Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT $\mu PD720150$

USB 2.0 HOST/PERIPHERAL CONTROLLER

 μ PD720150 is USB 2.0 Host/Peripheral controller, which complies with the universal serial bus specification revision 2.0. μ PD720150 has 16 bit CPU interface with 2 DMA slave function and connects to various CPUs. μ PD720150 is suitable for various embedded application.

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing. μ PD720150 User's Manual (Host Controller): S19374E μ PD720150 User's Manual (Peripheral Controller): S19375E

FEATURES

- (1) 2 USB ports
 - O Host dedicated port & Host/Peripheral selectable port
 - O Host/Peripheral concurrent operation

<configurable lisb<="" th=""><th>nortes</th></configurable>	nortes
<configurable td="" usb<=""><td>pons></td></configurable>	pons>

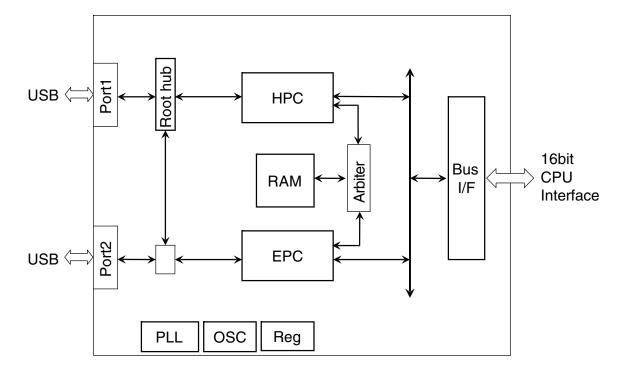
Port 1	Port 2
Host	_
-	Host
Host	Host
Host	Peripheral
-	Peripheral

- O Integrates USB transceiver
- (2) Low power consumption
 - O 1.5 V internal operating voltage
 - O Supports clock stop function during stand-by mode
 - O Reduces power consumption during Hi-Speed mode
- (3) Integration of external parts
 - O On chip USB termination and pull-up/-down resistor
 - O On chip regulator for 1.5 V internal power supply
- (4) 10 Configurable pipes
 - O Configurable transfer type for pipe1-9
 - O Supports all transfer types
 - (Control/Bulk/Interrupt/Isochronous)
 - O Internal FIFO for transfer pipe

(5) Host Controller

- O Supports High-/Full-/Low-Speed with auto detection
- O Higher data transfer rate with DMA auto-continuation function in processing of multiple transactions
- O USB hub support (limited usage)
- O Auto scheduling of (μ) SOF and periodic transfer
- O Automatic memory mapping
- O Port power control and over current detection
- (6) Peripheral Controller
 - O Supports High-/Full-Speed
 - O Interval setting for isochronous transfer
 - O Auto recovery of missing (µ)SOF
 - O Auto detection of Mass-storage class CBW command
 - O Supports USB remote wakeup
- (7) Others

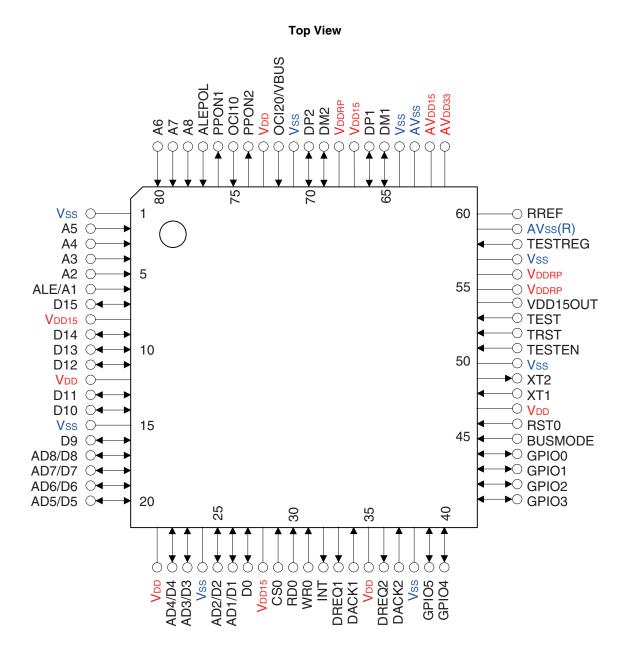
O 16-bit CPU bus Interface
 Separate / Multiplex bus selectable
 Supports little-/big-endian
 DMA 2ch (16/8 bit selectable)


- O 6 GPIO pins
- O System clock : 30 MHz crystal
- O 3.3 V single power supply

ORDERING INFORMATION

Part Number	Package	Remark
μPD720150GK-9EU-A	80-pin plastic TQFP (fine pitch) (12 $ imes$ 12)	Lead-free product
μPD720150F1-BAE-A	84-pin plastic FBGA (6×6)	Lead-free product
No part of this document may b	e copied or reproduced in any form or by any mea	as without the prior writte

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Corporation. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.


BLOCK DIAGRAM

Bus I/F	: 16bit CPU interface with 2 DMA slave mode. Bus mode can be selectable (Separate mode or multiplex mode).
HPC	: Host controller block. This block handles frame scheduling, data transfer for USB devices, etc.
Root Hub	: During host function, this block handles USB device connection and port power control.
EPC	: Endpoint Controller. This block handles peripheral function and control all endpoints which
	required each USB transfer, such as Bulk, Control, Interrupt, Isochronous transfer.
RAM	: Internal RAM for USB data transfer.
Arbiter	: This block arbitrates the access to the internal RAM.
Port1	: Host only USB port.
Port2	: Host, peripheral selectable USB port.
PLL	: Internal PLL.
OSC	: Internal oscillator block.
Reg	: Internal voltage regulator for internal power supply.

PIN CONFIGURATION

• 80-pin plastic TQFP (fine pitch) (12 \times 12) μ PD720150GK-9EU-A

NEC

Pin Name

• **80-pin plastic TQFP (fine pitch) (12 × 12)** μPD720150GK-9EU-A

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	Vss	21	Vdd	41	GPIO3	61	AV _{DD33}
2	A5	22	AD4/D4	42	GPIO2	62	AV _{DD15}
3	A4	23	AD3/D3	43	GPIO1	63	AVss
4	A3	24	Vss	44	GPIO0	64	Vss
5	A2	25	AD2/D2	45	BUSMODE	65	DM1
6	ALE/A1	26	AD1/D1	46	RST0	66	DP1
7	D15	27	D0	47	VDD	67	V _{DD15}
8	V _{DD15}	28	VDD15	48	XT1	68	VDDRP
9	D14	29	CS0	49	XT2	69	DM2
10	D13	30	RD0	50	Vss	70	DP2
11	D12	31	WR0	51	TESTEN	71	Vss
12	VDD	32	INT	52	TRST	72	OCI20/VBUS
13	D11	33	DREQ1	53	TEST	73	Vdd
14	D10	34	DACK1	54	VDD15OUT	74	PPON2
15	Vss	35	VDD	55	VDDRP	75	OCI10
16	D9	36	DREQ2	56	VDDRP	76	PPON1
17	AD8/D8	37	DACK2	57	Vss	77	ALEPOL
18	AD7/D7	38	Vss	58	TESTREG	78	A8
19	AD6/D6	39	GPIO5	59	AVss(R)	79	A7
20	AD5/D5	40	GPIO4	60	RREF	80	A6

PIN CONFIGURATION

• 84-pin plastic FBGA (6 × 6) μPD720150F1-BAE-A

	А	В	С	D	Е	F	G	Н	J	К	_
10	RREF	AVss(R)	VDD15 OUT	Vss	XT2	XT1	Vdd	GPIO1	GPIO3	GPIO4	10
10	28	27	26	25	24	23	22	21	20	19	10
9	Vss	AV _{DD33}	TEST REG	TRST	TESTEN	BUS MODE	RST0	GPIO2	GPIO5	DACK2	9
Ũ	29	58	57	56	55	54	53	52	51	18	Ŭ
8	DM1	AVss	AV _{DD15}	VDDRP	V _{DD}	VDD	Vss	GPIO0	DREQ2	DACK1	8
0	30	59	80	79	78	77	76	75	50	17	0
7	DP1	Vss	TEST					Vss	INT	DREQ1	7
1	31	60	81					74	49	16	<i>'</i>
6	V _{DD15}	OCI20/ VBUS	VDDRP					VDD	RD0	WR0	6
0	32	61	82		Тор	Viow		73	48	15	
5	DM2	PPON2	Vdd		тор			V DD15	D0	CS0	5
5	33	62	83					72	47	14	5
4	DP2	OCI10	Vss					Vss	AD2/D2	AD1/D1	4
4	34	63	84					71	46	13	-
3	Vss	ALEPOL	Vss	V DD15	VDD	VDD	Vss	Vdd	AD4/D4	AD3/D3	3
3	35	64	65	66	67	68	69	70	45	12	3
2	A8	PPON1	A5	A3	ALE/A1	D14	D11	D9	AD7/D7	AD5/D5	2
2	36	37	38	39	40	41	42	43	44	11	2
1	A7	A6	A4	A2	D15	D13	D12	D10	AD8/D8	AD6/D6	1
1	1	2	3	4	5	6	7	8	9	10	'
ļ	А	В	С	D	E	F	G	Н	J	К	,

Pin Name

Pin No.	Pin Name	Pin No.	Pin Name	Pin	Pin Name	Pin No.	Pin Name
1	A7	22	Vdd	43	D9	64	ALEPOL
2	A6	23	XT1	44	AD7/D7	65	Vss
3	A4	24	XT2	45	AD4/D4	66	V DD15
4	A2	25	Vss	46	AD2/D2	67	V _{DD}
5	D15	26	VDD15OUT	47	D0	68	VDD
6	D13	27	AVss (R)	48	RD0	69	Vss
7	D12	28	RREF	49	INT	70	VDD
8	D10	29	Vss	50	DREQ2	71	Vss
9	AD8/D8	30	DM1	51	GPIO5	72	V DD15
10	AD6/D6	31	DP1	52	GPIO2	73	VDD
11	AD5/D5	32	V _{DD15}	53	RST0	74	Vss
12	AD3/D3	33	DM2	54	BUSMODE	75	GPIO0
13	AD1/D1	34	DP2	55	TESTEN	76	Vss
14	CS0	35	Vss	56	TRST	77	V _{DD}
15	WR0	36	A8	57	TESTREG	78	VDD
16	DREQ1	37	PPON1	58	AV _{DD33}	79	VDDRP
17	DACK1	38	A5	59	AVss	80	AV DD15
18	DACK2	39	A3	60	Vss	81	TEST
19	GPIO4	40	ALE/A1	61	OCI20/VBUS	82	VDDRP
20	GPIO3	41	D14	62	PPON2	83	VDD
21	GPIO1	42	D11	63	OCI10	84	Vss

Remark AVss(R) should be used to connect RREF through 1 % precision reference resistor of 1.6 k Ω .

^{• 84-}pin plastic FBGA (6 × 6) μPD720150F1-BAE-A

1. PIN FUNCTIONS

This section describes each pin functions.

1.1 Power supply

Pin Name	Direction	Buffer	Active	Reset	Function
		Туре	Level		
Vdd	_	Power	_	-	+3.3 V power supply for IO power.
Vddrp	_	Power	_	-	+3.3 V power supply for USB and internal regulator.
Vdd15	-	Power	-	-	+1.5 V power supply. These pins must be supplied from VDD15OUT, output from internal regulator.
VDD15OUT	0	Regulator	-	1.5V	+1.5 V voltage output from internal regulator.
AV _{DD33}	_	Power	_	-	+3.3 V power supply for analog circuit.
AV _{DD15}	_	Power	-	-	+1.5 V power supply for analog circuit.
Vss	_	Power	-	-	Ground
AVss	_	Power	_	_	Ground for analog circuit
AVss(R)	_	Power	_	_	Ground for reference resistor

1.2 Analog Signal

Pin Name	Direction	Buffer	Active	Reset	Function
		Туре	Level		
RREF	_	Analog	_	_	RREF must be connected to a 1% precision reference resistor of 1.6 k . The other side of the resistor must be connected to AVss(R) which must be connected to stable AVss.

1.3 System clock/Reset signal

Pin Name	Direction	Buffer	Active	Reset	Function
		Туре	Level		
XT1	I	OSC	_	-	Oscillator in
					Connect to 30 MHz crystal.
XT2	0	OSC	-	inverted	Oscillator out
				XT1	Connect to 30 MHz crystal.
RST0	I	3.3V with schmitt	Low	-	Asynchronous reset signal

1.4 System Interface

Pin Name	Direction	Buffer	Active	Reset	Function
		Туре	Level		
A (8:2)	I	3.3V	-	-	(Separate mode) Address bus
A (0.2)		OR type			(Multiplex mode) not used
ALE/A1	I	3.3V	(ALE signal)	-	(Separate mode) Address bus
			Depends on ALEPOL		(Multiplex mode) Address strobe signal
ALEPOL	I	3.3V	-	-	ALE Active level select signal ALE
					0: Low active
					1: High active
D (15:9), D0	I/O	3.3V	-	Input	(Separate/Multiplex mode) Data bus
AD(8:1)/D(8:1)	I/O	3.3V	-	Input	(Separate mode) Data bus
					(Multiplex mode) Address/Data bus
CS0	I	3.3V	Low	-	Chip select signal
RD0	I	3.3V	Low	-	Read enable signal
WR0	I	3.3V	Low	-	Write enable signal
INT	0	3.3V	-	High	Interrupt request signal
DREQ (2:1)	0	3.3V	-	High	DMA request signal
DACK (2:1)	I	3.3V	-	-	DMA acknowledge signal
GPIO (5:0)	I/O	3.3V with	-	Input	General purpose I/O
		pull-down			
BUSMODE	I	3.3V	-	-	Bus mode select signal (Separate/Multiplex).
					0: Multiplex mode
					1: Separate mode

1.5 USB Interface

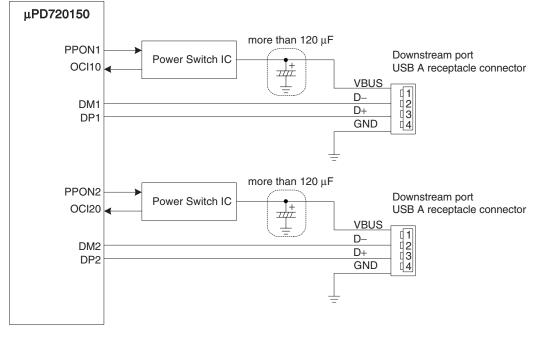
Pin Name	Direction	Buffer	Active	Reset	Function
		Туре	Level		
DP (2:1)	I/O	USB	-	Pull-	USB D+ signal
				down	
DM (2:1)	I/O	USB	-	Pull-	USB D- signal
				down	
OCI10	I	3.3V	Low	-	(Host) Over-current status input of the down stream facing port
					0: Over-current condition is detected
					1: No over-current condition is detected.
OCI20/VBUS	I	3.3V with schmitt	Low /	-	(Host) Over-current status input of the down stream facing port
		5V tolerant	High		0: Over-current condition is detected
					1: No over-current condition is detected.
					(Peripheral) VBUS monitoring signal
					0: VBUS is not detected.
					1: VBUS is detected.
PPON (2:1)	0	3.3V	High	Low	(Host) USB port power supply control output for downstream facing ports.
					0: Power supply OFF
					1: Power supply ON

1.6 Test signals

Pin Name	Direction	Buffer Type	Active Level	Reset	Function
TESTEN	I	3.3V with pull-down	-	-	Test signal This must be opened on board.
TEST	I	3.3V with pull-down	-	-	Test signal This must be opened on board.
TESTREG	I	3.3V with pull-down	-	-	Test signal This must be opened on board.
TRST	I	3.3V with pull-down	-	-	Test signal This must be opened on board.

2. HOW TO CONNECT TO EXTERNAL ELEMENTS

2.1 Handling Unused Pins


Unused pins shall be connected as shown below.

Pin Name	Direction	Connection Method	Remark
DP(2:1)	I/O	No Connection (Open)	•For unused USB port.
DM(2:1)	I/O	No Connection (Open)	•During Peripheral mode, PPON2 must be open.
OCI10	I	Pull-up	
OCI20/VBUS			
PPON(2:1)	0	No connection (Open)	
ALEPOL	I	Pull-down or Pull-up	During separate mode.
A (8:2)	I	Pull-down or Pull-up	During multiplex mode.
DREQ(2:1)	0	No connection (Open)	For unused DMA channel.
DACK(2:1)	I	Pull-up Note	For unused DMA channel.
GPIO(5:0)	I/O	No connection (Open)	For unused GPIO pins.
TESTEN	I	No connection (Open)	
TEST	I	No connection (Open)	
TRST	I	No connection (Open)	
TESTREG	I	No connection (Open)	

Table 2-1.	Unused Pin	Connection
------------	-------------------	------------

Note The polarity of this signal can be set from internal register. Set appropriate inactive level.

2.2 USB Port Connection (Host mode)

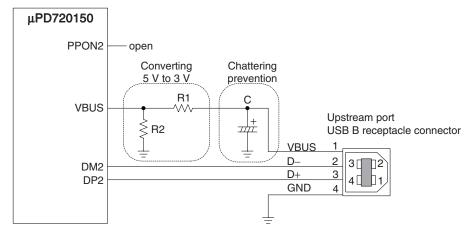

Caution Table 2-2 shows the pin description of PPON and OCI0. When power switch IC which supports different active level from μ PD720150 is used, μ PD720150 cannot control port power appropriately.

Table 2-2.	PPON (2:1),	OCI (2:1)0 pin	description	(Host mode)
------------	-------------	----------------	-------------	-------------

Pin Name	Direction	Function	High level	Low level	Default value
PPON (2:1)	OUT	VBUS control	Port power ON	Port power OFF	Low level
OCI (2:1)0	IN	Over current detection	Normal	Over-current condition	_

2.3 USB Port Connection (Peripheral mode)

Caution VBUS pin must be applied under +3.0 V when V_{DD} power = 0 V.

2.4 Internal Regulator Circuit Connection

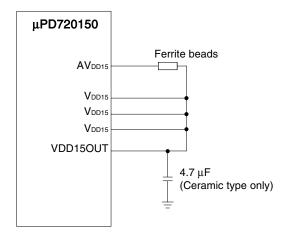


Figure 2–3. Internal Regulator Circuit Connection

- **Caution** VDD15OUT must be routed to only V_{DD15} (and AV_{DD15}). In case that VDD15OUT is also used for power supply of other ICs, this may cause unstable operation of the *μ*PD720150.
- **Remark** VDD15 is powered by VDD15OUT from internal regulator. It is not necessary to use an external regulator for VDD15.

2.5 Analog Circuit Connection

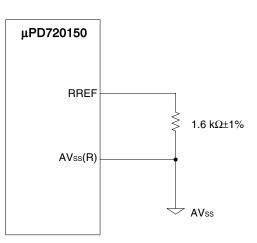


Figure 2–4. Analog Circuit Connection

- Caution The RREF register must be one 1.6 K Ω with 1% accuracy. It must NOT consist of two or more resisters (i.e. 1.5 K Ω + 100 Ω).
- **Remark** The board layout should minimize the total path length from RREF through the resistor to AVss(R) and path length to AVss (analog ground). AVss must be stable.

2.6 Crystal Connection

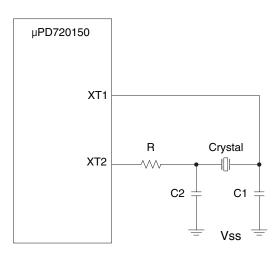


Figure 2–5. Crystal Connection

The following crystals are evaluated on our reference design board. Table 2-3 shows the external parameters.

		Crystal	Oscillation circuit parameters			
Vender	Туре	Frequency	Load Capacitance	R [Ω]	C1 [pF]	C2 [pF]
		[MHz]	[pF]			
NDK Note 1	AT-41	30.000	5	470	8	8
	NX2520SA	30.000	7	1000	8	8
	NX2016AA	30.000	7	1000	8	8
KDS Note 2	DSX321G	30.000	5.7	680	5	5

Table 2-3. External Parameters

Notes 1. NIHON DEMPA KOGYO CO., LTD.2. DAISHINKU CORP.

In using these crystals, contact KDS or NDK to get the specification on external components to be used in conjunction with the crystal.

NDK's home page: <u>http://www.ndk.com/en/</u> KDS's home page: <u>http://www.kds.info/index_en.htm</u>

3. ELECTRICAL SPECIFICATIONS

3.1 Buffer List

- 3.3 V input buffer A1/ALE, ALEPOL, CS0, RD0, WR0, DACK (2:1), BUSMODE, OCI10
- 3.3 V input buffer (OR-Type)
 - A (8:2)
- 3.3 V input buffer (with pull-down resistor) TESTEN, TEST, TRST, TESTREG
- 3.3 V schmitt input buffer
 RST0
- 3.3 V IoL = 6 mA bi-directional buffer

D (15:0), AD (8:1)

- 3.3 V I_{OL} = 3 mA bi-directional buffer (with pull-down resistor)
 - GPIO (5:0)
- 5V tolerant schmitt input buffer OCI20/VBUS
- 3.3 V IOL = 6mA output buffer INT, DREQ (2:1), PPON (2:1)
- 3.3 V oscillator Interface
 - XT1, XT2
- USB interface, analog signal DP (2:1), DM (2:1), RREF

3.2 Terminology

Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	Vdd, Vddrp, AVdd33	Indicates the voltage range within which damage or reduced reliability will not result when power is applied to a V_{DD} pin.
Input voltage	VI	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Output current	lo	Indicates absolute tolerance values for DC current to prevent damage or reduced reliability when current flows out of or into output pin.
Operating ambient temperature	Та	Indicates the ambient temperature range for normal logic operations.
Storage temperature	Tstg	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current is applied to the device.

Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	Vdd, Vddrp, AVdd33	Indicates the voltage range for normal logic operations occur when $V_{SS} = 0$ V.
High-level input voltage	Vін	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer.
		* If a voltage that is equal to or greater than the "Min." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage	VIL	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer.
		* If a voltage that is equal to or lesser than the "Max." value is applied, the input voltage is guaranteed as low level voltage.
Hysteresis voltage	Vн	Indicates the differential between the positive and the negative trigger voltage.
Input rise time	tri	Indicates allowable input rise time to input signal transition time from 0.1 x V_{DD} to 0.9 x $V_{\text{DD}}.$
Input fall time	tfi	Indicates allowable input fall time to input signal transition time from 0.9 x V_{DD} to 0.1 x $V_{\text{DD}}.$

Terms Used in DC Characteristics

Parameter	Symbol	Meaning		
Off-state output leakage current	loz	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied when a 3-state output has high impedance.		
Input leakage current	h	Indicates the current that flows when the input voltage is supplied to the input pin.		
Low-level output current	lo∟	Indicates the current that flows to the output pins when the rated low-level output voltage is being applied.		
High-level output current	Іон	Indicates the current that flows from the output pins when the rated high-level output voltage is being applied.		

3.3 Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	VDD, VDDRP, AVDD33		-0.5 to +4.6	V
Input voltage, 3.3 V buffer	VI	$V_{I} < V_{DD} + 0.5 V$	-0.5 to +4.6	V
		$V_I < V_{DD} + 3.0 V$ (5 V tolerant)	–0.5 to +6.6	V
Output voltage, 3.3 V buffer	Vo	$V_{O} < V_{DD} + 0.5 V$	-0.5 to +4.6	V
Output current	lo	3.3 V buffer (Io∟ = 3 mA)	11	mA
		3.3 V buffer (lo∟ = 6 mA)	21	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

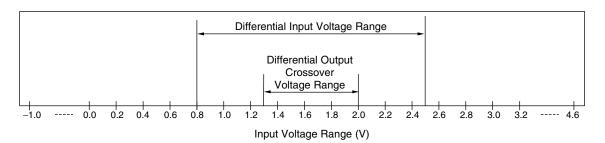
Remark 3.3 V must be applied to the I/O pins only after applying power supply voltage.

3.4 Recommended Operating Ranges

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating voltage	V _{DD} ^{Note}		2.7	3.3	3.6	V
	VDDRP Note		3.0	3.3	3.6	v
	AVDD33		3.0	3.3	3.6	v
High-level input voltage	VIH					
3.3 V high-level input voltage		RST0	2.4		VDD	v
		OCI20/VBUS	2.4		5.5	V
		other input pins	2.0		VDD	V
Low-level input voltage	VIL					
3.3 V low-level input voltage		RST0	0		0.6	V
		other input pins	0		0.8	V
Hysteresis voltage	Vн					
3.3 V hysteresis voltage			0.3		1.5	V
Input rise time	tri					
Normal buffer			0		200	ns
Schmitt buffer			0		10	ms
Input fall time	tri					
Normal buffer			0		200	ns
Schmitt buffer			0		10	ms

Note V_{DD},V_{DDRP} and A_{VDD33} must turn on/off the power at the same time.

<R>


3.5 DC Characteristics (V_{DD} =2.7 to 3.6 V, T_A = -40 to +85°C)

3.5.1 Control pin block

Parameter	Symbol	Condition	Min.	Max.	Unit
Off-state output current	loz	Vo = VDD or Vss		±10	μA
Low-level output current	lo∟	Vol = 0.4 V			
3.3 V low-level output current (3 mA)			3.0		mA
3.3 V low-level output current (6 mA)			6.0		mA
High-level output current	Іон	Vон = 2.4 V			
3.3 V high-level output current (3 mA)			-3.0		mA
3.3 V high-level output current (6 mA)			-6.0		mA
Input leakage current	h				
3.3 V buffer		VI = VDD or Vss		±10	μA
3.3 V buffer with pull down resistor		VI = VDD	26	175	μA

3.5.2 USB interface block

Parameter	Symbol	Conditions	Min.	Max.	Unit
Output pin impedance	ZHSDRV		40.5	49.5	Ω
Termination voltage for upstream facing port pullup (RPU)	VTERM		3.0	3.6	v
Input Levels for Low-/full-speed:	l				
High-level input voltage (drive)	VIH		2.0		V
High-level input voltage (floating)	VIHZ		2.7	3.6	V
Low-level input voltage	VIL			0.8	V
Differential input sensitivity	VDI	(D+) – (D–)	0.2		V
Differential common mode range	Vсм	Includes VDI range	0.8	2.5	V
Output Levels for Low-/full-speed:					•
High-level output voltage	Vон	R∟ of 14.25 kΩ to GND	2.8	3.6	V
Low-level output voltage	Vol	R∟ of 1.425 kΩ to 3.6 V	0.0	0.3	V
SE1	V _{OSE1}		0.8		V
Output signal crossover point voltage	VCRS		1.3	2.0	V
Input Levels for High-speed:		·			•
High-speed squelch detection threshold (differential signal)	VHSSQ		100	150	mV
High-speed disconnect detection threshold (differential signal)	VHSDSC		525	625	mV
High-speed data signaling common mode voltage range	VHSCM		-50	+500	mV
High-speed differential input signaling level	See Figure	3–2 .	1		
Output Levels for High-speed:	1				
High-speed idle state	VHSOI		-10	+10	mV
High-speed data signaling high	Vнsoн		360	440	mV
High-speed data signaling low	VHSOL		-10	+10	mV
Chirp J level (differential signal)	VCHIRPJ		700	1100	mV
Chirp K level (differential signal)	Vсніврк		-900	-500	mV

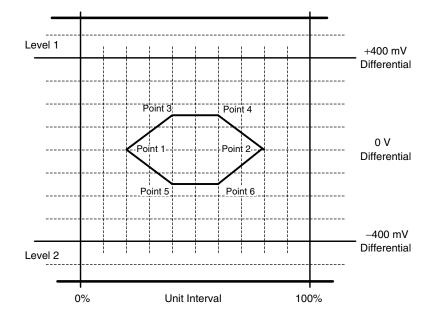
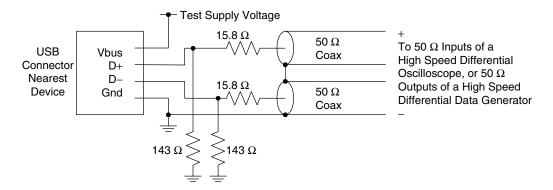



Figure 3–2. Receiver Sensitivity for Transceiver at DP/DM

3.5.3 Power consumption

Hi-speed

Parameter	Mode	Condition	Тур.	Max.	Unit
Power	Host	Suspend	75		μA
Consumption		All the ports do not connect to any devices.	33		mA
		One device is connected (during data transfer)	49		mA
		Two devices are connected (during data transfer)	54		mA
	Peripheral	Suspend	210		μA
		Unconfigured (during Enumeration)	57		mA
		Configured (during data transfer)	58		mA
	Host / Peripheral	Suspend	215		μA
	concurrent operation	during data transfer	85		mA

Full-speed

Parameter	Mode	Condition	Тур.	Max.	Unit
Power	Host	Suspend	75		μA
Consumption		All the ports do not connect to any devices.	33		mA
		One device is connected (during data transfer)	44		mA
		Two devices are connected (during data transfer)	50		mA
	Peripheral	Suspend	210		μA
		Unconfigured (during Enumeration)	30		mA
		Configured (during data transfer)	30		mA
	Host / Peripheral	Suspend	215		μA
	concurrent operation	during data transfer	51		mA

Remark Typical conditions

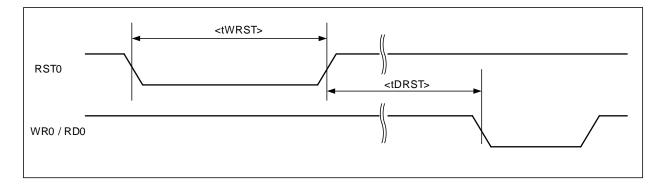
Power supply voltage: 3.3 V Operating ambient temperature: +25°C Data throughput: 40 Mbps

3.5.4 Pin capacitance

Parameter	Symbol	Condition	Min.	Max.	Unit
Input capacitance	Cı	$V_{DD} = 0 V$, $T_A = 25^{\circ}C$		8	pF
Output capacitance	Co	fc = 1 MHz		8	pF
I/O capacitance	Сю	Unmeasured pins returned to 0 V		8	pF

3.6 AC Characteristics (V_{DD} = 2.7 to 3.6 V, $T_A = -40$ to +85°C)

3.6.1 System clock ratings


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock frequency	fс∟к	Crystal	–500 ppm	30	+500 ppm	MHz
Clock duty cycle	t duty		40	50	60	%

Remarks 1. Recommended accuracy of clock frequency is \pm 100 ppm.

2. Required accuracy of crystal or oscillator block is including initial frequency accuracy, the spread of crystal capacitor loading, supply voltage, temperature, and aging, etc.

3.6.2 System reset

Parameter	Symbol	Condition	Min.	Max.	Unit
RST0 Active level width	tWRST		500	-	ns
RST0 Recovery time	tDRST		13	-	μs

3.6.3 System Interface

Separate Bus Read

Parameter	Syr	nbol	Condition	Min.	Max.	Unit
Read Cycle time	<1>	tCYCR		79	-	ns
Address Setup time (to RD0↓)	<2>	tSAD		0	-	ns
Address Hold time (from RD0↓)	<3>	tHAD		62	-	ns
CS0 Setup time (to RD0↓)	<4>	tSCS		0	-	ns
CS0 Hold time (from RD0↑)	<5>	tHCS		0	-	ns
RD0 Active level width	<6>	tWRD1		62	-	ns
RD0 Inactive level width	<7>	tWRD2		17	-	ns
I/O Float delay time (from RD0↓) ^{Note}	<8>	tDIO		1	12	ns
Read Data Delay time (from RD0↓)	<9>	tDDT1	CL=50pF	-	61	ns
Read Data Hold time (from RD0↑) ^{Note}	<10>	tDDT2	CL=50pF	0	12	ns

Separate Bus Write

Parameter	Syr	mbol	Condition	Min.	Max.	Unit
Write Cycle time	<11>	tCYCW		51	-	ns
Address Setup time (to WR0↓)	<12>	tSAD		0	-	ns
Address Hold time (from WR0↑)	<13>	tHAD		1	-	ns
CS0 Setup time (to WR0↓)	<14>	tSCS		0	-	ns
CS0 Hold time (from WR0↑)	<15>	tHCS		0	-	ns
WR0 Active level width	<16>	tWWR1		34	-	ns
WR0 Inactive level width	<17>	tWWR2		17	-	ns
Write Data Setup time (to WR0↑) ^{Note}	<18>	tSDT		5	-	ns
Write Data Hold time (from WR0↑) ^{Note}	<19>	tHDT		1	-	ns

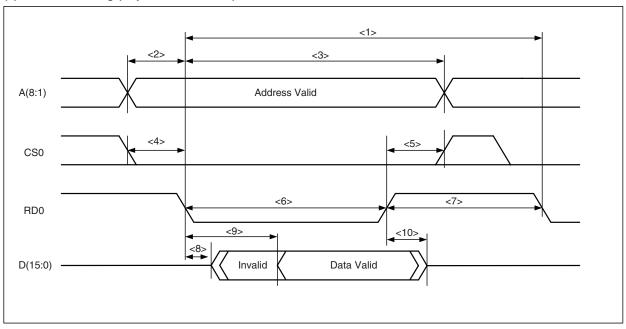
Note In case of using DMA Type 2, please consider DACKn signal timing, instead of RD0/WR0.

Multiplex Bus Read

Parameter	Syr	mbol	Condition	Min.	Max.	Unit
Read Cycle time	<20>	tCYCR		92	-	ns
Address Setup time (to $ALE\downarrow$)	<21>	tSAD		17	-	ns
Address Hold time (from $ALE\downarrow$)	<22>	tHAD		1	-	ns
CS0 Setup time (to ALE↓)	<23>	tSCS		17	-	ns
CS0 Hold time (from RD0↑)	<5>	tHCS		0	-	ns
RD0 Active level width	<6>	tWRD1		62	-	ns
I/O Float delay time (from RD0↓) ^{Note}	<8>	tDIO		1	12	ns
Read Data Delay time (from RD0↓)	<9>	tDDT1	CL=50pF	-	61	ns
Read Data Hold time (fromRD0↑) ^{Note}	<10>	tDDT2	CL=50pF	0	12	ns
ALE Active level width	<24>	tWAL		17	-	ns
RD0 Dalay time (from Address Release)	<25>	tDRD		0	-	ns

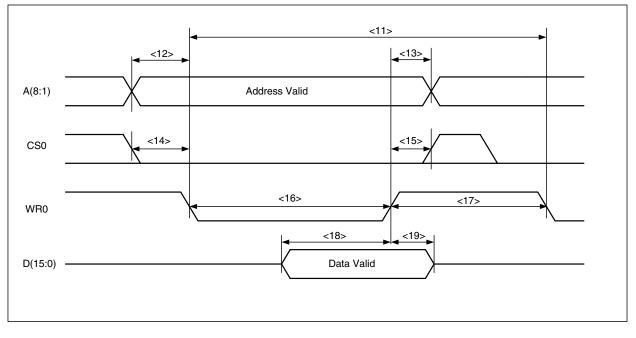
Multiplex Bus Write

Parameter	Sy	mbol	Condition	Min.	Max.	Unit
Write Cycle time	<26>	tCYCW		52	-	ns
Address Setup time (to ALE↓)	<21>	tSAD		17	-	ns
Address Hold time (from $ALE\downarrow$)	<22>	tHAD		1	-	ns
CS0 Setup time (to ALE↓)	<23>	tSCS		17	-	ns
CS0 Hold time (from WR0↑)	<15>	tHCS		0	-	ns
WR0 Active level width	<16>	tWWR1		34	-	ns
Write Data Setup time (to WR0↑) ^{Note}	<18>	tSDT		5	-	ns
Write Data Hold time $(\text{from WR0}\uparrow)^{\text{Note}}$	<19>	tHDT		1	-	ns
ALE Active level width	<24>	tWAL		17	-	ns
WR0 Delay time (from ALE↓)	<27>	tDWR		0	-	ns

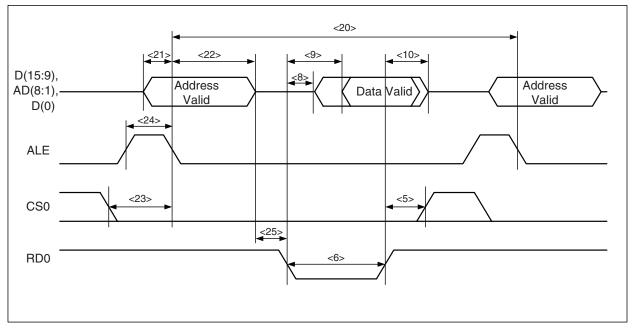

Note In case of using DMA Type 2, please consider DACKn signal timing, instead of RD0/WR0.

DMA transfer

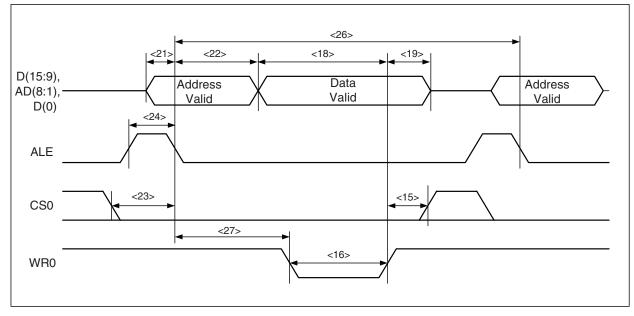
Parameter	Syr	mbol	Condition	Min.	Max.	Unit
DREQn Active level hold time (from DACKn assert) ^{Note 1}	<28>	tDDR1	Single / Burst2 mode	-	15	ns
DREQn Active level hold time (from WR0↓/RD0↓) ^{Note 2}	<29>	tDDR2	Burst1 mode	-	63	ns
DREQn Next assert time (from DACKn negate) ^{Note 1}	<31>	tDDR4	Single mode	34	66	ns
DMA Read enable Active level width	<32>	tDDA1	Type0,1: RD0 Type2: DACKn	34	-	ns
DMA Read enable Inactive level width	<33>	tDDA2	Type0,1: RD0 Type2: DACKn	17	-	ns
DMA Read Cycle time	<34>	tCYCDR		51	-	ns
Read Data Delay time (from RD0↓) ^{Note 2}	<35>	tDDT	CL=50pF	-	14	ns
DMA Write enable Active level width	<36>	tWDA1	Type0,1: WR0 Type2: DACKn			
DMA Write enable Inactive level width	<37>	tWDA2	Type0,1: WR0 Type2: DACKn	17	-	ns
DMA Write Cycle time	<38>	tCYCD W		51	-	ns
DACKn Setup time (to WR0/RD0↓)	<39>	tSDA		0	-	ns
DACKn Hold time (from WR0/RD0↑)	<40>	tHDA		0	-	ns
DREQn Active level hold time (from PIO WR0↑)	<41>	tDDR5	Forced DMA termination (burst 1 mode)	-	63	ns

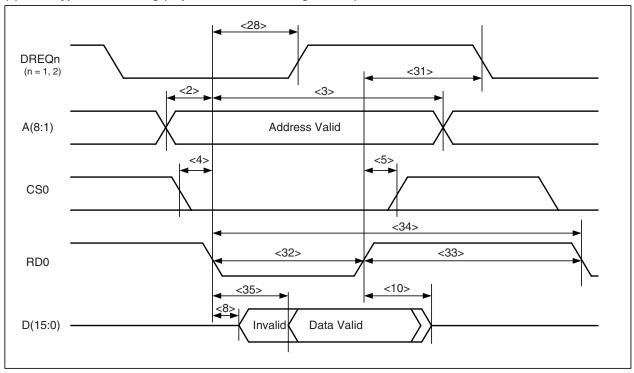

Notes 1. In case of using DMA Type 0, please consider RD0/WR0 signal timing, instead of DACKn.

2. In case of using DMA Type 2, please consider DACKn signal timing, instead of RD0/WR0.

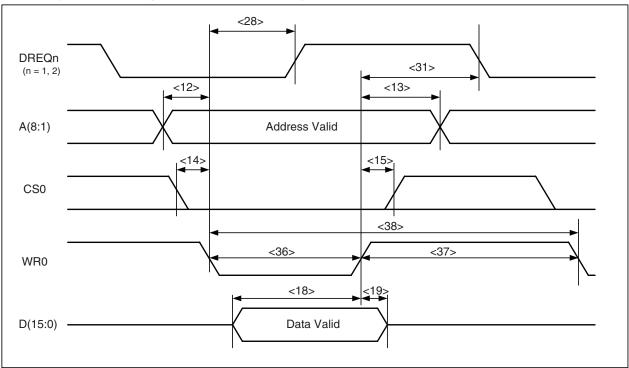


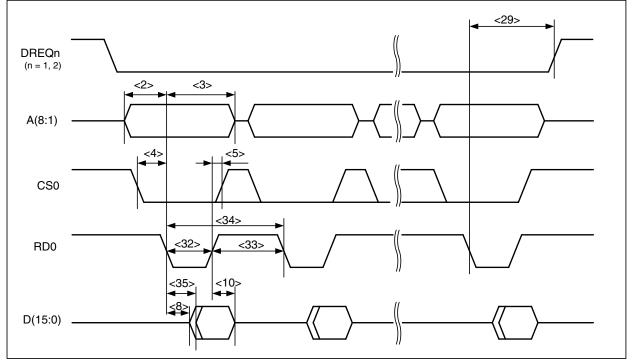
(1) PIO Read timing (Separate bus mode)


(2) PIO Write timing (Separate bus mode)



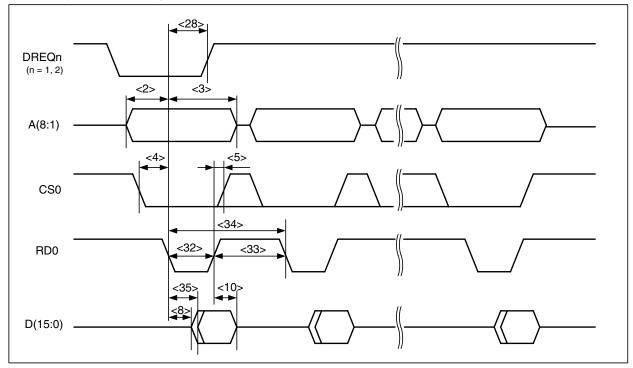
(3) PIO Read timing (Multiplex bus mode)


(4) PIO Write timing (Multiplex bus mode)

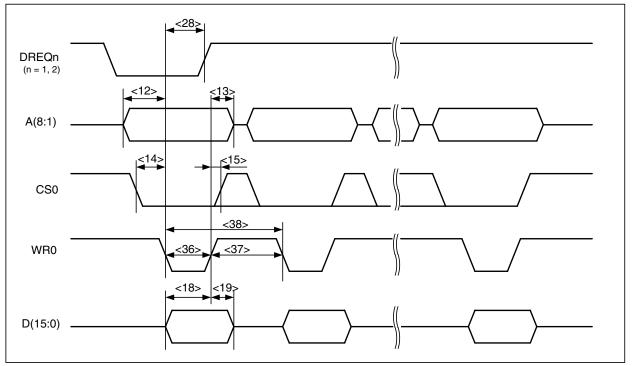


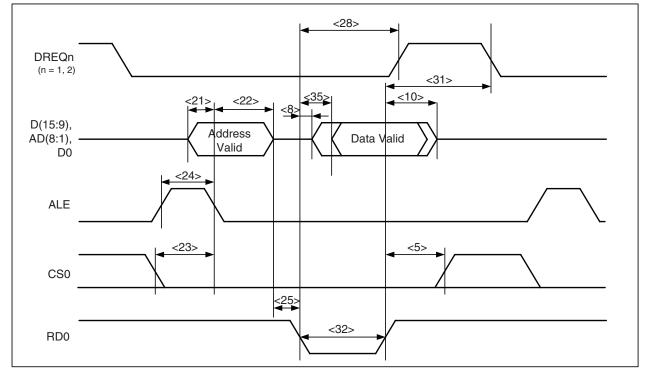
(5) DMA Type0 Read timing (Separate bus mode, single mode)

(6) DMA Type0 Read timing (Separate bus mode, single mode)

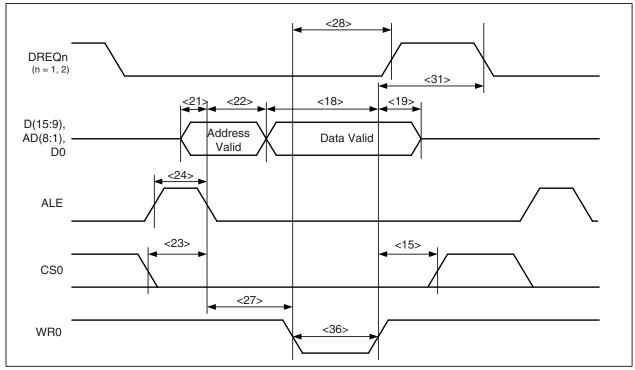


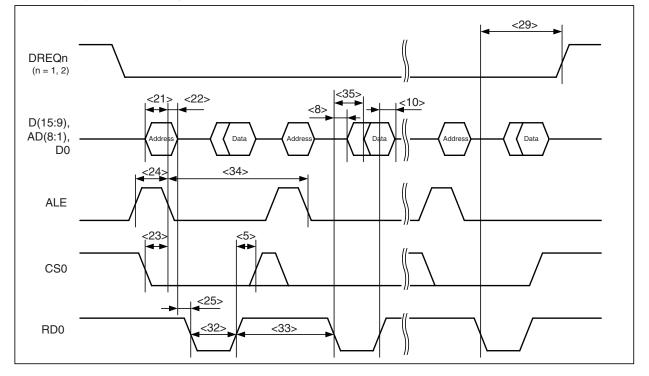
(7) DMA Type0 Read timing (Separate bus mode, burst 1 mode)


(8) DMA Type0 Write timing (Separate bus mode, burst 1 mode)

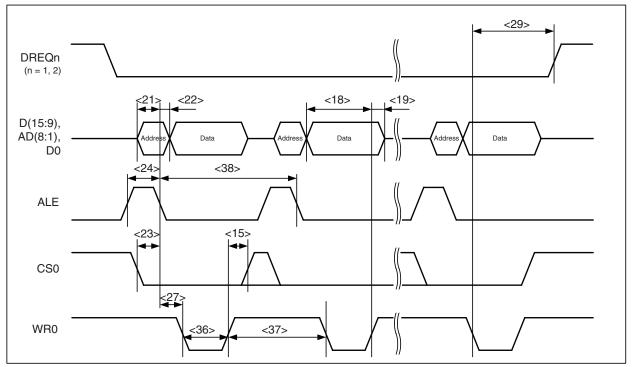


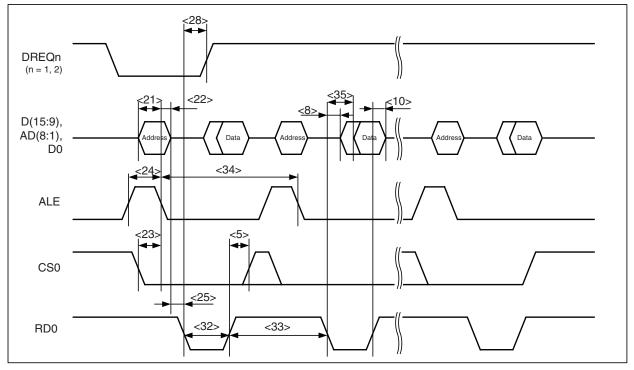
(9) DMA Type0 Read timing (Separate bus mode, burst 2 mode)


(10) DMA Type0 Write timing (Separate bus mode, burst 2 mode)

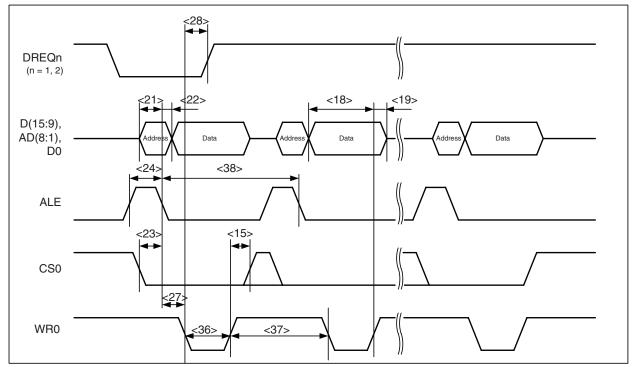


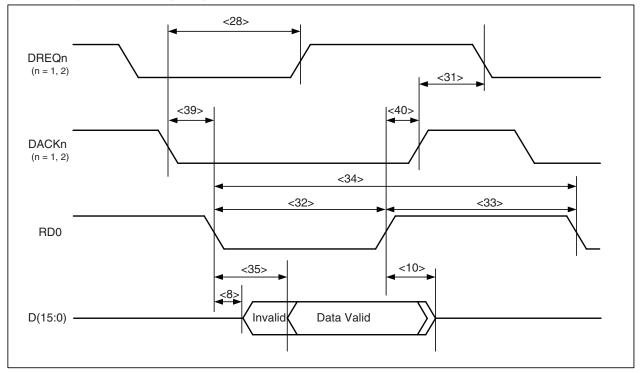
(11) DMA Type0 Read timing (Multiplex bus mode, single mode)

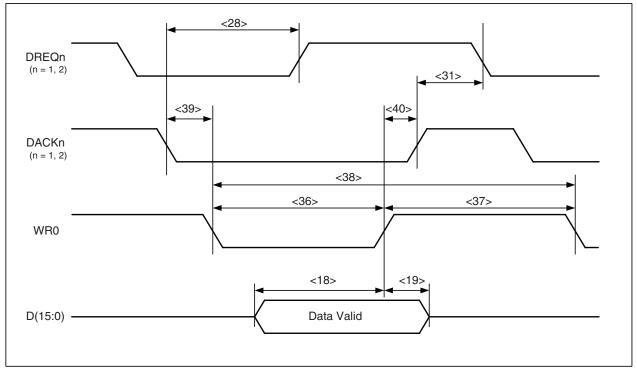

(12) DMA Type0 Write timing (Multiplex bus mode, single mode)

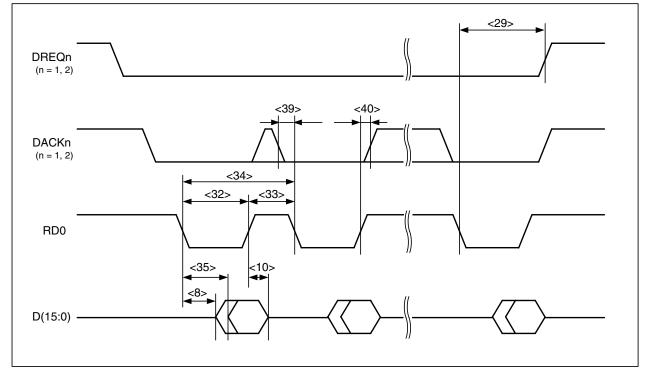


(13) DMA Type0 Read timing (Multiplex bus mode, burst 1 mode)

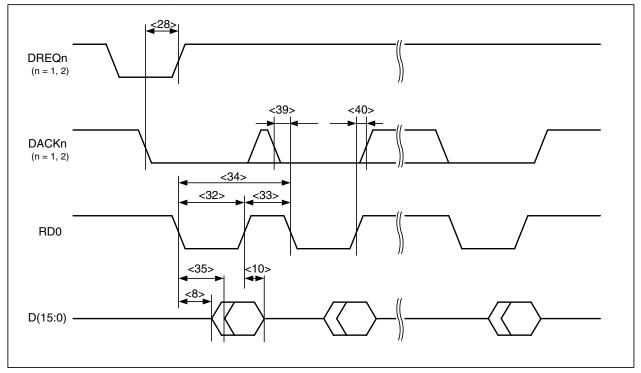

(14) DMA Type0 Write timing (Multiplex bus mode, burst 1 mode)

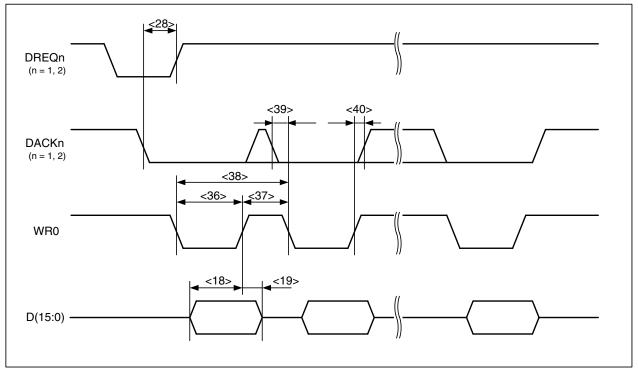


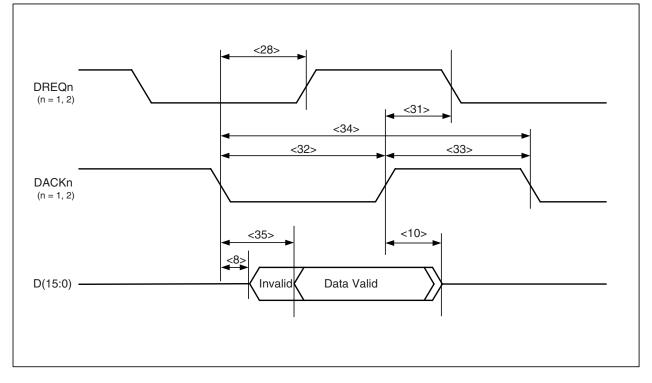

(16) DMA Type0 Write timing (Multiplex bus mode, burst 2 mode)

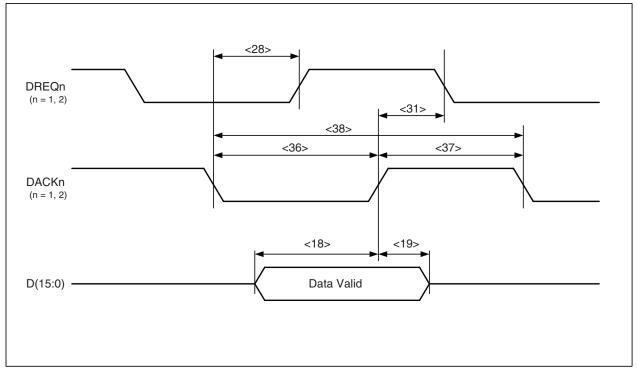

(17) DMA Type1 Read timing (single mode)

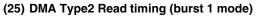
(18) DMA Type1 Write timing (single mode)

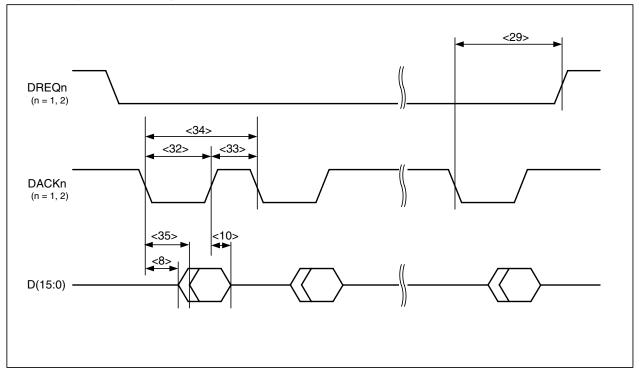

(19) DMA Type1 Read timing (burst 1 mode)

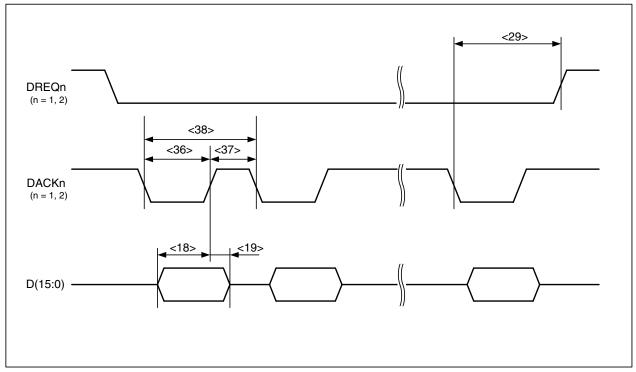

(20) DMA Type1 Write timing (burst 1 mode)

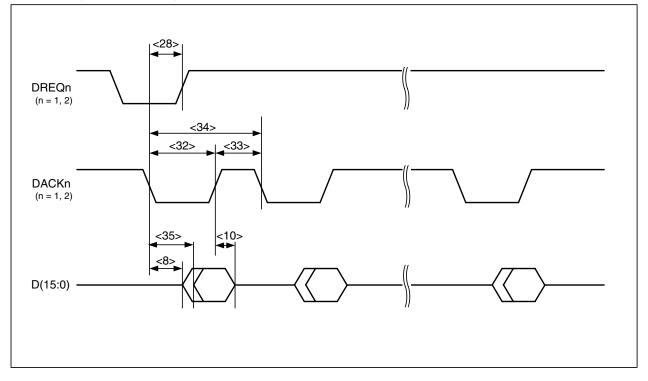

(21) DMA Type1 Read timing (burst 2 mode)

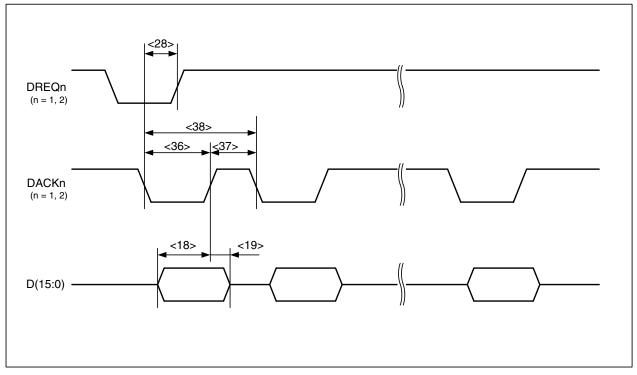

(22) DMA Type1 Write timing (burst 2 mode)

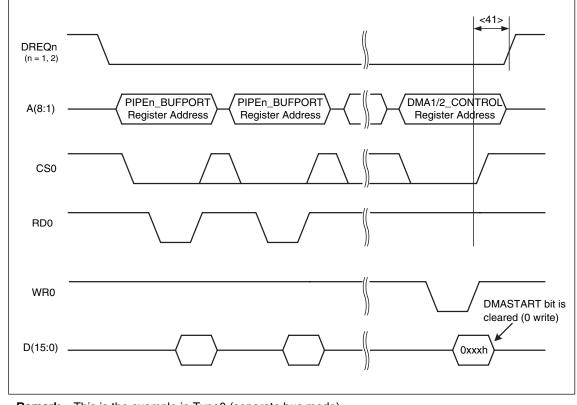



(23) DMA Type2 Read timing (single mode)

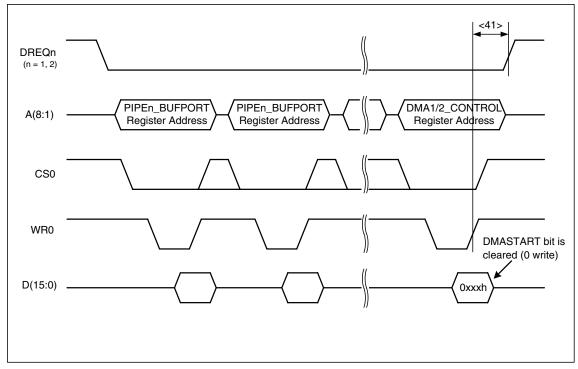

(24) DMA Type2 Write timing (single mode)




(26) DMA Type2 Write timing (burst 1 mode)



(27) DMA Type2 Read timing (burst 2 mode)


(28) DMA Type2 Write timing (burst 2 mode)

(29) DMA Read timing (burst 1 mode, forced DMA termination)

Remark This is the example in Type0 (separate bus mode).

(30) DMA Write timing (burst 1 mode, forced DMA termination)

Remark This is the example in Type0 (separate bus mode).

3.6.4 USB Interface

Deverseter	Ourse had	Conditions	NA:	Mari	(1/
Parameter	Symbol	Conditions	Min.	Max.	Unit
Low-speed Source Electrical Characteria	stics			1	1
Rise time (10 to 90%)	tlr	CL = 200 to 600 pF,	75	300	ns
Fall time (90 to 10%)	t∟⊧	CL = 200 to 600 pF,	75	300	ns
Differential rise and fall time matching	t lrfm	(tlr/tlf)	80	125	%
Low-speed data rate	t LDRATHS	Average bit rate	1.49925	1.50075	Mbps
Source jitter total (including frequency tolerance): To next transition For paired transitions	todji todje		-25 -14	+25 +14	ns
Source jitter for differential transition to SE0 transition	tldeop		-40	+100	ns
Receiver jitter: To next transition For paired transitions	tujri tujre		-152 -200	+152 +200	ns ns
Source SE0 interval of EOP	t leopt		1.25	1.50	μs
Receiver SE0 interval of EOP	t leopr		670		ns
Width of SE0 interval during differential transition	t FST			210	ns
Full-speed Source Electrical Characteris	stics				
Rise time (10 to 90%)	tfr	C∟ = 50 pF	4	20	ns
Fall time (90 to 10%)	tff	C∟ = 50 pF	4	20	ns
Differential rise and fall time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed data rate	t FDRATHS	Average bit rate	11.9940	12.0060	Mbps
Frame interval	t FRAME		0.9995	1.0005	ms
Consecutive frame interval jitter	tRFI	No clock adjustment		42	ns
Source jitter total (including frequency tolerance): To next transition For paired transitions	toji toj2		-3.5 -4.0	+3.5 +4.0	ns ns
Source jitter for differential transition to SE0 transition	t FDEOP		-2	+5	ns
Receiver jitter: To next transition For paired transitions	tjri tjri		-18.5 -9	+18.5 +9	ns ns
Source SE0 interval of EOP	t feopt		160	175	ns
Receiver SE0 interval of EOP	t feopr		82		ns
Width of SE0 interval during differential transition	tfst			14	ns

	1				(2/3
Parameter	Symbol	Conditions	Min.	Max.	Unit
High-speed Source Electrical Characterist	ics				÷
Rise time (10 to 90%)	thsr		500		ps
Fall time (90 to 10%)	thsf		500		ps
Driver waveform	See Figure	3 –4.			
High-speed data rate	t HSDRAT		479.760	480.240	Mbps
Microframe interval	t HSFRAM		124.9375	125.0625	μs
Consecutive microframe interval difference	t HSRFI			4 high- speed	Bit times
Data source jitter	See Figure	e 3–4.			
Receiver jitter tolerance	See Figure	3–2 .			
Hub Event Timings	•				
Time to detect a downstream facing port connect event	t dcnn		2.5	2000	μs
Time to detect a disconnect event at a hub's downstream facing port	todis		2.0	2.5	μs
Duration of driving resume to a downstream port	t DRSMDN	Nominal	20		ms
Time from detecting downstream resume to rebroadcast	tursm			1.0	ms
Inter-packet delay for packets traveling in same direction for high-speed	thsipdsd		88		Bit times
Inter-packet delay for packets traveling in opposite direction for high-speed	thsipdod		8		Bit times
Inter-packet delay for root hub response for high-speed	thsrspipd1			192	Bit times
Time for which a Chirp J or Chirp K must be continuously detected during reset handshake	t⊧⊫⊤		2.5		μs
Time after end of device Chirp K by which hub must start driving first Chirp K	twтdcн			100	μs
Time for which each individual Chirp J or Chirp K in the chirp sequence is driven downstream during reset	tосныт		40	60	μs
Time before end of reset by which a hub must end its downstream chirp sequence	tdchse0		100	500	μs

					(3/3
Parameter	Symbol	Conditions	Min.	Max.	Unit
Device Event Timings					
Time from internal power good to device	t sigatt			100	ms
pulling D+ beyond V _{IHZ} (min.) (signaling					
attached)					
Debounce interval provided by USB	t attdb			100	ms
system software after attach					
Inter-packet delay for full-speed	tipd		2		Bit times
Inter-packet delay for device response	trspipd1			6.5	Bit times
w/detachable cable for full-speed					
Time for which a suspended highspeed	t FILTSE0		2.5		μs
capable device must see a continuous					
SE0 before beginning the high-speed					
detection handshake					
Time a high-speed capable device	twtrstfs		2.5	3000	μs
operating in non-suspended fullspeed					
must wait after start of SE0 before					
beginning the high-speed detection					
handshake					
Time a high-speed capable device	twtrev		3.0	3.125	ms
operating in high-speed must wait after					
start of SE0 before reverting to full-speed					
Time a device must wait after reverting to	twrrsths		100	875	μs
full-speed before sampling the bus state					
for SE0 and beginning the high-speed					
detection handshake					
Minimum duration of a Chirp K from a	tucн		1.0		ms
high-speed capable device within the					
reset protocol					
Time after start of SE0 by which a high-	t UCHEND			7.0	ms
speed capable device is required to have					
completed its Chirp K within the reset					
protocol					
Time between detection of downstream	twтнs			500	μs
chirp and entering high-speed state					
Time after end of upstream chirp at which	twrfs		1.0	2.5	ms
device reverts to fullspeed default state if					
no downstream chirp is detected					

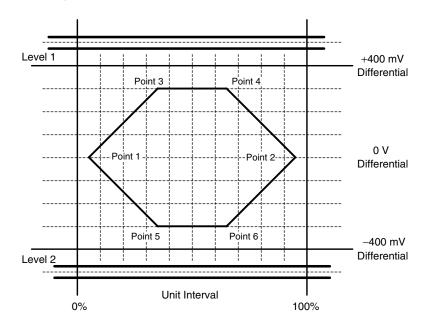
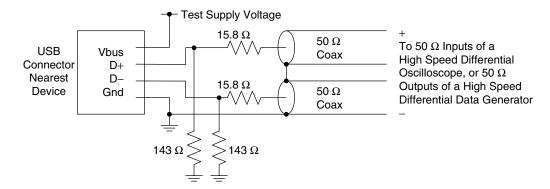
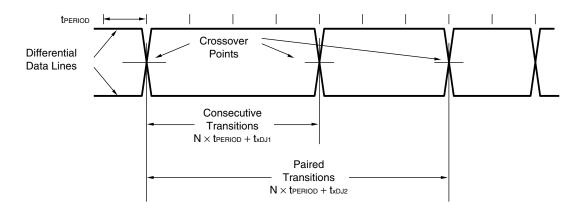
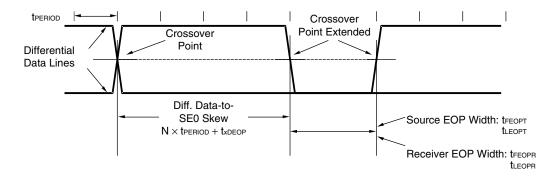
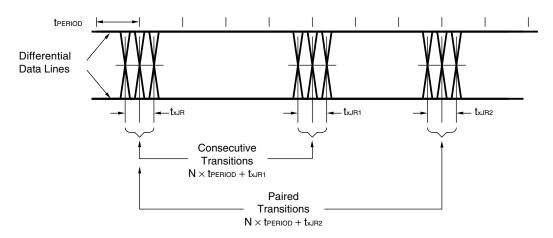
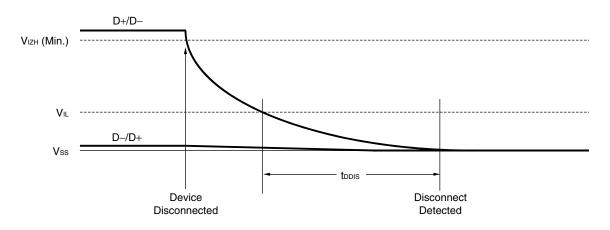
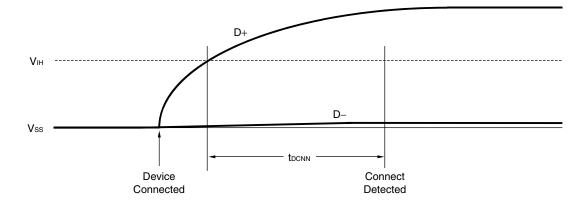




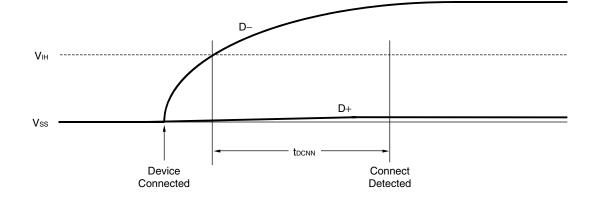
Figure 3–4. Transmit Waveform for Transceiver at DP/DM



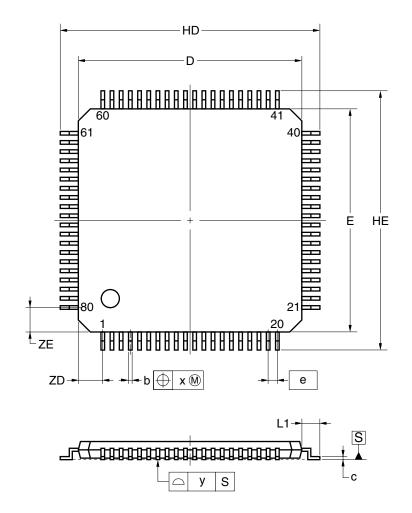

USB differential data jitter for full-speed


USB differential-to-EOP transition skew and EOP width for low-/full-speed


USB receiver jitter tolerance for low-/full-speed


Low-/full-speed disconnect detection

Full-/high-speed device connect detection


Low-speed device connect detection

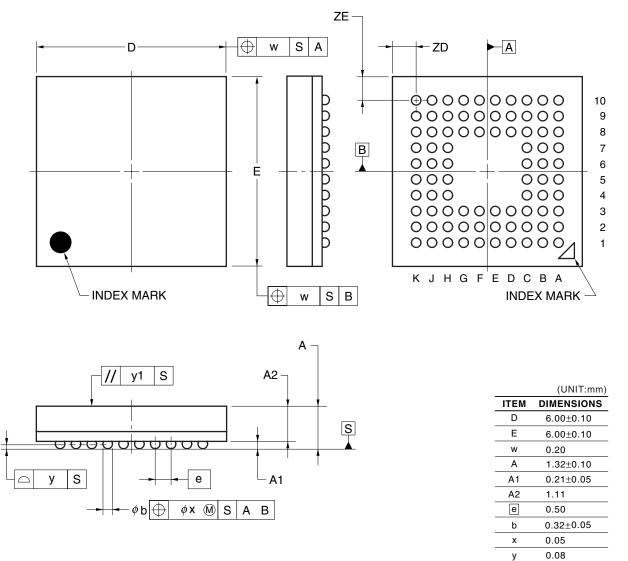
4. PACKAGE DRAWINGS

• *µ*PD720150GK-9EU-A

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

detail of lead end

-A1


	(UNIT:mm)
ITEM	DIMENSIONS
D	12.00±0.20
Е	12.00±0.20
A2	1.00
HD	14.00±0.20
HE	14.00±0.20
А	1.10±0.10
A1	0.10±0.05
A3	0.25
Lp	0.60±0.15
b	0.22±0.05
с	$0.17\substack{+0.03 \\ -0.07}$
θ	$3^{\circ}^{+4^{\circ}}_{-3^{\circ}}$
е	0.50
x	0.08
У	0.08
ZD	1.25
ZE	1.25
L	0.50
L1	1.00±0.20
	K80GK-50-9EU

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

84-PIN PLASTIC FBGA (6x6)

у

y1 ZD

ZE

© NEC Electronics Corporation 2007

0.20

0.75

0.75 P84F1-50-BAE

5. RECOMMENDED SOLDERING CONDITIONS

The μ PD720150 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

• μPD720150GK-9EU-A: 80-pin plastic TQFP (Fine pitch) (12 × 12)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Peak package's surface temperature: 260 °C, Reflow time: 60 seconds or less (220 °C or higher), Maximum allowable number of reflow processes: 3, Exposure limit ^{Note} : 7 days (10 to 72 hours pre-backing is required at 125C° afterwards), Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended. <caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</caution>	IR60-107-3
Partial heating method	Pin temperature: 350°C or below, Heat time: 3 seconds or less (per each side of the device) , Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	-

Note The Maximum number of days during which the product can be stored at a temperature of 5 to 25°C and a relative humidity of 20 to 65% after dry-pack package is opened.

• μ PD720150F1-BAE-A: 84-pin plastic FBGA (6 × 6)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Peak package's surface temperature: 260 °C, Reflow time: 60 seconds or less (220 °C or higher), Maximum allowable number of reflow processes: 3, Exposure limit ^{Note} : 7 days (10 to 72 hours pre-backing is required at 125C° afterwards),	IR60-107-3
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended. <caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.</caution>	

Note The Maximum number of days during which the product can be stored at a temperature of 5 to 25°C and a relative humidity of 20 to 65% after dry-pack package is opened.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

USB logo is a trademark of USB Implementers Forum, Inc.

- The information in this document is current as of January, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).