Sound Processor Series for Car Audios

Sound processors with built-in 2-band Equalizer BD3481FS, BD3482FS

-Description

BD3481FS/BD3482FS are sound processor having in it the stereo 4ch input selector, gain amplifier, stereo primary volume, 4 ch fader volume, 2-band equalizer. There is no need for any particular microcomputer control In order to reduce various shock sounds of switching. Therefore, work to develop software can be reduced drastically.
-Features

1. Reduce the shock sounds of switching of Primary / Fader Volume attenuation and Tone by using advanst switching circuit.
2. Taking in a filter of bass and treble inside can reduce the external parts.
3. Bi-CMOS process
4. Reduce the noise of through mode by using tone-pass route.
5. Built-in ground isolation amplifier input, suited for external stereo input.
6. The package of this IC is SSOP-A20/SSOP-A24. It gathers a sound input terminals, sound output terminals respectively and it arranges them, to be arranging facilitates the laying-out of PCB pattern and reduces PCB area to one-way in the flow of the signal.

OUse
Best suited for car audio, and can be used for other audio units including TV, mini compo and micro compo.
-Product Lineup

Item	BD3481FS	BD3482FS
Output terminal of Input Gain	-	\bigcirc
PKG	SSOP-A20	SSOP-A24

1) Data format of $I^{2} C$ BUS is common for BD3481FS/BD3482FS.
2) Pin configuration are almost same for BD3481FS/BD3482FS.

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Limit	Unit
Impressed Voltage	VCC	10.0	V
Input Voltage	VIN	VCC+0.3~GND-0.3	V
Power Dissipation	BD3481FS	$940 ※ 1$	mW
	BD3482FS	$1000 ※ 2$	
Storage Temperature	Tastg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

$※ 1 \mathrm{At} \mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher, this value is decreaced to $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Thermal resistance θ ja $=133.3\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$※ 2 \mathrm{At} \mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher, this value is decreaced to $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Thermal resistance θ ja $=125.0\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
When Rohm standard board is mounted.
Rohm standard board:
size: $\quad 70 \times 70 \times 1.6\left(\mathrm{~mm}^{3}\right)$
material: FR4 glass-epoxy substrate (copper foil area: not more than 3\%).

Operating Range

Item	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	VCC	7.0	-	9.5	V
Temperature	Topr	-40	-	+85	${ }^{\circ} \mathrm{C}$

[^0]-Electrical Characteristic
(Unless specified particularly, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=8.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, Vin=1Vrms, $\mathrm{Rg}=600 \Omega, \mathrm{RL}=10 \mathrm{k} \Omega$, A input, Input gain 0 dB , Primary Volume OdB, Bass OdB, Treble OdB, Fader Volume OdB)

$\begin{aligned} & \text { 등 } \\ & \text { O} \\ & \text { B } \end{aligned}$	Item	Symbol	Limit			Unit	Condition
			Min.	Typ.	Max.		
	Current upon no signal	IQ	-	15	30	mA	No signal
	Voltage gain	G_{V}	-1.5	0	1.5	dB	Gv = 20log(VOUT/VIN)
	Channel balance	CB	-1.5	0	1.5	dB	CB = GV1-GV2
	Total harmonic distortion	THD+N	-	0.005	0.05	\%	VOUT $=1 \mathrm{Vrms}$, BW $=400-30 \mathrm{KHz}$
	Output noise voltage *	$\mathrm{V}_{\text {No }}$	-	6	25	$\mu \mathrm{Vrms}$	$\mathrm{Rg}=0 \Omega$, $\mathrm{BW}=\mathrm{IHF}-\mathrm{A}$
	Residual output noise voltage *	$\mathrm{V}_{\text {Nor }}$	-	2	10	$\mu \mathrm{Vrms}$	$\begin{aligned} & \text { Fader }=-\infty \mathrm{dB}, \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Cross-talk between channels *	CTC	-	-100	-90	dB	$\begin{aligned} & \mathrm{Rg}=0 \Omega, \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \\ & \mathrm{CTC}=20 \mathrm{log}(\text { VOUT } / \text { VOUT }) \\ & \hline \end{aligned}$
	Ripple rejection	RR	-	-70	-40	dB	$\begin{aligned} & \hline \mathrm{Rg}=0 \Omega \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{VRR}=100 \mathrm{mV} \mathrm{VmS} \\ & \mathrm{RR}=20 \log (\mathrm{VOUT} / \mathrm{VCCIN}) \end{aligned}$
	Input impedance (A,B,C)	$\mathrm{R}_{\text {IN }}$	70	100	130	k Ω	
	Input impedance (D)	$\mathrm{R}_{\text {IN }}$	35	50	65	k Ω	
	Maximum input voltage	V_{19}	2.1	2.3	-	Vrms	$\begin{aligned} & \text { VIM at THD }+ \text { N(VOUT }=1 \% \\ & \text { BW }=400-30 \mathrm{KHz} \\ & \hline \end{aligned}$
	Cross-talk between selectors *	CTS	-	-100	-90	dB	$\begin{aligned} & \hline \mathrm{Rg}=0 \Omega, \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \\ & \mathrm{CTS}=20 \mathrm{log}(\mathrm{VOUT} / \mathrm{VOUT}) \\ & \hline \end{aligned}$
	Common mode rejection ratio *	CMRR	50	65	-	dB	DP1 and DN input DP2 and DN input, BW = IHF-A CMRR $=20 \log ($ VOUT/VIN)
$\begin{aligned} & \frac{2}{4} \\ & 0 \\ & 5 \\ & 5 \\ & 0 \\ & \end{aligned}$	Minimum input gain	$\mathrm{G}_{\text {IN min }}$	-2	0	+2	dB	$\begin{aligned} & \text { Input gain = OdB, VIN = 200mVrms } \\ & \text { Gin }=20 \log (\text { VOUTTVIN }) \end{aligned}$
	Maximum input gain	$\mathrm{GIn}_{\text {max }}$	18	20	22	dB	$\begin{array}{\|l\|l\|} \hline \text { Input gain }=20 \mathrm{~dB} \\ \text { VIN }=100 \mathrm{mV} \mathrm{~ms} \\ \text { Gin }=20 \log (\mathrm{VOUT} / \mathrm{VIN}) \\ \hline \end{array}$
	Step resolution	$\mathrm{G}_{\text {IN Step }}$	-	1	-	dB	Input gain $=0 \mathrm{~dB} \sim+20 \mathrm{~dB}$
	Gain set error	$\mathrm{G}_{\text {IN ERR }}$	-2	0	+2	dB	
$\stackrel{\text { w }}{\stackrel{\rightharpoonup}{5}}$	Mute attenuation *	$\mathrm{G}_{\text {mute }}$	-	-105	-85	dB	Mute ON Gmute=20log(VOUT/VIN) $B W=I H F-A$
	Maximum gain	$\mathrm{G}_{\mathrm{vmax}}$	+10	+12	+14	dB	$\begin{array}{\|l\|} \hline \text { Volume }=+12 \mathrm{~dB} \\ \text { VIN }=100 \mathrm{mV} \mathrm{~ms} \\ \mathrm{Gv}=20 \log (\mathrm{VOUT} / \mathrm{VIN}) \end{array}$
	Maximum attenuation	$\mathrm{G}_{\mathrm{VMIN}}$	-43	-40	-37	dB	$\begin{aligned} & \text { Volume }=-40 \mathrm{~dB} \\ & \mathrm{Gv}=20 \log (\text { VOUT/VIN }) \end{aligned}$
	Step resolution	$\mathrm{G}_{\text {v Step }}$	-	1	-	dB	GAIN \& ATT=+12dB~-40dB
	Attenuation set error 1	$\mathrm{G}_{\text {VERR1 }}$	-2	0	2	dB	GAIN \& ATT $=+12 \mathrm{~dB} \sim-15 \mathrm{~dB}$
	Attenuation set error 2	$\mathrm{G}_{\mathrm{V} \text { ERR2 }}$	-3	0	3	dB	ATT=-16dB~-40dB
$\underset{\infty}{\substack{\infty}}$	Maximum boost gain	$\mathrm{GB}_{\text {в вт }}$	18	20	22	dB	$\begin{aligned} & \hline \text { Gain }=20 \mathrm{~dB}, \mathrm{f}=100 \mathrm{~Hz} \\ & \text { VIN }=100 \mathrm{mV} \text { rms } \\ & \text { Gb }=20 \log (\mathrm{VOUT} / \mathrm{VIN}) \\ & \hline \end{aligned}$
	Maximum cut gain	$\mathrm{G}_{\mathrm{B} \text { СUт }}$	-22	-20	-18	dB	$\begin{aligned} & \hline \text { Gain }=-20 \mathrm{~dB}, \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{VIN}=2 \mathrm{Vrms} \\ & \mathrm{~Gb}=20 \log (\text { VOUT } / \mathrm{VIN}) \\ & \hline \end{aligned}$
	Step resolution	$\mathrm{G}_{\mathrm{B} \text { SteP }}$	-	1	-	dB	$\mathrm{f}=100 \mathrm{~Hz}$
	Gain set error	$\mathrm{G}_{\mathrm{B} \text { ERR }}$	-2	0	2	dB	$\mathrm{f}=100 \mathrm{~Hz}$
	Center frequency	f_{B}	-	100	-	Hz	Gain $=+20 \mathrm{~dB}$
	Quality factor	Q_{8}	-	1	-	-	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \text { Gain }=+20 \mathrm{~dB} \end{aligned}$
$\begin{aligned} & \underset{\sim}{\underset{\sim}{w}} \\ & \stackrel{y}{\underset{\sim}{4}} \end{aligned}$	Maximum boost gain	$\mathrm{G}_{\text {t } \text { вSt }}$	18	20	22	dB	$\begin{aligned} & \text { Gain }=+20 \mathrm{~dB}, \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{VIN}=100 \mathrm{mVms} \\ & \mathrm{Gt}=20 \log (\mathrm{VOUT} / \mathrm{VIN}) \\ & \hline \end{aligned}$
	Maximum cut gain	$\mathrm{G}_{\text {t cut }}$	-22	-20	-18	dB	$\begin{aligned} & \hline \text { Gain }=-20 \mathrm{~dB}, \mathrm{f}=10 \mathrm{kHz} \\ & \text { VIN }=2 \mathrm{Vrms} \\ & \text { Gt }=20 \log (\text { VOUT } / \mathrm{VIN}) \\ & \hline \end{aligned}$
	Step resolution	$\mathrm{G}_{\text {T STEP }}$	-	1	-	dB	$\mathrm{f}=10 \mathrm{kHz}$
	Gain set error	$\mathrm{G}_{\text {TERR }}$	-2	0	2	dB	$\mathrm{f}=10 \mathrm{kHz}$
	Center frequency	f_{T}	-	10	-	kHz	Gain $=+20 \mathrm{~dB}$
	Quality factor	$\mathrm{Q}_{\text {T }}$	-	1	-	-	$\mathrm{f}=10 \mathrm{kHz}$, Gain $=+20 \mathrm{~dB}$

	Maximum attenuation *	$\mathrm{G}_{\text {F Min }}$	-	-100	-90	dB	$\begin{aligned} & \mathrm{Gf}=20 \log (\mathrm{VOUT} / \mathrm{VIN}) \\ & \mathrm{BW}=1 \mathrm{HF}-\mathrm{A}, \mathrm{Att} .=-\infty \mathrm{dB} \end{aligned}$
	Step resolution	$\mathrm{G}_{\text {F STEP }}$	-	1	-	dB	Att. $=0 \sim-62 \mathrm{~dB}$
	Attenuation set error 1	$\mathrm{G}_{\text {FERR1 }}$	-2	0	2	dB	Att. $=0 \sim-15 \mathrm{~dB}$
	Attenuation set error 2	$\mathrm{G}_{\text {FERR2 }}$	-3	0	3	dB	Att. $=-16 \sim-47 \mathrm{~dB}$
	Attenuation set error 3	$\mathrm{G}_{\text {FERR3 }}$	-4	0	4	dB	Att $=-48 \sim-62 \mathrm{~dB}$
$\underset{0}{\circ}$	Output impedance	$\mathrm{R}_{\text {OUT }}$	-	-	50	Ω	$\mathrm{VIN}=100 \mathrm{mVms}$
	Maximum output voltage	$\mathrm{V}_{\text {ом }}$	2.0	2.2	-	Vrms	THD $+\mathrm{N}=1 \%, \mathrm{BW}=400-30 \mathrm{KHz}$
ЭNIHO」IMS \perp SNV \forall OV	Advanst switching time of mute	$\mathrm{T}_{\mathrm{M} 1}$	-	0.6	-	msec	Advanst switching ON
		$\mathrm{T}_{\mathrm{M} 2}$	-	1.0	-		
		$\mathrm{T}_{\text {M }}$	-	1.4	-		
		$\mathrm{T}_{\mathrm{M} 4}$	-	3.2	-		
	Advanst switching time of Volume, Fader, Tone gain and att.	$\mathrm{T}_{\text {SFT1 }}$	-	4.6	-	msec	Advanst switching ON
		$\mathrm{T}_{\text {SFT2 }}$	-	9.3	-		
		$\mathrm{T}_{\text {SFT3 }}$	-	18.6	-		
		$\mathrm{T}_{\text {SFT4 }}$	-	37.2	-		

※ VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for $*$ measurement. ※ Phase between input / output is same.

- Timing chart

Electrical specifications and timing for bus lines and I/O stages

Fig. 1 Definition of timing on the $\mathrm{I}^{2} \mathrm{C}$-bus

Table 1 Characteristics of the SDA and SCL bus lines for $I^{2} C$-bus devices

Parameter		Symbol	Fast-mode ${ }^{2} \mathrm{C}$-bus		Unit	
		Min.	Max.			
1	SCL clock frequency		fSCL	0	400	kHz
2	Bus free time between a STOP and START condition	tBUF	1.3	-	$\mu \mathrm{S}$	
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	tHD;STA	0.6	-	$\mu \mathrm{S}$	
4	LOW period of the SCL clock	tLOW	1.3	-	$\mu \mathrm{S}$	
5	HIGH period of the SCL clock	tHIGH	0.6	-	$\mu \mathrm{S}$	
6	Set-up time for a repeated START condition	tSU;STA	0.6	-	$\mu \mathrm{S}$	
7	Data hold time:	tHD;DAT	0*	-	$\mu \mathrm{S}$	
8	Data set-up time	tSU; DAT	100	-	ns	
9	Rise time of both SDA and SCL signals	tR	$20+\mathrm{Cb}$	300	ns	
10	Fall time of both SDA and SCL signals	tF	$20+C b$	300	ns	
11	Set-up time for STOP condition	tSU;STO	0.6	-	$\mu \mathrm{S}$	
12	Capacitive load for each bus line	Cb	-	400	pF	

All values referred to VIH min. and VIL max. Levels (see Table 2).

* A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

Table 2 Characteristics of the SDA and SCL I/O stages for I ${ }^{2}$ C-bus devices

Parameter		Symbol	Fast-mode devices		Unit	
		Min.	Max.			
13	LOW level input voltage : fixed input levels		VIL	-0.5	1	V
14	HIGH level input voltage : fixed input levels	VIH	2.3	-	V	
15	Hysteresis of Schmitt trigger inputs : fixed input levels	Vhys	n/a	n/a	V	
16	Pulse width of spikes which must be suppressed by the input filter.	Tsp	0	50	ns	
17	LOW level output voltage (open drain or open collector) : at 3 mA sink current	VOL1	0	0.4	V	
18	Output fall time from VIHmin. to VIHmax. with a bus capacitance from 10 pF to 400 pF : with up to 3 mA sink current at VOL1	tOF	$20+0.1 \mathrm{Cb}$ *1)	$250 \begin{array}{rr} & \\ & \text { *2) } \\ \hline \end{array}$	ns	
19	Input current each I/O pin with an input voltage between 0.4 V and 0.9 VDDmax.	Ii	-10	10	$\mu \mathrm{A}$	
20	Capacitance for each I/O pin.	Ci	-	10	pF	

n/a = not applicable

1) maximum $\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {DDmax }}+0.5 \mathrm{~V}, \mathrm{~V}_{\text {DDMAX }}=5.5 \mathrm{~V}$
2) $\mathrm{Cb}=$ capacitance of one bus line in pF .
3) Note that the maximum tF for the SDA and SCL bus lines quoted in Table 1 (300 ns) is longer than the specified maximum tOF for the output stages (250ns). This allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in Fig. 1 without exceeding the maximum specified tF.

CONTROL SIGNAL SPECIFICATION

Data

Items to be set	Select Address (hex)	MSB		Data				LSB	
		D7	D6	D5	D4	D3	D2	D1	D0
Initial Setup 1	01	Advanst switching ON/OFF	0	$\begin{aligned} & \text { Advanst switching } \\ & \text { time of } \\ & \text { Volume/Fader/Tone } \end{aligned}$		0	0	Adva tim	hing te
Input Selector	04	0	0	0	0	0	Input Selector		
Input gain	06	Mute ON/OFF	0	0	Input Gain				
Volume gain	20	Primary Volume Gain / Attenuation							
Fader 1ch Front	28	Fader Volume Gain / Attenuation							
Fader 2ch Front	29	Fader Volume Gain / Attenuation							
Fader 1ch Rear	2 A	Fader Volume Gain / Attenuation							
Fader 2ch Rear	2B	Fader Volume Gain / Attenuation							
Bass gain	51	Bass Boost/Cut	0	0	Bass Gain				
Treble gain	57	Treble Boost/Cut	0	0	Treble Gain				
Test Mode	F0	0	0	0	0	0	0	0	0
	F1	0	0	0	0	0	0	0	0
System Reset	FE	1	0	0	0	0	0	0	1

※In function changing of the hatching part, it works advanst switching.

Slave address
MSB

A6	A5	A4	A3	A2	A1	A0	R/W
1	0	0	0	0	0	0	0

[^1] signal specification.

Fig. 2 Application Circuit Diagram (BD3481FS)

Terminal Number	Terminal Name	Description
1	A1	A input terminal of 1ch
2	A2	A input terminal of 2ch
3	B1	B input terminal of 1ch
4	B2	B input terminal of 2ch
5	C1	C input terminal of 1ch
6	C2	C input terminal of 2ch
7	DP1	D positive input terminal of 1ch
8	DN	D Negative input terminal
9	DP2	D positive input terminal of 2ch
10	NC	No connection terminal
11	OUTR2	Rear output terminal of 2ch
12	OUTR1	Rear output terminal of 1ch
13	OUTF2	Front output terminal of 2ch
14	OUTF1	Front output terminal of 1ch
15	VCC	Power supply terminal
16	MUTE	A terminal for external compulsory mute
17	SCL	Serial communication clock terminal
18	SDA	Serial communication data terminal
19	GND	GND terminal
20	FIL	VCC/2 terminal
19		
1		

- Application Circuit Diagram (BD3482FS)

Terminal Number	Terminal Name	Description
1	A1	A input terminal of 1ch
2	A2	A input terminal of 2ch
3	B1	B input terminal of 1ch
4	B2	B input terminal of 2ch
5	C1	C input terminal of 1ch
6	C2	C input terminal of 2ch
7	DP1	D positive input terminal of 1ch
8	DN	D negative input terminal
9	DP2	D positive input terminal of 2ch
10	NC	No connection terminal
11	NC	No connection terminal
12	IG1	Input gain terminal of 1ch
13	IG2	Input gain terminal of 2ch
14	NC	No connection terminal
15	OUTR2	Rear output terminal of 2ch
16	OUTR1	Rear output terminal of 1ch
17	OUTF2	Front output terminal of 2ch
18	OUTF1	Front output terminal of 1ch
19	VCC	Power supply terminal
20	MUTE	A terminal for external compulsory mute
21	SCL	Serial communication clock terminal
22	SDA	Serial communication data terminal
23	GND	Analog grounding terminal
24	FIL	VCC/2 terminal

Fig. 4 QUIESCENT CURRENT VS SUPPLY VOLTAGE

Fig. 7 BASS VOLTAGE GAIN VS FREQUENCY

Fig. 10 CROSS-TALK

BASS VOLTAGE GAIN :Gv [dB]
Fig. 13 BASS VOLTAGE GAIN VS OUTPUT NOISE

Fig. 5 TOTAL HARMONIC DISTORTION

Fig. 8 TREBLE VOLTAGE GAIN

Fig. 11 RIPPLE REJECTION RATIO VS FREQUENCY

TREBLE VOLTAGE GAIN :Gv [dB]
Fig. 14 TREBLE VOLTAGE GAIN VS OUTPUT NOISE

Fig. 6 VOLTAGE GAIN VS FREQUENCY

Fig. 9 CMRR VS
FREQUENCY

Fig. 12 VOLUME ATTENATION VS OUTPUT NOISE

FADER VOLTAGE GAIN :Gv [dB]
Fig. 15 FADER VOLTAGE GAIN VS
OUTPUT NOISE

Fig. 16 LOAD RESISTANCE VS MAXIMUM OUTPUT VOLTAGE

Fig. 17 ADVANST SWITCHING WAVEFORM 1

Fig. 18 ADVANST SWITCHING WAVEFORM 2

-Cautions on use

(1) Data in entries are representative design values and are not guaranteed values of the items.
(2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
(3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
(4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
(5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
(6) Shorts between pins and misinstallation When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
(7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

Selection of order type

Part No.
Package and forming specification

SSOP-A20
<Dimension>

SSOP-A24
<Dimension>

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000 pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand)

- The contents described herein are correct as of March, 2007
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD
- Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shal be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.
- The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment,communications devices,electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments,transportation equipment,aerospace machinery,nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http: // www. rohm. com

Published by

LSI Business Promotion Dept.

Contact us for further information about the products.

Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715	Bangkok	TEL: +66-2-254-4890	FAX: +66-2-256-6334
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236	Kuala Lumpur	TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537	Penang	TEL: +60-4-6585084	FAX: +60-4-6585167
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489	Dusseldorf	TEL: +49-2145-9210	FAX: +49-2154-921400
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183	Munich	TEL: +49-8161-48310	FAX: +49-8161-483120
Shanghai	TEL: +86-21-6279-2727	FAX: +86-21-6247-2066	Stuttgart	TEL: +49-711-72723710	FAX: +49-711-72723720
Hangzhou	TEL: +86-571-87658072	FAX: +86-571-87658071	France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080
Nanjing	TEL: +86-25-8689-0015	FAX: +86-25-8689-0393	United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788
Ningbo	TEL: +86-574-87654201	FAX: +86-574-87654208	Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789
Qingdao	TEL: +86-532-5779-312	FAX:+86-532-5779-653	Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410
Suzhou	TEL: +86-512-6807-1300	FAX: +86-512-6807-2300	Malaga	TEL: +34-9520-20263	FAX: +34-9520-20023
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183	Hungary	TEL: +36-1-4719338	FAX: +36-1-4719339
Wuxi	TEL: +86-510-82702693	FAX: +86-510-82702992	Poland	TEL: +48-22-5757213	FAX: +48-22-5757001
Hong Kong	TEL: +852-2-740-6262	FAX: +852-2-375-8971	Russia	TEL: +7-95-980-6755	FAX: +7-95-937-8290
Dongguan	TEL: +86-769-393-3320	FAX: +86-769-398-4140	San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670
Fuzhou	TEL: +86-591-8801-8698	FAX: +86-591-8801-8690	Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691
Guangzhou	TEL: +86-20-8364-9796	FAX: +86-20-8364-9707	Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164
Shenzhen	TEL: +86-755-8307-3001	FAX: +86-755-8307-3003	Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008
Xiamen	TEL: +86-592-239-8382	FAX: +86-592-239-8380	Dallas	TEL: +1-972-312-8818	FAX: +1-972-312-0330
Zhuhai	TEL: +86-756-3232-480	FAX: +86-756-3232-460	Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858
Taipei	TEL: +866-2-2500-6956	FAX: +866-2-2503-2869	Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702
Kaohsiung	TEL: +886-7-237-0881	FAX: +886-7-238-7332	Guadalajara	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002
Singapore	TEL: +65-6332-2322	FAX: +65-6332-5662			
Manila	TEL: +63-2-807-6872	FAX: +63-2-809-1422		Catalog No.06T421A	'07.3 ROHM(C) 1000 HK

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^2]
[^0]: ※ Design against radiation-proof isn't made.

[^1]: ※Please refer to 『BD3481FS/BD3482FS User's Manual for ${ }^{2}$ C BUS communication』about the detail of contro

[^2]: Copyright © 2008 ROHM CO.,LTD.
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121
 FAX : +81-75-315-0172

