VCC 4.5 - 15.2 V

Parameter	Symbol	MIN	TYP	MAX	Unit	Conditions	Test circuit
Quiescent current	ICC	_	20	30	mA	input open	Figure 5
<btl driver=""></btl>							
Output offset voltage	VOOF	-50	0	50	mV		Figure 5
High level output voltage 1	VOM1	5.4	6.0	_	v	CH1, 2, 3	Figure 5
High level output voltage 2	VOM2	3.6	4.0	_	V	CH4, 5	Figure 5
Closed loop voltage gain 1	GVC1	9.5	12.0	14.5	dB	CH1 RIN=10k Ω	Figure 5
Closed loop voltage gain 2	GVC2	15.5	18.0	20.5	dB	CH2 RIN=10k Ω	Figure 5
Closed loop voltage gain 3	GVC3	16.5	18.0	19.5	dB	СН3, 4, 5	Figure 5
Mute on voltage	VMTON	—	_	0.5	V		Figure 5
Mute off voltage	VMTOFF	2.0	_	_	V		Figure 5
Input current for mute pin	IMUTE	—	90	140	μ A	VMUTE=5V	Figure 5
Input current for bias pin	IBIAS	_	75	120	μ A		Figure 5
<regulator></regulator>							
Threshold voltage of RE_I pin	VREITH	1.14	1.2	1.26	V		Figure 5
Output sink current of RE_O pin	ISIN	10	50	_	mA		Figure 5
Input bias current of RE_I pin	IBOP	_	20	300	nA		Figure 5

• Electrical characteristic (Unless otherwise noted, Ta=25°C, Vcc=8V, PVcc45=5V, BIAS=2.5V, RL=8 Ω)

◎ This product is not designed for protection against radioactive rays.

Figure 1

(UNIT: mm)

Figure No. : E X / 4 / - 500 /.

Power dissipation

Pd : power dissipation

 $\begin{array}{c} \text{Conditions: On less than 3\% (percentage occupied by copper foil),} \\ & 70\text{mm} \times 70\text{mm 1.6mm thick, glass epoxy mounting.} \end{array}$

Figure 2

Unit of resister [Ω] T.S.D:Thermal shut down

● 峁	岩子説明				
No.	Symbol	Function	No.	Symbol	Function
1	RVcc	Vcc (for REG)	15	VO5(+)	Noninverted output of CH5
2	BIAS	Input for reference voltage (bias)	16	VO5(-)	Inverted output of CH5
3	MUTE1	CH3 Mute control	17	VO4(+)	Noninverted output of CH4
4	MUTE2	CH1,4,5 Mute control	18	VO4(-)	Inverted output of CH4
5	VIN1	Input for CH1	19	GND	GND (for PRE部、POWER)
6	VIN2	Input for CH2	20	PVcc12	Vcc (for CH1,2 POWER)
7	VIN3	Input for CH3	21	PVcc45	Vcc (for CH4,5 POWER)
8	VCC	Vcc (for PRE,CH3 POWER)	22	VIN4	Input for CH4
9	VO3(-)	Inverted output of CH3	23	VIN5	Input for CH5
10	VO3(+)	Noninverted output of CH3	24	RGND	GND (for REG)
11	VO2(-)	Inverted output of CH2	25	RE_I1	Regulator1 terminal of output feedback
12	VO2(+)	Noninverted output of CH2	26	RE_O1	Regulator1 terminal connected base of
					output transistor
13	VO1(-)	Inverted output of CH1	27	RE_I2	Regulator2 terminal of output feedback
14	VO1(+)	Noninverted output of CH1	28	RE_O2	Regulator2 terminal connected base of
					output transistor

notes) Symbol of + and - (output of drivers) means polarity to input pin.

(For example if voltage of pin.10 is high, pin,9 is low)

•Equivalent circuit of terminal

•Application circuit 1

Figure 4

REV. B

•Test circuit

Figure 5

REV. B

•Switch circuit

Figure 6

•Switch table

(%VCC=8V,PREVCC45=5V,BIAS=2.5V, SW=A position)

OCurrent of circuit (MUTE=2V, BIAS=2.5V)

Parameter	S	witc	h	Input v	voltage	(V)	Comments	Test
rarameter	1	2	3				comments	position
Quiescent current								AM1+AM21

⊖BTL Driver

Parameter	S	witc	h	Input v	oltage	(V)	Comments	Test
rarameter	1	2	3	MUTE1,2	BIAS	VIN	Comments	position
Output offset voltage	В			2.0	2.5	2.5		VO
Wigh lovel output veltage	\downarrow			\downarrow	\rightarrow	5.0		VO
High level output voltage	\downarrow			\downarrow	\rightarrow	0		VO
Classed lase multiple and	\downarrow			\downarrow	\downarrow	2.8	$20\log\{(VO-VOOF)/0.3\}$	VO
Closed loop voltage gain	\downarrow			\downarrow	\downarrow	2.2	201og{(V0 +V00F)/0.3}	VO
Mutel,2 on voltage				0.5	\downarrow	5.0	Output being mute	VO
Mutel,2 off voltage				2.0	\rightarrow	\rightarrow	Output being not mute	VO
Input current for mute pin				5.0	\downarrow	2.5		AM3, AM4
Input current for bias pin				2.0	\rightarrow	\rightarrow		AM2

\bigcirc Regulator

Demonstration	S	witc	h	Input v	voltage	(V)	Common to	Test
Parameter	1	2	3	MUTE	BIAS	Vregb	Comments	position
Threshold voltage of RE_I pin				1.8	2.5	-		Vreg-p
Output sink current of RE_O pin		В		\rightarrow	\downarrow	0.2		Iregb
Input bias current of RE_I pin		С	В	\downarrow	\downarrow	-	VBOP/(1M*2)	VBOP

1

NOTES

- Thermal shut down circuit built in.
 When IC chip temperature rise to 175°C (Typ.), output current is muted. And when IC chip temperature reach 150°C (Typ.), the driver circuit starts up.
- When mute-terminal (pin.3,4) voltage is open or lowered below 0.5V, output current is muted.
 Under normal use condition, pull up the mute terminal above 1.5V
 (3 pin → mute ch3 4 pin → mute ch1,4,5)
- 3. When bias-terminal (pin.2) voltage is below 0.7V (Typ.), driver is muted. Under normal use condition, set above 1.1V
- 4. When supply voltage falls below 3.7V (Typ.), output current is muted. Next time supply voltage rises to 3.9V (Typ.), the driver circuit start.
- 5. All drivers are muted by thermal shut down, supply voltage fall and bias voltage fall. Output terminal of muted BTL driver applies internal bias voltage (PVCC/2(V)).
- 6. Internal resistor allocate to input parts of driver have temperature characteristic about +1200ppm/°C (Typ.). Using external resister to change driver's gain, consider about temperature characteristic.
- VREGO (output voltage of Regulator) is outputted with obtaining dispersion of VREITH (threshold voltage of RE_I pin) and external resistor. VREGO is described like under numerical formula by influence of IBOP, and choose the exact external resister on considering IBOP.

$$V_{\text{REGO}} = V_{\text{REITH}} \times \left(\frac{R_1}{R_2} + 1\right) - R_1 \times I_{\text{BOP}} \quad (R_1, R_2 : \text{see page 7/11})$$

- 8. The capacitor between output of regulator and GND also has a property prevents oscillation. Use capacitor with good temperature characteristic.
- 9. The supply voltage of regulator (pin 1) is partly one of internal current source. And GND of Regulator (pin 24) is partly one of internal current source. When not using regulator, connect them to each external voltage supply and GND.
- 1 0. Insert the by-pass capacitor between Vcc-terminal and GND-terminal of IC as near as possible. (approximately 0.1μ F)
- 1 1. Heat dissipation fins are attached to the GND on the inside of the package. Make sure to be connected to the external GND.
- In principle, do not apply voltage below sub-potential of IC to terminal.
 Examine in consideration of operation margin, when each driver output falls below sub-voltage of IC (GND) due to counter-electromotive-force of load.
- 1 3. Output pin is to avoid short-circuiting with PVcc and GND and other output pins. And, be fully careful in the direction of an integrated circuit on the substrate. An integrated circuit is damaged, and smoke may come out by the case.

	Notes
	or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The content	specified herein is subject to change for improvement without notice.
"Products").	specified herein is for the purpose of introducing ROHM's products (hereinafte If you wish to use any such Product, please be sure to refer to the specifications e obtained from ROHM upon request.
illustrate the	application circuits, circuit constants and any other information contained hereir standard usage and operations of the Products. The peripheral conditions mus account when designing circuits for mass production.
However, sh	vas taken in ensuring the accuracy of the information specified in this document nould you incur any damage arising from any inaccuracy or misprint of such ROHM shall bear no responsibility for such damage.
examples or implicitly, an other parties	al information specified herein is intended only to show the typical functions of and f application circuits for the Products. ROHM does not grant you, explicitly o y license to use or exercise intellectual property or other rights held by ROHM and s. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment c	es specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu- ices, electronic appliances and amusement devices).
The Product	s specified in this document are not designed to be radiation tolerant.
	A always makes efforts to enhance the quality and reliability of its Products, a a fail or malfunction for a variety of reasons.
against the failure of any shall bear n	ure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the y Product, such as derating, redundancy, fire control and fail-safe designs. ROHM o responsibility whatsoever for your use of any Product outside of the prescribed t in accordance with the instruction manual.
system whic may result in instrument, controller or of the Produ	ts are not designed or manufactured to be used with any equipment, device or the requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- other safety device). ROHM shall bear no responsibility in any way for use of any ucts for the above special purposes. If a Product is intended to be used for any I purpose, please contact a ROHM sales representative before purchasing.
be controlle	I to export or ship overseas any Product or technology specified herein that may d under the Foreign Exchange and the Foreign Trade Law, you will be required to nse or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/