<u>Is</u>i

Sound Processor Series for Car Audios

Sound processors with built-in 2-band Equalizer BD3481FS, BD3482FS

Description

BD3481FS/BD3482FS are sound processor having in it the stereo 4ch input selector, gain amplifier, stereo primary volume, 4ch fader volume, 2-band equalizer. There is no need for any particular microcomputer control In order to reduce various shock sounds of switching. Therefore, work to develop software can be reduced drastically.

Features

- 1. Reduce the shock sounds of switching of Primary / Fader Volume attenuation and Tone by using advanst switching circuit.
- 2. Taking in a filter of bass and treble inside can reduce the external parts.
- 3. Bi-CMOS process
- 4. Reduce the noise of through mode by using tone-pass route.
- 5. Built-in ground isolation amplifier input, suited for external stereo input.
- 6. The package of this IC is SSOP-A20/SSOP-A24. It gathers a sound input terminals, sound output terminals respectively and it arranges them, to be arranging facilitates the laying-out of PCB pattern and reduces PCB area to one-way in the flow of the signal.

●Use

Best suited for car audio, and can be used for other audio units including TV, mini compo and micro compo.

Product Lineup

BD3481FS	BD3482FS
—	\bigcirc
SSOP-A20	SSOP-A24
	BD3481FS — SSOP-A20

1) Data format of I²C BUS is common for BD3481FS/BD3482FS.

2) Pin configuration are almost same for BD3481FS/BD3482FS.

●Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Symbol Limit	
Impressed Voltage	VCC	10.0	V
Input Voltage	VIN	VCC+0.3~GND-0.3	V
Power Dissipation	BD3481FS	940 ※1	m\//
	BD3482FS	1000 ※2	TIVV
Storage Temperature	Tastg	-55~+150	°C

%1 At Ta=25°C or higher, this value is decreaced to 7.5mW/°C.Thermal resistance θ ja=133.3 (°C/W)%2 At Ta=25°C or higher, this value is decreaced to 8mW/°C.Thermal resistance θ ja=125.0 (°C/W)

When Rohm standard board is mounted. Rohm standard board: size:

size: $70 \times 70 \times 1.6 \text{ (mm}^3)$

material: FR4 glass-epoxy substrate (copper foil area: not more than 3%).

Operating Range

Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	7.0	-	9.5	V
Temperature	Topr	-40	_	+85	°C

※ Design against radiation-proof isn't made.

Electrical Characteristic

(Unless specified particularly, Ta=25°C, VCC=8.5V, f=1kHz, Vin=1Vrms, Rg=600Ω, RL=10kΩ, A input, Input gain 0dB, Primary Volume 0dB, Bass 0dB, Treble 0dB, Fader Volume 0dB)

Å.	lterr	Symbol	Limit		1 10:4	Condition	
BLO	item	Symbol	Min. Typ. Max.		Unit	Condition	
	Current upon no signal	IQ	_	15	30	mA	No signal
	Voltage gain	Gv	-1.5	0	1.5	dB	Gv = 20log(VOUT/VIN)
	Channel balance	СВ	-1.5	0	1.5	dB	CB = GV1-GV2
	Total harmonic distortion	THD+N	_	0.005	0.05	%	VOUT = 1Vrms, BW = 400-30KHz
ERA	Output noise voltage *	V _{NO}	_	6	25	μ Vrms	$Rg = 0\Omega$, $BW = IHF-A$
GENI	Residual output noise voltage *	V _{NOR}	_	2	10	μ Vrms	Fader = $-\infty$ dB, Rg = 0Ω BW = IHF-A
	Cross-talk between channels *	СТС	-	-100	-90	dB	Rg = 0Ω, BW = IHF-A CTC = 20log(VOUT/VOUT)
	Ripple rejection	RR	_	-70	-40	dB	Rg=0Ω f=100Hz VRR=100mVrms RR=20log(VOUT/VCCIN)
	Input impedance (A,B,C)	R _{IN}	70	100	130	kΩ	
TOR	Input impedance (D)	R _{IN}	35	50	65	kΩ	
ELECT	Maximum input voltage	V _{IM}	2.1	2.3	-	Vrms	VIM at THD+N(VOUT)=1% BW = 400-30KHz
UT SI	Cross-talk between selectors *	CTS	_	-100	-90	dB	$Rg = 0 \Omega$, BW = IHF-A CTS = 20log(VOUT/VOUT)
dNI	Common mode rejection ratio *	CMRR	50	65	_	dB	DP1 and DN input DP2 and DN input, BW = IHF-A CMRR = 20log(VOUT/VIN)
z	Minimum input gain	$G_{\text{IN MIN}}$	-2	0	+2	dB	Input gain = 0dB, VIN = 200mVrms Gin = 20log(VOUT/VIN)
UT GAI	Maximum input gain	G _{IN MAX}	18	20	22	dB	Input gain = 20dB VIN = 100mVrms Gin = 20log(VOUT/VIN)
ЧN	Step resolution	GIN STEP	_	1	—	dB	Input gain = $0dB \sim +20dB$
	Gain set error	G _{IN ERR}	-2	0	+2	dB	
MUTE	Mute attenuation *	G _{MUTE}	_	-105	-85	dB	Mute ON Gmute=20log(VOUT/VIN) BW = IHF-A
UME	Maximum gain	G _{V MAX}	+10	+12	+14	dB	Volume = +12dB VIN=100mVrms Gv=20log(VOUT/VIN)
Y VOL	Maximum attenuation	$G_{V\text{MIN}}$	-43	-40	-37	dB	Volume = -40dB Gv=20log(VOUT/VIN)
IAR	Step resolution	$G_{V\text{STEP}}$	_	1	—	dB	GAIN & ATT=+12dB~-40dB
RIN	Attenuation set error 1	$G_{V\text{ERR1}}$	-2	0	2	dB	GAIN & ATT=+12dB~-15dB
₫.	Attenuation set error 2	G_{VERR2}	-3	0	3	dB	ATT=-16dB~-40dB
	Maximum boost gain	$G_{\text{B}\text{BST}}$	18	20	22	dB	Gain = 20dB, f = 100Hz VIN = 100mVrms Gb = 20log(VOUT/VIN)
S	Maximum cut gain	G _{B CUT}	-22	-20	-18	dB	Gain = -20dB, f = 100Hz VIN = 2Vrms Gb = 20log(VOUT/VIN)
BAS	Step resolution	G _{B STEP}	_	1	—	dB	f = 100Hz
	Gain set error	$G_{\text{B}\text{ERR}}$	-2	0	2	dB	f = 100Hz
	Center frequency	f _B	_	100	_	Hz	Gain = +20dB
	Quality factor	Q _B	_	1	_	_	f = 100Hz Gain = +20dB
	Maximum boost gain	G _{T BST}	18	20	22	dB	Gain = +20dB, f = 10kHz VIN=100mVrms Gt = 20log(VOUT/VIN)
3LE	Maximum cut gain	G _{T CUT}	-22	-20	-18	dB	Gain = -20dB, f = 10kHz VIN=2Vrms Gt = 20log(VOUT/VIN)
REE	Step resolution	$G_{T STEP}$	-	1	—	dB	f = 10kHz
⊢	Gain set error	G _{T ERR}	-2	0	2	dB	f = 10kHz
	Center frequency	f _T	-	10	—	kHz	Gain = +20dB
	Quality factor	QT	_	1	_	_	f = 10kHz, Gain = +20dB

ЭГ	Maximum attenuation *	G_{FMIN}	-	-100	-90	dB	Gf = 20log(VOUT/VIN) BW = IHF-A, Att. = - ∞ dB
olum	Step resolution	G _{F STEP}	—	1	_	dB	Att. = 0∼-62dB
er <	Attenuation set error 1	G _{F ERR1}	-2	0	2	dB	Att. = 0∼-15dB
Fad	Attenuation set error 2	G _{F ERR2}	-3	0	3	dB	Att. = -16∼-47dB
	Attenuation set error 3	G _{F ERR3}	-4	0	4	dB	Att=-48~-62dB
₽⊢	Output impedance	R _{OUT}	—	_	50	Ω	VIN=100mVims
27	Maximum output voltage	V _{OM}	2.0	2.2	-	Vrms	THD+N=1%, BW=400-30KHz
		T _{M1}	—	0.6	—		
DNG	Advance switching time of mute	T _{M1} T _{M2}	_	0.6	_	msec	Advance switching ON
ICHING	Advanst switching time of mute	Т _{м1} Т _{м2} Т _{м3}		0.6 1.0 1.4		msec	Advanst switching ON
WITCHING	Advanst switching time of mute	T _{M1} T _{M2} T _{M3} T _{M4}		0.6 1.0 1.4 3.2	- - -	msec	Advanst switching ON
ST SWITCHING	Advanst switching time of mute	T _{M1} T _{M2} T _{M3} T _{M4} T _{SFT1}	- - -	0.6 1.0 1.4 3.2 4.6		msec	Advanst switching ON
ANST SWITCHING	Advanst switching time of mute Advanst switching time of	T _{M1} T _{M2} T _{M3} T _{M4} T _{SFT1} T _{SFT2}	- - - -	0.6 1.0 1.4 3.2 4.6 9.3	- - - -	msec	Advanst switching ON
ADVANST SWITCHING	Advanst switching time of mute Advanst switching time of Volume, Fader, Tone gain and att.	T _{M1} T _{M2} T _{M3} T _{M4} T _{SFT1} T _{SFT2} T _{SFT3}	- - - - - -	0.6 1.0 1.4 3.2 4.6 9.3 18.6	- - - - - -	msec	Advanst switching ON Advanst switching ON

% VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement.
% Phase between input / output is same.

Timing chart

Electrical specifications and timing for bus lines and I/O stages

Fig.1 Definition of timing on the I²C-bus

Table 1 Characteristics of the SDA and SCL bus lines for I²C-bus devices

	Paramator	Symbol	Fast-mod	LInit		
	Falanielei	Symbol	Min.	Max.	Unit	
1	SCL clock frequency	fSCL	0	400	kHz	
2	Bus free time between a STOP and START condition	tBUF	1.3	_	μS	
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	tHD;STA	0.6	_	μS	
4	LOW period of the SCL clock	tLOW	1.3	_	μS	
5	HIGH period of the SCL clock	tHIGH	0.6	_	μS	
6	Set-up time for a repeated START condition	tSU;STA	0.6	_	μS	
7	Data hold time:	tHD;DAT	0*	_	μS	
8	Data set-up time	tSU; DAT	100	_	ns	
9	Rise time of both SDA and SCL signals	tR	20+Cb	300	ns	
10	Fall time of both SDA and SCL signals	tF	20+Cb	300	ns	
11	Set-up time for STOP condition	tSU;STO	0.6	_	μS	
12	Capacitive load for each bus line	Cb	_	400	pF	

All values referred to VIH min. and VIL max. Levels (see Table 2). * A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

Table 2 Characteristics of the SDA and SCL I/O stages for I²C-bus devices

	Parameter	Symbol	Fast-mod	Linit	
	Falanielei	Symbol	Min.	Max.	Unit
13	LOW level input voltage : fixed input levels	VIL	-0.5	1	V
14	HIGH level input voltage : fixed input levels	VIH	2.3	—	V
15	Hysteresis of Schmitt trigger inputs : fixed input levels	Vhys	n/a	n/a	V
16	Pulse width of spikes which must be suppressed by the input filter.	Tsp	0	50	ns
17	LOW level output voltage (open drain or open collector) : at 3mA sink current	VOL1	0	0.4	V
18	Output fall time from VIHmin. to VIHmax. with a bus capacitance from 10 pF to $400pF$: with up to 3mA sink current at VOL1	tOF	20+0.1Cb *1)	250 *2)	ns
19	Input current each I/O pin with an input voltage between 0.4V and 0.9 VDDmax.	li	-10	10	μA
20	Capacitance for each I/O pin.	Ci	_	10	pF

n/a = not applicable
maximum V_{IH}=V_{DDmax}+0.5V , V_{DDMAX}=5.5V
Cb = capacitance of one bus line in pF.
Note that the maximum tF for the SDA and SCL bus lines quoted in Table 1 (300ns) is longer than the specified maximum tOF for the output stages (250ns). This allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in Fig. 1 without exceeding the maximum specified tF.

●CONTROL SIGNAL SPECIFICATION

Data

Items to be set	Select	MSB Data L					LSB		
items to be set	(hex)	D7	D6	D5	D4	D3	D2	D1	D0
Initial Setup 1	01	Advanst switching ON/OFF	0	Advanst tim Volume/F	switching e of ader/Tone	0	0 Advanst switching time of Mute		switching f Mute
Input Selector	04	0	0	0	0	0	I	nput Selecto	r
Input gain	06	Mute ON/OFF	0	0			Input Gain		
Volume gain	20			Prim	ary Volume (Gain / Attenu	ation		
Fader 1ch Front	28			Fac	ler Volume G	ain / Attenua	tion		
Fader 2ch Front	29			Fac	ler Volume G	ain / Attenua	tion		
Fader 1ch Rear	2A			Fac	ler Volume G	ain / Attenua	tion		
Fader 2ch Rear	2B			Fac	ler Volume G	ain / Attenua	tion		
Bass gain	51	Bass Boost/Cut	0	0			Bass Gain		
Treble gain	57	Treble Boost/Cut	Treble 0 0 Treble Gain						
Test Mode	F0	0	0	0	0	0	0	0	0
	F1	0	0	0	0	0	0	0	0
System Reset	FE	1	0	0	0	0	0	0	1

※In function changing of the hatching part, it works advanst switching.

Slave address

MSB							LSB	_
A6	A5	A4	A3	A2	A1	A0	R/W	
1	0	0	0	0	0	0	0	
N DI		0450/DD04		14				

%Please refer to [BD3481FS/BD3482FS User's Manual for I²C BUS communication] about the detail of control signal specification.

Fig.2 Application Circuit Diagram (BD3481FS)

Application Circuit Diagram (BD3482FS)

Fig.3 Application Circuit Diagram (BD3482FS)

Descriptions of terminal

Terminal Number	Terminal Name	Description
1	A1	A input terminal of 1ch
2	A2	A input terminal of 2ch
3	B1	B input terminal of 1ch
4	B2	B input terminal of 2ch
5	C1	C input terminal of 1ch
6	C2	C input terminal of 2ch
7	DP1	D positive input terminal of 1ch
8	DN	D Negative input terminal
9	DP2	D positive input terminal of 2ch
10	NC	No connection terminal
11	OUTR2	Rear output terminal of 2ch
12	OUTR1	Rear output terminal of 1ch
13	OUTF2	Front output terminal of 2ch
14	OUTF1	Front output terminal of 1ch
15	VCC	Power supply terminal
16	MUTE	A terminal for external compulsory mute
17	SCL	Serial communication clock terminal
18	SDA	Serial communication data terminal
19	GND	GND terminal
20	FIL	VCC/2 terminal

1	Terminal Number	Terminal Name	Description
	1	A1	A input terminal of 1ch
	2	A2	A input terminal of 2ch
	3	B1	B input terminal of 1ch
	4	B2	B input terminal of 2ch
	5	C1	C input terminal of 1ch
	6	C2	C input terminal of 2ch
	7	DP1	D positive input terminal of 1ch
	8	DN	D negative input terminal
	9	DP2	D positive input terminal of 2ch
	10	NC	No connection terminal
	11	NC	No connection terminal
	12	IG1	Input gain terminal of 1ch
	13	IG2	Input gain terminal of 2ch
	14	NC	No connection terminal
	15	OUTR2	Rear output terminal of 2ch
	16	OUTR1	Rear output terminal of 1ch
	17	OUTF2	Front output terminal of 2ch
	18	OUTF1	Front output terminal of 1ch
	19	VCC	Power supply terminal
	20	MUTE	A terminal for external compulsory mute
	21	SCL	Serial communication clock terminal
	22	SDA	Serial communication data terminal
	23	GND	Analog grounding terminal
	24	FIL	VCC/2 terminal

Unit R : [Ω]

C : [F]

CH1=2V CH2=2V AC 10:1 AC 10:1	500us/div NORM:2MS/s
ç	OUTF1
ат 1.00но 17.1.1.000нона 17.47.1.00000на 17.47.1.1.00000на 17.47.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	OUTF2
at 111111111111111111111111111111111111	

Fig.17 ADVANST SWITCHING WAVEFORM 1 Fig.18 ADVANST SWITCHING WAVEFORM 2

Cautions on use

- (1) Data in entries are representative design values and are not guaranteed values of the items.
- (2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- (3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.

(4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

(5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.

(6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

(7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

Part No.

BD3482FS

(Unit:mm) The contents described herein are correct as of March. 2007

Seoul

Masan Dalian

Beijing Tianjin

Tianjin Wuxi

Zhuhai

Taipei

Manila

0.36 ± 0.1

0.8

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.LTD.

Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

0

Ree

C

• Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaid warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any su infringement, or arising from or connected with or related to the use of such devices. ms any

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer

The products described herein utilize silicon as the main mate

The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Excellence in Electronics

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http://www.rohm.com

Published by

LSI	Business	Promotion	Dept.

TEL: +82-2-8182-700 FAX: +82-2-8182-715 TEL: +82-55-240-6234 FAX: +82-55-240-6236 TEL: +86-411-8230-8549 FAX: +86-411-8230-8537 TEL: +86-10-8525-2483 FAX: +86-10-8525-2489 TEL: +86-22-23029181 FAX: +86-22-23029183 Shanghai TEL: +86-21-6279-2727 FAX: +86-21-6247-2066 TEL: +86-571-87658072 TEL: +86-25-8689-0015 FAX: +86-571-87658071 FAX: +86-25-8689-0393 Hangzhou Naniing Ningbo Qingdao TEL: +86-574-87654201 FAX: +86-574-87654208 TEL: +86-532-5779-312 FAX:+86-532-5779-653 Suzhou TEL: +86-512-6807-1300 FAX: +86-512-6807-2300 TEL: +86-22-23029181 FAX: +86-22-23029183 TEL: +86-510-82702693 FAX: +86-510-82702992 Hong Kong Dongguan TEL: +852-2-740-6262 FAX: +852-2-375-8971 TEL: +86-769-393-3320 FAX: +86-769-398-4140 TEL: +86-591-8801-8698 FAX: +86-591-8801-8690 Fuzhou TEL: +86-20-8364-9796 TEL: +86-755-8307-3001 FAX: +86-20-8364-9707 FAX: +86-755-8307-3003 Guangzhou Shenzhen Xiamen TEL: +86-592-239-8382 FAX: +86-592-239-8380 TEL: +86-756-3232-480 FAX: +86-756-3232-460 TEL: +866-2-2500-6956 FAX: +866-2-2503-2869 Kaohsiung TEL: +886-7-237-0881 TEL: +65-6332-2322 FAX: +886-7-238-7332 FAX: +65-6332-5662 Singapore TEL: +63-2-807-6872 FAX: +63-2-809-1422

Kuala Lu Penang Dusseldorf Munich Stuttgart France United Kingdom Denmark Barcelona Malaga Hungary Poland Russia San Diego Atlanta Boston Chicago Dallas Denvei Nashville Guadalajara

Bangkok

1pir

EL: +66-2-254-4890	FAX: +66-2-256-6334
EL: +60-3-7958-8355	FAX: +60-3-7958-8377
EL: +60-4-6585084	FAX: +60-4-6585167
EL: +49-2145-9210	FAX: +49-2154-921400
EL: +49-8161-48310	FAX: +49-8161-483120
EL: +49-711-72723710	FAX: +49-711-72723720
EL: +33-1-5697-3060	FAX: +33-1-5697-3080
EL: +44-1-908-306700	FAX: +44-1-908-235788
EL: +45-3694-4739	FAX: +45-3694-4789
EL: +34-9375-24320	FAX: +34-9375-24410
EL: +34-9520-20263	FAX: +34-9520-20023
EL: +36-1-4719338	FAX: +36-1-4719339
EL: +48-22-5757213	FAX: +48-22-5757001
EL: +7-95-980-6755	FAX: +7-95-937-8290
EL: +1-858-625-3630	FAX: +1-858-625-3670
EL: +1-770-754-5972	FAX: +1-770-754-0691
EL: +1-978-371-0382	FAX: +1-928-438-7164
EL: +1-847-368-1006	FAX: +1-847-368-1008
EL: +1-972-312-8818	FAX: +1-972-312-0330
EL: +1-303-708-0908	FAX: +1-303-708-0858
EL: +1-615-620-6700	FAX: +1-615-620-6702
EL: +52-33-3123-2001	FAX: +52-33-3123-2002

Direction of feed

When you order , please order in times the amount of package quantity.

Catalog No.06T421A '07.3 ROHM(C)1000 HK

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

Appendix1-Rev2.0

rohm