

R32C/116A Group

User's Manual: Hardware

RENESAS MCU M16C Family / R32C/100 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

About This Manual

1. Purpose and Target User

This manual is designed to be read primarily by application developers who have an understanding of this microcomputer (MCU) including its hardware functions and electrical characteristics. The user should have a basic understanding of electric circuits, logic circuits and, MCUs.

This manual consists of 29 chapters covering six main categories: Overview, CPU, System Control, Peripherals, Electrical Characteristics, and Usage Notes.

Carefully read all notes in this document prior to use. Notes are found throughout each chapter, at the end of each chapter, and in the dedicated Usage Notes chapter.

The Revision History at the end of this manual summarizes primary modifications and additions to the previous versions. For details, please refer to the relative chapters or sections of this manual.

The R32C/116A Group includes the documents listed below. Verify this manual is the latest version by visiting the Renesas Electronics website.

Type of Document	Contents	Document Name	Document Number
Datasheet	Overview of Hardware and Electrical Characteristics	R32C/116A Group R01DS0066EJ0110 Datasheet	
User's Manual: Hardware	Specifications and detailed descriptions of: -pin layout -memory map -peripherals -electrical characteristics -timing characteristics Refer to the Application Manual for peripheral usage.	R32C/116A Group User's Manual: Hardware	This publication
User's Manual: Software/Software Manual	Descriptions of instruction set	R32C/100 Series Software Manual	REJ09B0267-0100
Application Note	-Usages -Applications -Sample programs -Programing technics using Assembly language or C programming language	Available on the Renesas Electronics website.	
Renesas Technical Update	Bulletins on product specifications, documents, etc.		

2. Numbers and Symbols

The following explains the denotations used in this manual for registers, bits, pins and various numbers.

(1) Registers, bits, and pins

Registers, bits, and pins are indicated by symbols. Each symbol has a register/bit/pin identifier

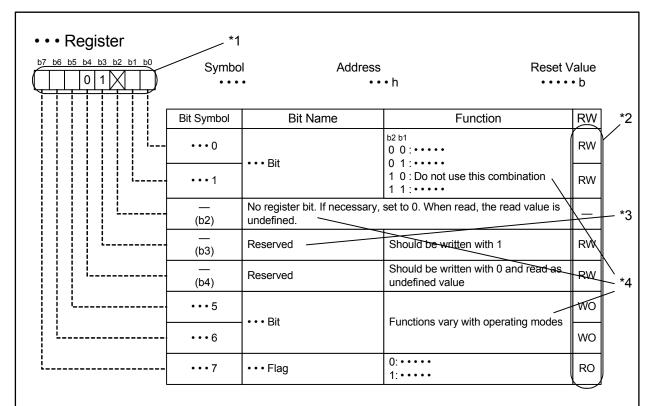
after the symbol.

Example: PM03 bit in the PM0 register

P3_5 pin, VCC pin

(2) Numbers

A binary number has the suffix "b" except for a 1-bit value.


A hexadecimal number has the suffix "h".

A decimal number has no suffix. Example: Binary notation: 11b

Hexadecimal notation: EFA0h Decimal notation: 1234

3. Registers

The following illustration describes registers used throughout this manual.

*1

Blank box: Set this bit to 0 or 1 according to the function.

- 0: Set this bit to 0.
- 1: Set this bit to 1.
- X: Nothing is assigned to this bit.

*2

RW: Read and write RO: Read only

WO: Write only (the read value is undefined)

-: Not applicable

*3

• Reserved bit: This bit field is reserved. Set this bit to a specified value. For RW bits, the written value is read unless otherwise noted.

*4

- No register bit(s): No register bit(s) is/are assigned to this field. If necessary, set to 0 for possible future implementation.
- Do not use this combination: Proper operation is not guaranteed when this value is set.
- Functions vary with operating modes: Functions vary with peripheral operating modes. Refer to register illustrations of the respective mode.

4. Abbreviations and Acronyms

The following acronyms and terms are used throughout this manual.

Abbreviation/Acronym	Meaning
ACIA	Asynchronous Communications Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

TABLE OF CONTENTS

1. Ov	erview	1
1.1	Features	1
1.1.1	Applications	1
1.1.2	Performance Overview	2
1.2	Product Information	6
1.3	Block Diagram	8
1.4	Pin Assignments	9
1.5	Pin Definitions and Functions	20
2. Ce	ntral Processing Unit (CPU)	25
2.1	General Purpose Registers	26
2.1.1	Data Registers (R2R0, R3R1, R6R4, and R7R5)	26
2.1.2	Address Registers (A0, A1, A2, and A3)	26
2.1.3	Static Base Register (SB)	26
2.1.4	Frame Base Register (FB)	26
2.1.5	Program Counter (PC)	26
2.1.6	Interrupt Vector Table Base Register (INTB)	26
2.1.7	User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	26
2.1.8	Flag Register (FLG)	26
2.2	Fast Interrupt Registers	28
2.2.1	Save Flag Register (SVF)	28
2.2.2	Save PC Register (SVP)	28
2.2.3	Vector Register (VCT)	28
2.3	DMAC-associated Registers	28
2.3.1	DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3)	28
2.3.2	DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3)	28
2.3.3	DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3)	28
2.3.4	DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3)	28
2.3.5	DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3)	28
2.3.6	DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3)	28
2.3.7	DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3)	28
3. Me	emory	29
4. Sp	ecial Function Registers (SFRs)	30
5. Re	sets	57
5.1	Hardware Reset	57
5.2	Software Reset	60
5.3	Watchdog Timer Reset	60
5.4	Reset Vector	60

6. Po	wer Management	61
6.1	Voltage Regulators for Internal Logic	61
6.1.1	Decoupling Capacitor	62
6.2	Low Voltage Detector	63
6.2.1	Operational State of Low Voltage Detector	66
6.2.2	Low Voltage Detection Interrupt	66
6.2.3	Application Example of the Low Voltage Detector	67
7. Pro	ocessor Mode	68
7.1	Types of Processor Modes	68
7.2	Processor Mode Setting	68
8. Clo	ock Generator	71
8.1	Clock Generator Types	71
8.1.1	Main Clock	80
8.1.2	Sub Clock (fC)	81
8.1.3	PLL Clock	82
8.1.4	On-chip Oscillator Clock	85
8.2	Oscillator Stop Detection	86
8.2.1	How to Use Oscillator Stop Detection	
8.3	Base Clock	86
8.4	CPU Clock and Peripheral Bus Clock	87
8.5	Peripheral Clock	87
8.6	Clock Output Function	88
8.7	Power Control	89
8.7.1	Normal Operating Mode	90
8.7.2	Wait Mode	95
8.7.3	Stop Mode	98
8.8	System Clock Protection	100
8.9	Notes on Clock Generator	101
8.9.1	Sub Clock	101
8.9.2	Power Control	101
9. Bu	s	102
9.1	Bus Settings	102
9.2	Peripheral Bus Timing Setting	103
9.3	External Bus Setting	104
9.3.1	External Address Space Setting	104
9.3.2	External Data Bus Width Setting	110
9.3.3	Separate Bus/Multiplexed Bus Selection	112
9.3.4	Read and Write Signals	115
9.3.5	External Bus Timing	117

9.3.6	ALE Signal	121
9.3.7	RDY Signal	122
9.3.8	HOLD Signal	125
9.3.9	BCLK Output	125
9.4	External Bus State when Accessing Internal Space	125
9.5	Notes on Bus	126
9.5.1	Notes on Register Settings	126
10. Pro	tection	127
10.1	Protect Register (PRCR Register)	127
10.2	Protect Register 2 (PRCR2 Register)	128
10.3	Protect Register 3 (PRCR3 Register)	128
10.4	Protect Register 4 (PRCR4 Register)	129
10.5	Protect Release Register (PRR Register)	130
11. Inte	errupts	131
11.1	Interrupt Types	131
11.2	Software Interrupts	132
11.3	Hardware Interrupts	133
11.3.1	Special Interrupts	133
11.3.2	Peripheral Interrupts	133
11.4	Fast Interrupt	134
11.5	Interrupt Vectors	134
11.5.1	Fixed Vector Table	135
11.5.2	Relocatable Vector Table	135
11.6	Interrupt Request Acceptance	140
11.6.1	I Flag and IPL	140
11.6.2	Interrupt Control Registers	141
11.6.3	Wake-up IPL Setting Register	144
11.6.4	Interrupt Sequence	145
11.6.5	Interrupt Response Time	146
11.6.6	IPL after Accepting an Interrupt Request	147
11.6.7	Register Saving	147
11.7	Register Restoring from Interrupt Handler	148
11.8	Interrupt Priority	148
11.9	Priority Resolver	148
11.10	External Interrupt	150
11.11	NMI	151
11.12	Key Input Interrupt	152
11.13	Intelligent I/O Interrupt	153
11.14	Notes on Interrupts	156
11 14	1 ISP Setting	156

1	1.14.2	NMI	156
1	1.14.3	External Interrupts	156
12.	Watc	hdog Timer	157
13.	DMA	C	161
13.	1 Tı	ansfer Cycle	170
1	3.1.1	Effect of Transfer Address and Data Bus Width	170
1	3.1.2	Effect of Bus Timing	171
1	3.1.3	Effect of RDY Signal	171
13.	2 D	MA Transfer Cycle	173
13.	3 C	hannel Priority and DMA Transfer Timing	174
13.	4 N	otes on DMAC	175
1	3.4.1	DMAC-associated Register Settings	175
1	3.4.2	Reading DMAC-associated Registers	175
14.	DMA	CII	176
14.	1 D	MAC II Settings	176
1	4.1.1	Registers RIPL1 and RIPL2	177
1	4.1.2	DMAC II Index	178
1	4.1.3	Interrupt Control Register of the Peripherals	181
1	4.1.4	Relocatable Vector Table of the Peripherals	181
1	4.1.5	IRLT Bit in the IIOiIE Register (i = 0 to 11)	181
14.	2 D	MAC II Operation	181
14.	3 Tı	ansfer Types	181
1	4.3.1	Memory-to-memory Transfer	181
1	4.3.2	Immediate Data Transfer	182
1	4.3.3	Calculation Result Transfer	182
14.	4 Tı	ansfer Modes	182
1	4.4.1	Single Transfer	182
1	4.4.2	Burst Transfer	182
1	4.4.3	Multiple Transfer	182
14.	5 C	hain Transfer	183
14.	6 D	MA II Transfer Complete Interrupt	183
14.	7 E	xecution Time	184
15.	Progi	rammable I/O Ports	185
15.	1 P	ort Pi Register (Pi register, i = 0 to 19)	187
15.		elf Test Function	
16.	Time	rs ·	189
16.	1 Ti	mer A	191
1	611	Timer Mode	198

16.1.2 Event Counter Mode	
16.1.3 One-shot Timer Mode	204
16.1.4 Pulse-width Modulation Mode	206
16.2 Timer B	209
16.2.1 Timer Mode	212
16.2.2 Event Counter Mode	214
16.2.3 Pulse Period/Pulse-width Measure Mode	216
16.3 Notes on Timers	219
16.3.1 Timer A and Timer B	219
16.3.2 Timer A	219
16.3.3 Timer B	221
17. Three-phase Motor Control Timers	222
17.1 Modulation Modes of Three-phase Motor Control	
17.2 Timer B2	
17.3 Timers A4, A1, and A2	
17.4 Simultaneous Conduction Prevention and Dead T	
17.5 Three-phase Motor Control Timer Operation	
17.6 Notes on Three-phase Motor Control Timers	
17.6.1 Shutdown	
17.6.2 Register Setting	239
17.6.2 Register Setting 18. Serial Interface	239 240
17.6.2 Register Setting	
17.6.2 Register Setting	
17.6.2 Register Setting	
17.6.2 Register Setting	239 240 257 262 263
17.6.2 Register Setting	239 240 257 262 263
17.6.2 Register Setting	239 240 257 262 262 263 263
17.6.2 Register Setting	240 240 257 262 263 263 264 264
17.6.2 Register Setting	239 240 257 262 263 263 264 264)
17.6.2 Register Setting	240 240 257 262 262 263 263 264 264 265 270
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 240 257 262 263 263 264 264 264 271
17.6.2 Register Setting	239 240 257 262 263 263 264 264 264 271
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 240 257 262 262 263 263 264 264 270 271
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 240 257 262 263 263 263 264 264) 265 270 271 271 272
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 257 262 262 263 263 264 264 264 270 271 271 272 273
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 240 257 262 262 263 263 264 264 264 270 271 271 272 273
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 257 262 263 263 264 265 270 271 272 273 274 280
18. Serial Interface 18.1 Synchronous Serial Interface Mode	240 240 257 262 262 263 263 264 264 264 270 271 271 272 273

18.3.5	SDA Output	284
18.3.6	SDA Input	284
18.3.7	Acknowledge	284
18.3.8	Initialization of Transmit/Receive Operation Reset	284
18.4 Spe	cial Mode 2	285
18.4.1	SSi Input Pin Function (i = 0 to 6)	287
18.4.2	Clock Phase Setting	288
18.5 Not	es on Serial Interface	290
18.5.1	Changing the UiBRG Register (i = 0 to 10)	290
18.5.2	Synchronous Serial Interface Mode	290
18.5.3	Special Mode 1 (I ² C Mode)	290
18.5.4	Reset Procedure on Communication Error	291
19. A/D Co	onverter	292
19.1 Mo	de Descriptions	301
19.1.1	One-shot Mode	301
19.1.2	Repeat Mode	302
19.1.3	Single Sweep Mode	303
19.1.4	Repeat Sweep Mode 0	304
19.1.5	Repeat Sweep Mode 1	305
19.1.6	Multi-port Single Sweep Mode	306
19.1.7	Multi-port Repeat Sweep Mode 0	307
19.2 Fur	octions	308
19.2.1	Resolution Selection	308
19.2.2	Sample and Hold Function	308
19.2.3	Trigger Selection	308
19.2.4	DMAC Operating Mode	308
19.2.5	Function-extended Analog Input Pins	309
19.2.6	External Operating Amplifier (Op-Amp) Connection Mode	309
19.2.7	Self Test/Open-circuit Detection Assist	310
19.2.8	Power Saving	311
19.2.9	Output Impedance of Sensor Equivalent Circuit under A/D Conversion	311
19.3 Not	es on A/D Converter	313
19.3.1	Notes on Designing Boards	313
19.3.2	Notes on Programming	314
20. D/A Co	onverter	315
21. CRC C	Calculator	317
22. X-Y Co	onversion	320
	a Conversion When Reading	
	a Conversion When Writing	323

23. Int	elligent I/O	324
23.1	Base Timer for Groups 0 to 2	339
23.2	Time Measurement (for Groups 0 and 1)	345
23.3	Waveform Generation for Groups 0 to 2	349
23.3.	Single-phase Waveform Output Mode (for Groups 0 to 2)	350
23.3.2	2 Inverted Waveform Output Mode for Groups 0 to 2	352
23.3.3	Set/Reset Waveform Output Mode (SR Waveform Output Mode) for Groups 0 to 2	354
23.3.4	Bit Modulation PWM Output Mode (for Group 2)	357
23.3.5	Real-time Port Output Mode (RTP Output Mode) (for Group 2)	359
23.3.6	Parallel Real-time Port Output Mode (RTP Output Mode) (for Group 2)	361
23.4	Group 2 Serial Interface	363
23.4.	Variable Synchronous Serial Interface Mode (for Group 2)	368
24. Mu	ılti-master I ² C-bus Interface	371
24.1	Multi-master I ² C-bus Interface-associated Registers	373
24.1.1	I ² C-bus Transmit/Receive Shift Register (I2CTRSR)	373
24.1.2	2 I ² C-bus Slave Address Register (I2CSAR)	374
24.1.3	l ² C-bus Control Register 0 (I2CCR0)	375
24.1.4	I ² C-bus Clock Control Register (I2CCCR)	377
24.1.5	I ² C-bus START and STOP Conditions Control Register (I2CSSCR)	379
24.1.6	I ² C-bus Control Register 1 (I2CCR1)	380
24.1.7	7 I ² C-bus Control Register 2 (I2CCR2)	383
24.1.8	B I ² C-bus Status Register (I2CSR)	385
24.1.9	9 I ² C-bus Mode Register (I2CMR)	389
24.2	Generating a START Condition	390
24.3	Generating a STOP Condition	392
24.4	START Condition Redundancy Prevention Function	393
24.5	Detecting START and STOP Conditions	394
24.6	Data Transmission and Reception	396
24.6.	Master Transmission	397
24.6.2	Slave Reception	398
24.7	Notes on Using Multi-master I ² C-bus Interface	399
24.7.	Accessing Multi-master I ² C-bus Interface-associated Registers	399
24.7.2	2 Generating a Repeated START condition	401
25. Pr	otected Areas	402
26. I/C	Pins	404
26.1	Port Pi Direction Register (PDi Register, i = 0 to 19)	405
26.2	Output Function Select Registers	406
26.3	Input Function Select Registers	427
26.4	Pull-up Control Registers 0 to 5 (Registers PLIR0 to PLIR5)	431

26.5	Port Control Register (PCR Register)	435
26.6	Configuring Unused Pins	437
27. Fla	sh Memory	440
27.1	Overview	440
27.2	Flash Memory Protection	442
27.2.1	Lock Bit Protection	442
27.2.2	ROM Code Protection	442
27.2.3	ID Code Protection	443
27.2.4	Forcible Erase Function	444
27.2.5	Standard Serial I/O Mode Disable Function	445
27.3	CPU Rewrite Mode	446
27.3.1	Flash Memory Rewrite Bus Timing	454
27.3.2	Software Commands	458
27.3.3	Mode Transition	459
27.3.4	Issuing Software Commands	460
27.3.5	Status Check	466
27.3.6	Suspend/Resume Operation	467
27.4	Standard Serial I/O Mode	472
27.5	Parallel I/O mode	475
27.6	Notes on Flash Memory Rewriting	476
27.6.1	Note on Power Supply	476
27.6.2	Note on Hardware Reset	476
27.6.3	Note on Flash Memory Protection	476
27.6.4	Notes on Programming	476
27.6.5	Notes on Interrupts	476
27.6.6	Notes on Rewrite Control Program	477
27.6.7	Notes on Number of Program/Erase Cycles and Software Command Execution Time	477
27.6.8	Other Notes	477
28. Ele	ctrical Characteristics	478
29. Usa	age Notes	519
29.1	Notes on Board Designing	
29.1.1		
29.1.2		
29.2	Notes on Register Setting	
29.2.1	Registers with Write-only Bits	
29.3	Notes on Clock Generator	
29.3.1	Sub Clock	
29.3.2		
29.4	Notes on Bus	

29.4.1	Notes on Register Settings	523
29.5	Notes on Interrupts	524
29.5.1	ISP Setting	524
29.5.2	NMI	524
29.5.3	External Interrupts	524
29.6	Notes on DMAC	525
29.6.1	DMAC-associated Register Settings	525
29.6.2	Reading DMAC-associated Registers	525
29.7	Notes on Timers	526
29.7.1	Timer A and Timer B	526
29.7.2	Timer A	526
29.7.3	Timer B	528
29.8	Notes on Three-phase Motor Control Timers	529
29.8.1	Shutdown	529
29.8.2	Register Setting	529
29.9	Notes on Serial Interface	530
29.9.1	Changing the UiBRG Register (i = 0 to 10)	530
29.9.2	Synchronous Serial Interface Mode	530
29.9.3	Special Mode 1 (I ² C Mode)	530
29.9.4	Reset Procedure on Communication Error	531
29.10	Notes on A/D Converter	532
29.10.	1 Notes on Designing Boards	532
29.10.	Notes on Programming	533
29.11	Notes on Flash Memory Rewriting	534
29.11.	1 Note on Power Supply	534
29.11.	Note on Hardware Reset	534
29.11.	Note on Flash Memory Protection	534
29.11.	Notes on Programming	534
29.11.	Notes on Interrupts	534
29.11.	Notes on Rewrite Control Program	535
29.11.	Notes on Number of Program/Erase Cycles and Software Command Execution Time	535
29.11.	3 Other Notes	535
Appendi	x 1. Package Dimensions	536
INDEX		538

R32C/116A Group

RENESAS MCU

R01UH0213EJ0110 Rev.1.10 Sep 28, 2012

1. Overview

1.1 Features

The M16C Family offers a robust platform of 32-/16-bit CISC microcomputers (MCUs) featuring high ROM code efficiency, extensive EMI/EMS noise immunity, ultra-low power consumption, high-speed processing in actual applications, and numerous and varied integrated peripherals. Extensive device scalability from low- to high-end, featuring a single architecture as well as compatible pin assignments and peripheral functions, provides support for a vast range of application fields.

The R32C/100 Series is a high-end microcontroller series in the M16C Family. With a 4-Gbyte memory space, it achieves maximum code efficiency and high-speed processing with 32-bit CISC architecture, multiplier, multiply-accumulate unit, and floating point unit. The selection from the broadest choice of on-chip peripheral devices — UART, CRC, DMAC, A/D and D/A converters, timers, I²C, and watchdog timer enables to minimize external components.

The R32C/100 Series, in particular, provides the R32C/116A Group as a standard product. This product, provided as a 144/176-pin plastic molded LQFP package, has 11 channels of serial interface and one channel of multi-master I²C-bus interface.

1.1.1 Applications

Car audio, audio, cameras, television, home appliance, printer, office/industrial equipment, communication/portable devices, etc.

1.1.2 Performance Overview

Tables 1.1 to 1.4 show the performance overview of the R32C/116A Group.

Table 1.1 Performance Overview for the 176 pin-Package (1/2)

Unit	Function	Explanation
CPU	Central processing unit	R32C/100 Series CPU Core • Basic instructions: 108 • Minimum instruction execution time: 15.625 ns (f(CPU) = 64 MHz) • Multiplier: 32-bit × 32-bit → 64-bit • Multiply-accumulate unit: 32-bit × 32-bit + 64-bit → 64-bit • IEEE-754 compatible FPU: Single precision • 32-bit barrel shifter • Operating mode: Single-chip mode, memory expansion mode, microprocessor mode (optional (1))
Memory		Flash memory: 512 Kbytes to 1 Mbyte RAM: 96 Kbytes Data flash: 4 Kbytes × 2 blocks Refer to Table 1.5 for memory size of each product group
Voltage Detector	Low voltage detector	Optional ⁽¹⁾ Low voltage detection interrupt
Clock	Clock generator	4 circuits (main clock, sub clock, PLL, on-chip oscillator) Oscillation stop detector: Main clock oscillator stop/restart detection Frequency divide circuit: Divide-by-2 to divide-by-24 selectable Low power modes: Wait mode, stop mode
External Bus Expansion	Bus and memory expansion	 Address space: 4 Gbytes (of which up to 64 Mbytes is user accessible) External bus Interface: Support for wait-state insertion, 4 chip select outputs Bus format: Separate bus/Multiplexed bus selectable, data bus width selectable (8/16/32 bits)
Interrupts		Interrupt vectors: 261 External interrupt inputs: NMI, INT × 9, key input × 4 Interrupt priority levels: 7
Watchdog Tim	er	15 bits × 1 (selectable input frequency from prescaler output) • Automatic timer start function is available
DMA	DMAC	4 channels • Cycle-steal transfer mode • Request sources: 61 • 2 transfer modes: Single transfer, repeat transfer
	DMAC II	 Triggered by an interrupt request of any peripheral 3 characteristic transfer functions: Immediate data transfer, calculation result transfer, chain transfer
I/O Ports	Programmable I/O ports	 2 input-only ports 156 CMOS I/O ports 52 ports are 5 V tolerant A pull-up resistor is selectable for every 4 input ports (except 5 V tolerant inputs)

Note:

Table 1.2 Performance Overview for the 176-pin Package (2/2)

Unit	Function	Explanation			
Timer	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (two-phase encoder input) × 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode			
	Three-phase motor control timer	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used) 8-bit programmable dead time timer			
Serial Interface	UART0 to UART10	Asynchronous/synchronous serial interface × 11 channels • I ² C-bus (UART0 to UART6) • Special mode 2 (UART0 to UART6) • IEBus (optional (1)) (UART0 to UART6)			
A/D Converter		10-bit resolution × 34 channels Sample and hold functionality integrated Self test/Open-circuit detection assist			
D/A Converter		8-bit resolution × 2			
CRC Calculate	or	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)			
X-Y Converter		16 bits × 16 bits			
Intelligent I/O		Time measurement (input capture): 16 bits × 16 Waveform generation (output compare): 16 bits × 24 Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional (1))			
Multi-master I ²	C-bus Interface	1 channel			
Flash Memory		Programming and erasure supply voltage: VCC = 3.0 to 5.5 V Minimum endurance: 1,000 program/erase cycles Suspend/resume function available Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming			
Operating Fred Voltage	quency/Supply	64 MHz/VCC = 3.0 to 5.5 V			
Operating Temperature		-20°C to 85°C (N version) -40°C to 85°C (D version) -40°C to 85°C (P version)			
Current Consu	mption	45 mA (VCC = 5.0 V, f(CPU) = 64 MHz) 8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)			
Package		176-pin plastic molded LQFP (PLQP0176KB-A)			

Note:

Table 1.3 Performance Overview for the 144-pin Package (1/2)

Unit	Function	Explanation
CPU	Central processing unit	R32C/100 Series CPU Core • Basic instructions: 108 • Minimum instruction execution time: 15.625 ns (f(CPU) = 64 MHz) • Multiplier: 32-bit × 32-bit → 64-bit • Multiply-accumulate unit: 32-bit × 32-bit + 64-bit → 64-bit • IEEE-754 compatible FPU: Single precision • 32-bit barrel shifter • Operating mode: Single-chip mode, memory expansion mode, microprocessor mode (optional (1))
Memory		Flash memory: 512 Kbytes to 1 Mbyte RAM: 96 Kbytes Data flash: 4 Kbytes × 2 blocks Refer to Table 1.5 for memory size of each product group
Voltage Detector	Low voltage detector	Optional ⁽¹⁾ Low voltage detection interrupt
Clock	Clock generator	4 circuits (main clock, sub clock, PLL, on-chip oscillator) Oscillation stop detector: Main clock oscillator stop/restart detection Frequency divide circuit: Divide-by-2 to divide-by-24 selectable Low power modes: Wait mode, stop mode
External Bus Expansion	Bus and memory expansion	 Address space: 4 Gbytes (of which up to 64 Mbytes is user accessible) External bus Interface: Support for wait-state insertion, 4 chip select outputs Bus format: Separate bus/Multiplexed bus selectable, data bus width selectable (8/16/32 bits)
Interrupts		Interrupt vectors: 261 External interrupt inputs: NMI, NT × 9, key input × 4 Interrupt priority levels: 7
Watchdog Tim	er	15 bits × 1 (selectable input frequency from prescaler output) Automatic timer start function is available
DMA	DMAC	 4 channels Cycle-steal transfer mode Request sources: 61 2 transfer modes: Single transfer, repeat transfer
	DMAC II	 Triggered by an interrupt request of any peripheral 3 characteristic transfer functions: Immediate data transfer, calculation result transfer, chain transfer
I/O Ports	Programmable I/O ports	 2 input-only ports 124 CMOS I/O ports 40 ports are 5 V tolerant A pull-up resistor is selectable for every 4 input ports (except 5 V tolerant inputs)

Note:

Table 1.4 Performance Overview for the 144-pin Package (2/2)

Unit	Function	Explanation			
Timer	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (two-phase encoder input) × 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode			
	Three-phase motor control timer	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used) 8-bit programmable dead time timer			
Serial Interface	UART0 to UART10	Asynchronous/synchronous serial interface × 11 channels • I ² C-bus (UART0 to UART6) • Special mode 2 (UART0 to UART6) • IEBus (optional (1)) (UART0 to UART6)			
A/D Converte	r	10-bit resolution × 34 channels Sample and hold functionality integrated Self test/Open-circuit detection assist			
D/A Converte	r	8-bit resolution × 2			
CRC Calculat	or	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)			
X-Y Converte	r	16 bits × 16 bits			
Intelligent I/O		Time measurement (input capture): 16 bits × 16 Waveform generation (output compare): 16 bits × 24 Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional (1))			
Multi-master I	² C-bus Interface	1 channel			
Flash Memory	/	Programming and erasure supply voltage: VCC = 3.0 to 5.5 V Minimum endurance: 1,000 program/erase cycles Suspend/resume function available Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming			
Operating Fre Voltage	equency/Supply	64 MHz/VCC = 3.0 to 5.5 V			
Operating Temperature		-20°C to 85°C (N version) -40°C to 85°C (D version) -40°C to 85°C (P version)			
Current Consi	umption	45 mA (VCC = 5.0 V, f(CPU) = 64 MHz) 8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)			
Package		144-pin plastic molded LQFP (PLQP0144KA-A)			

Note:

1.2 Product Information

Table 1.5 lists the product information and Figure 1.1 shows the details of the part number.

Table 1.5 R32C/116A Group Product List

As of September, 2012

Part Number		Package Code (1)	ROM Capacity (2)	RAM Capacity	Remarks
R5F6416JANFE	(P)				-20°C to 85°C (N version)
R5F6416JADFE		PLQP0176KB-A			-40°C to 85°C (D version)
R5F6416JAPFE			512 Kbytes	OG Khytoo	-40°C to 85°C (P version)
R5F6416JANFD	(P)		+ 8 Kbytes	96 Kbytes	-20°C to 85°C (N version)
R5F6416JADFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F6416JAPFD					-40°C to 85°C (P version)
R5F6416KANFE	(P)				-20°C to 85°C (N version)
R5F6416KADFE		PLQP0176KB-A			-40°C to 85°C (D version)
R5F6416KAPFE			640 Kbytes	96 Kbytes	-40°C to 85°C (P version)
R5F6416KANFD	(P)		+ 8 Kbytes	90 Noytes	-20°C to 85°C (N version)
R5F6416KADFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F6416KAPFD					-40°C to 85°C (P version)
R5F6416LANFE	(P)				-20°C to 85°C (N version)
R5F6416LADFE		PLQP0176KB-A		96 Kbytes	-40°C to 85°C (D version)
R5F6416LAPFE			768 Kbytes		-40°C to 85°C (P version)
R5F6416LANFD	(P)		+ 8 Kbytes	90 Noytes	-20°C to 85°C (N version)
R5F6416LADFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F6416LAPFD					-40°C to 85°C (P version)
R5F6416MANFE	(P)				-20°C to 85°C (N version)
R5F6416MADFE		PLQP0176KB-A			-40°C to 85°C (D version)
R5F6416MAPFE			1 Mbyte	96 Kbytes	-40°C to 85°C (P version)
R5F6416MANFD	(P)		+ 8 Kbytes	30 Noyles	-20°C to 85°C (N version)
R5F6416MADFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F6416MAPFD					-40°C to 85°C (P version)

(P): On planning phase

Notes:

1. The old package codes are as follows:

PLQP0144KA-A: 144P6Q-A, PLQP0176KB-A: 176P6Q-A

2. "+ 8 Kbytes" in the ROM capacity column indicates the data flash capacity.

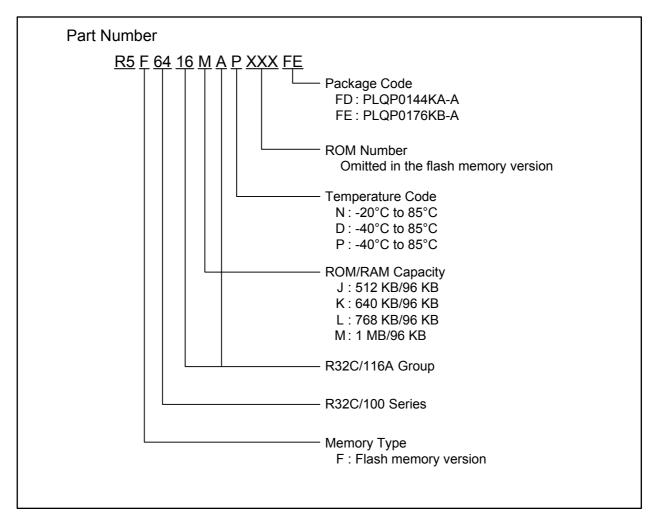


Figure 1.1 Part Numbering

1.3 Block Diagram

Figure 1.2 shows a block diagram of the R32C/116A Group.

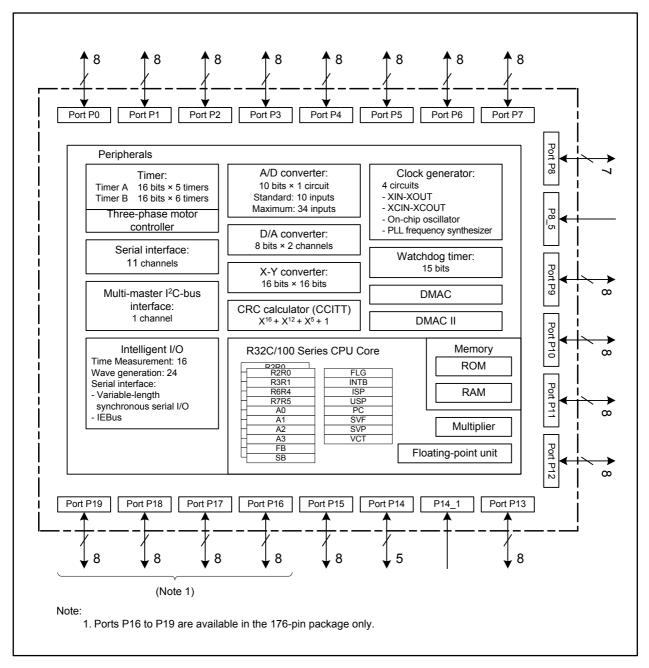


Figure 1.2 R32C/116A Group Block Diagram

1.4 Pin Assignments

Figures 1.3 and 1.4 show the pin assignments (top view) and Tables 1.6 to 1.13 show the pin characteristics.



Figure 1.3 Pin Assignment for the 176-pin Package (top view)

Table 1.6 Pin Characteristics for the 176-pin Package (1/5)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_6			TXD4/SDA4/SRXD4		ANEX1	
2		P9_5			CLK4		ANEX0	
3		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
4		P9_3		TB3IN	CTS3/RTS3/SS3		DA0	
5		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		
6		P9_1		TB1IN	RXD3/SCL3/STXD3	ISRXD2/IEIN		
7		P9_0		TB0IN	CLK3			
8		P19_7						
9		P14_6	INT8					
10		P19_6						
11		P14_5	ĪNT7					
12		P14_4	INT6					
13		P14_3						
14	VDC0							
15		P14_1						
16	VDC1							
17	NSD							
18	CNVSS							
19	XCIN	P8_7						
20	XCOUT	P8_6						
21	RESET							
22	XOUT							
23	VSS							
24	XIN							
25	VCC							
26		P8_5	NMI					
27		P8_4	ĪNT2					
28		P8_3	INT1					
29		P8_2	ĪNT0					
30		P8_1		TA4IN/Ū	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
31		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
32		P18_1						
33		P18_0						
34		P7_7		TA3IN	CLK5	IIO1_4/UD0B/UD1B		
35		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8	IIO1_3/UD0A/UD1A		
36		P7_5		TA2IN/W	RXD8	IIO1_2		

Table 1.7 Pin Characteristics for the 176-pin Package (2/5)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
37		P7_4		TA2OUT/W	CLK8	IIO1_1		
38		P17_7						
39		P17_6						
40		P17_5						
41		P17_4						
42		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0		
43		P7_2		TA1OUT/V	CLK2			
44		P7_1		TA0IN/ TB5IN	RXD2/SCL2/STXD2/ MSCL	IIO1_7/OUTC2_2/ ISRXD2/IEIN		
45		P7_0		TA0OUT	TXD2/SDA2/SRXD2/ MSDA	IIO1_6/OUTC2_0/ ISTXD2/IEOUT		
46		P6_7			TXD1/SDA1/SRXD1			
47		P14_7						
48		P6_6			RXD1/SCL1/STXD1			
49		P11_7						
50		P6_5			CLK1			
51		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2		
52		P6_3			TXD0/SDA0/SRXD0			
53		P6_2		TB2IN	RXD0/SCL0/STXD0			
54		P6_1		TB1IN	CLK0			
55		P6_0		TB0IN	CTS0/RTS0/SS0			
56		P19_5						
57		P13_7				OUTC2_7		D31
58		P13_6				OUTC2_1/ISCLK2		D30
59		P13_5				OUTC2_2/ISRXD2/ IEIN		D29
60		P13_4				OUTC2_0/ISTXD2/ IEOUT		D28
61		P19_4						
62		P5_7			CTS7/RTS7			RDY/CS3
63		P5_6			RXD7			ALE/CS2
64		P5_5			CLK7			HOLD
65		P5_4			TXD7			HLDA/CS1
66		P13_3				OUTC2_3		D27
67	VSS							
68		P13_2				OUTC2_6		D26
69	VCC							
70		P13_1				OUTC2_5		D25
71		P13_0				OUTC2_4		D24
72		P5_3						CLKOUT/ BCLK
73		P5_2						RD
74		P5_1						WR1/BC1

Table 1.8 Pin Characteristics for the 176-pin Package (3/5)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
75		P5_0						WR0/WR
76		P12_7						D23
77		P12_6						D22
78		P12_5						D21
79		P19_3						
80		P17_3						
81		P17_2						
82		P17_1						
83		P17_0						
84		P19_2						
85		P4_7			TXD6/SDA6/SRXD6			CS0/A23
86		P4_6			RXD6/SCL6/STXD6			CS1/A22
87		P4_5			CLK6			CS2/A21
88		P4_4			CTS6/RTS6/SS6			CS3/A20
89		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
90		P11_6						
91		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
92		P11_5						
93		P4_1			CLK3			A17
94		P4_0			CTS3/RTS3/SS3			A16
95		P16_7			TXD10			
96		P16_6			RXD10			
97		P16_5			CLK10			
98		P16_4			CTS10/RTS10			
99		P3_7		TA4IN/Ū				A15(/D15)
100		P3_6		TA4OUT/U				A14(/D14)
101		P3_5		TA2IN/W				A13(/D13)
102		P3_4		TA2OUT/W				A12(/D12)
103		P16_3			TXD9			
104		P16_2			RXD9			
105		P16_1			CLK9			
106		P16_0			CTS9/RTS9			
107		P3_3		TA1IN/V				A11(/D11)
108		P3_2		TA1OUT/V				A10(/D10)
109		P3_1		TA3OUT		UD0B/UD1B		A9(/D9)
110		P12_4						D20
111		P12_3			CTS6/RTS6/SS6			D19
112		P12_2			RXD6/SCL6/STXD6			D18
113		P12_1			CLK6			D17
114		P12_0			TXD6/SDA6/SRXD6			D16

Table 1.9 Pin Characteristics for the 176-pin Package (4/5)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
115	VCC							
116		P3_0		TA0OUT		UD0A/UD1A		A8(/D8)
117	VSS							
118		P2_7			TXD10		AN2_7	A7(/D7)
119		P2_6			RXD10		AN2_6	A6(/D6)
120		P2_5			CLK10		AN2_5	A5(/D5)
121		P2_4			CTS10/RTS10		AN2_4	A4(/D4)
122		P2_3			TXD9		AN2_3	A3(/D3)
123		P2_2			RXD9		AN2_2	A2(/D2)
124		P2_1			CLK9		AN2_1	A1(/D1)/ BC2(/D1)
125		P2_0			CTS9/RTS9		AN2_0	A0(/D0)/ BC0(/D0)
126		P1_7	ĪNT5			IIO0_7/IIO1_7		D15
127		P1_6	ĪNT4			IIO0_6/IIO1_6		D14
128		P1_5	ĪNT3			IIO0_5/IIO1_5		D13
129		P1_4				IIO0_4/IIO1_4		D12
130		P1_3				IIO0_3/IIO1_3		D11
131		P1_2				IIO0_2/IIO1_2		D10
132		P1_1				IIO0_1/IIO1_1		D9
133		P1_0				IIO0_0/IIO1_0		D8
134		P0_7					AN0_7	D7
135		P0_6					AN0_6	D6
136		P0_5					AN0_5	D5
137		P0_4					AN0_4	D4
138		P19_1						
139		P11_4						BC3/WR3
140		P19_0						
141		P11_3			CTS8/RTS8	IIO1_3		CS3/WR2
142		P11_2			RXD8	IIO1_2		CS2
143		P11_1			CLK8	IIO1_1		CS1
144		P11_0			TXD8	IIO1_0		CS0
145		P18_7						
146		P18_6						
147		P18_5						
148		P18_4						
149		P18_3						
150		P18_2						
151		P0_3					AN0_3	D3
152		P0_2					AN0_2	D2
153		P0_1					AN0_1	D1
154		P0_0					AN0_0	D0
155		P15_7			CTS6/RTS6/SS6	IIO0_7	AN15_7	

Table 1.10 Pin Characteristics for the 176-pin Package (5/5)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
156		P15_6			CLK6	IIO0_6	AN15_6	
157		P15_5			RXD6/SCL6/STXD6	IIO0_5	AN15_5	
158		P15_4			TXD6/SDA6/SRXD6	IIO0_4	AN15_4	
159		P15_3			CTS7/RTS7	IIO0_3	AN15_3	
160		P15_2			RXD7	IIO0_2	AN15_2	
161		P15_1			CLK7	IIO0_1	AN15_1	
162	VSS							
163		P15_0			TXD7	1100_0	AN15_0	
164	VCC							
165		P10_7	KI3				AN_7	
166		P10_6	KI2				AN_6	
167		P10_5	KI1				AN_5	
168		P10_4	KI0				AN_4	
169		P10_3					AN_3	
170		P10_2					AN_2	
171		P10_1					AN_1	
172	AVSS							
173		P10_0					AN_0	
174	VREF							
175	AVCC							
176		P9_7			RXD4/SCL4/STXD4		ADTRG	

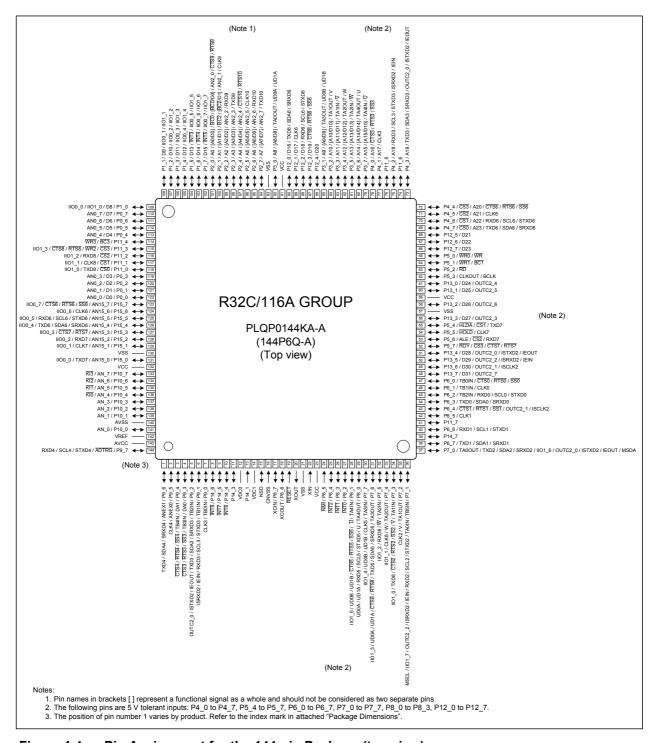


Figure 1.4 Pin Assignment for the 144-pin Package (top view)

Table 1.11 Pin Characteristics for the 144-pin Package (1/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_6			TXD4/SDA4/SRXD4		ANEX1	
2		P9_5			CLK4		ANEX0	
3		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
4		P9_3		TB3IN	CTS3/RTS3/SS3		DA0	
5		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		
6		P9_1		TB1IN	RXD3/SCL3/STXD3	ISRXD2/IEIN		
7		P9_0		TB0IN	CLK3			
8		P14_6	INT8					
9		P14_5	ĪNT7					
10		P14_4	INT6					
11		P14_3						
12	VDC0							
13		P14_1						
14	VDC1							
15	NSD							
16	CNVSS							
17	XCIN	P8_7						
18	XCOUT	P8_6						
19	RESET							
20	XOUT							
21	VSS							
22	XIN							
23	VCC							
24		P8_5	NMI					
25		P8_4	ĪNT2					
26		P8_3	ĪNT1					
27		P8_2	ĪNT0					
28		P8_1		TA4IN/Ū	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
29		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
30		P7_7		TA3IN	CLK5	IIO1_4/UD0B/UD1B		
31		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8	IIO1_3/UD0A/UD1A		
32		P7_5		TA2IN/W	RXD8	IIO1_2		
33		P7_4		TA2OUT/W	CLK8	IIO1_1		
34		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0		
35		P7_2		TA1OUT/V	CLK2			
36		P7_1		TA0IN/ TB5IN	RXD2/SCL2/STXD2/ MSCL	IIO1_7/OUTC2_2/ ISRXD2/IEIN		

Table 1.12 Pin Characteristics for the 144-pin Package (2/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
37		P7_0		TA0OUT	TXD2/SDA2/SRXD2/ MSDA	IIO1_6/OUTC2_0/ ISTXD2/IEOUT		
38		P6_7			TXD1/SDA1/SRXD1			
39		P14_7						
40		P6_6			RXD1/SCL1/STXD1			
41		P11_7						
42		P6_5			CLK1			
43		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2		
44		P6_3			TXD0/SDA0/SRXD0			
45		P6_2		TB2IN	RXD0/SCL0/STXD0			
46		P6_1		TB1IN	CLK0			
47		P6_0		TB0IN	CTS0/RTS0/SS0			
48		P13_7				OUTC2_7		D31
49		P13_6				OUTC2_1/ISCLK2		D30
50		P13_5				OUTC2_2/ISRXD2/ IEIN		D29
51		P13_4				OUTC2_0/ISTXD2/ IEOUT		D28
52		P5_7			CTS7/RTS7			RDY/CS3
53		P5_6			RXD7			ALE/CS2
54		P5_5			CLK7			HOLD
55		P5_4			TXD7			HLDA/CS1
56		P13_3				OUTC2_3		D27
57	VSS							
58		P13_2				OUTC2_6		D26
59	VCC							
60		P13_1				OUTC2_5		D25
61		P13_0				OUTC2_4		D24
62		P5_3						CLKOUT/ BCLK
63		P5_2						RD
64		P5_1						WR1/BC1
65		P5_0						WR0/WR
66		P12_7						D23
67		P12_6						D22
68		P12_5						D21
69		P4_7			TXD6/SDA6/SRXD6			CS0/A23
70		P4_6			RXD6/SCL6/STXD6			CS1/A22
71		P4_5			CLK6			CS2/A21
72		P4_4			CTS6/RTS6/SS6			CS3/A20
73		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
74		P11_6						

Table 1.13 Pin Characteristics for the 144-pin Package (3/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
75		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
76		P11_5						
77		P4_1			CLK3			A17
78		P4_0			CTS3/RTS3/SS3			A16
79		P3_7		TA4IN/Ū				A15(/D15)
80		P3_6		TA4OUT/U				A14(/D14)
81		P3_5		TA2IN/W				A13(/D13)
82		P3_4		TA2OUT/W				A12(/D12)
83		P3_3		TA1IN/V				A11(/D11)
84		P3_2		TA1OUT/V				A10(/D10)
85		P3_1		TA3OUT		UD0B/UD1B		A9(/D9)
86		P12_4						D20
87		P12_3			CTS6/RTS6/SS6			D19
88		P12_2			RXD6/SCL6/STXD6			D18
89		P12_1			CLK6			D17
90		P12_0			TXD6/SDA6/SRXD6			D16
91	VCC							
92		P3_0		TA0OUT		UD0A/UD1A		A8(/D8)
93	VSS							
94		P2_7			TXD10		AN2_7	A7(/D7)
95		P2_6			RXD10		AN2_6	A6(/D6)
96		P2_5			CLK10		AN2_5	A5(/D5)
97		P2_4			CTS10/RTS10		AN2_4	A4(/D4)
98		P2_3			TXD9		AN2_3	A3(/D3)
99		P2_2			RXD9		AN2_2	A2(/D2)
100		P2_1			CLK9		AN2_1	A1(/D1)/ BC2(/D1)
101		P2_0			CTS9/RTS9		AN2_0	A0(/D0)/ BC0(/D0)
102		P1_7	INT5			IIO0_7/IIO1_7		D15
103		P1_6	ĪNT4			IIO0_6/IIO1_6		D14
104		P1_5	ĪNT3			IIO0_5/IIO1_5		D13
105		P1_4				IIO0_4/IIO1_4		D12
106		P1_3				IIO0_3/IIO1_3		D11
107		P1_2				IIO0_2/IIO1_2		D10
108		P1_1				IIO0_1/IIO1_1		D9
109		P1_0				IIO0_0/IIO1_0		D8
110		P0_7					AN0_7	D7
111		P0_6					AN0_6	D6

Table 1.14 Pin Characteristics for the 144-pin Package (4/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
112		P0_5					AN0_5	D5
113		P0_4					AN0_4	D4
114		P11_4						BC3/WR3
115		P11_3			CTS8/RTS8	IIO1_3		CS3/WR2
116		P11_2			RXD8	IIO1_2		CS2
117		P11_1			CLK8	IIO1_1		CS1
118		P11_0			TXD8	IIO1_0		CS0
119		P0_3					AN0_3	D3
120		P0_2					AN0_2	D2
121		P0_1					AN0_1	D1
122		P0_0					AN0_0	D0
123		P15_7			CTS6/RTS6/SS6	IIO0_7	AN15_7	
124		P15_6			CLK6	IIO0_6	AN15_6	
125		P15_5			RXD6/SCL6/STXD6	IIO0_5	AN15_5	
126		P15_4			TXD6/SDA6/SRXD6	IIO0_4	AN15_4	
127		P15_3			CTS7/RTS7	IIO0_3	AN15_3	
128		P15_2			RXD7	IIO0_2	AN15_2	
129		P15_1			CLK7	IIO0_1	AN15_1	
130	VSS							
131		P15_0			TXD7	IIO0_0	AN15_0	
132	VCC							
133		P10_7	KI3				AN_7	
134		P10_6	KI2				AN_6	
135		P10_5	KI1				AN_5	
136		P10_4	KI0				AN_4	
137		P10_3					AN_3	
138		P10_2					AN_2	
139		P10_1					AN_1	
140	AVSS							
141		P10_0					AN_0	
142	VREF							
143	AVCC							
144		P9_7			RXD4/SCL4/STXD4		ADTRG	

1.5 Pin Definitions and Functions

Tables 1.15 to 1.19 show the pin definitions and functions.

Table 1.15 Pin Definitions and Functions (1/4)

Function	Symbol	I/O	Description	
Power supply	VCC, VSS	I	Applicable as follows: VCC = 3.0 to 5.5 V, VSS = 0 V	
Connecting pins for decoupling capacitor	VDC0, VDC1	_	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1	
Analog power supply	AVCC, AVSS	I	Power supply for the A/D converter. AVCC and AVSS should be connected to VCC and VSS, respectively	
Reset input	RESET	I	The MCU is reset when this pin is driven low	
CNVSS	CNVSS	I	This pin should be connected to VSS via a resistor	
Debug port	NSD	I/O	This pin is to communicate with a debugger. It should be connected to VCC via a resistor of 1 to 4.7 $k\Omega$	
Main clock input	Main clock input XIN Main clock output XOUT		Input/output for the main clock oscillator. A crystal, or a ceramic resonator should be connected between pins XIN	
Main clock output			and XOUT. An external clock should be input at the XIN while leaving the XOUT open	
Sub clock input	b clock input XCIN		Input/output for the sub clock oscillator. A crystal oscillator should be connected between pins XCIN and XCOUT. A	
Sub clock output XCOUT		0	external clock should be input at the XCIN while leaving the XCOUT open	
BCLK output	BCLK	0	BCLK output	
Clock output	CLKOUT	0	Output of the clock with the same frequency as low speed clocks, f8, or f32	
External interrupt input	INTO to INT8	I	Input for external interrupts	
NMI input	P8_5/NMI	I	Input for NMI	
Key input interrupt	KI0 to KI3	I	Input for the key input interrupt	
Bus control pins	D0 to D7	I/O	Input/output of data (D0 to D7) while accessing an extern memory space with a separate bus	
	D8 to D15 I/O		Input/output of data (D8 to D15) while accessing an external memory space with 16-bit or 32-bit separate bus	
	D16 to D31 I/O		Input/output of data (D16 to D31) while accessing an external memory space with 32-bit separate bus	
	A0 to A23	0	Output of address bits A0 to A23	
	A0/D0 to A7/D7		Output of address bits (A0 to A7) and input/output of data (D0 to D7) by time-division while accessing an external memory space with multiplexed bus	
	A8/D8 to A15/D15	I/O	Output of address bits (A8 to A15) and input/output of data (D8 to D15) by time-division while accessing an external memory space with 16-bit or 32-bit multiplexed bus	

Table 1.16 Pin Definitions and Functions (2/4)

Function	Symbol	I/O	Description
Bus control pins	BC0/D0, BC2/D1	I/O	Output of byte control (BCO and BC2) and input/output of data (D0 and D1) by time-division while accessing an external memory space with multiplexed bus
	CS0 to CS3	0	Chip select output
	WR0/WR1/WR2/WR3, WR/BC0/BC1/BC2/BC3, RD	0	Chip select output Output of write, byte control, and read signals. Either WRx or WR and BCx can be selected by a program. Data is read when RD is low. • When WRO, WR1, WR2, WR3, and RD are selected, data is written to the following address: 4n+0, when WR0 is low 4n+1, when WR1 is low 4n+2, when WR2 is low on 32-bit external data bus or an even address, when WR0 is low an odd address, when WR1 is low on 16-bit external data bus • When WR, BC0, BC1, BC2, BC3, and RD are selected, data is written, when WR is low and the following address is accessed: 4n+0, when BC0 is low 4n+1, when BC1 is low 4n+2, when BC2 is low 4n+3, when BC3 is low
			on 32-bit external data bus or an even address, when BC0 is low an odd address, when BC1 is low on 16-bit external data bus
	ALE	0	Latch enable signal in multiplexed bus format
	HOLD	I	The MCU is in a hold state while this pin is held low
	HLDA	0	This pin is driven low while the MCU is held in a hold state
	RDY	I	Bus cycle is extended by the CPU if this pin is low on the falling edge of BCLK

Table 1.17 Pin Definitions and Functions (3/4)

Function	Symbol	I/O	Description	
I/O port ⁽¹⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P18_0 to P18_7, P19_0 to P19_7	I/O	I/O ports in CMOS. Each port can be programmed to in or output under the control of the direction register. Some ports are 5 V tolerant inputs. Pull-up resistors and N-channel open drain setting can enabled on some ports. Refer to Table 1.19 "Pin Specifications" for details	
Input port	P14_1	I	Input port in CMOS Pull-up resistor is selectable. Refer to Table 1.19 "Pin Specifications" for details	
Timer A	TA0OUT to TA4OUT	I/O	Timers A0 to A4 input/output	
	TA0IN to TA4IN	I	Timers A0 to A4 input	
Timer B	TB0IN to TB5IN	I	Timers B0 to B5 input	
Three-phase motor control timer output	\overline{U} , $\overline{\overline{U}}$, \overline{V} , $\overline{\overline{V}}$, \overline{W}	0	Three-phase motor control timer output	
Serial interface	CTS0 to CTS10	I	Handshake input	
	RTS0 to RTS10	0	Handshake output	
	CLK0 to CLK10	I/O	Transmit/receive clock input/output	
	RXD0 to RXD10	I	Serial data input	
	TXD0 to TXD10	0	Serial data output	
I ² C-bus	SDA0 to SDA6	I/O	Serial data input/output	
(simplified)	SCL0 to SCL6	I/O	Transmit/receive clock input/output	
Serial interface special functions	STXD0 to STXD6	0	Serial data output in slave mode	
	SRXD0 to SRXD6	I	Serial data input in slave mode	
	SS0 to SS6	I	Input to control serial interface special functions	

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

Table 1.18 Pin Definitions and Functions (4/4)

Function	Symbol	I/O	Description
A/D converter	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7	I	Analog input for the A/D converter
	ADTRG		External trigger input for the A/D converter
	ANEX0	I/O	Expanded analog input for the A/D converter and output in external op-amp connection mode
	ANEX1	_	Expanded analog input for the A/D converter
D/A converter	DA0, DA1	0	Output for the D/A converter
Reference voltage input	VREF	I	Reference voltage input for the A/D converter and D/A converter
Intelligent I/O	IIO0_0 to IIO0_7	I/O	Input/output for Intelligent I/O group 0. Either input capture or output compare is selectable
	IIO1_0 to IIO1_7	I/O	Input/output for Intelligent I/O group 1. Either input capture or output compare is selectable
	UD0A, UD0B, UD1A, UD1B	I	Input for the two-phase encoder
	OUTC2_0 to OUTC2_7	0	Output for OC (output compare) of Intelligent I/O group 2
	ISCLK2	I/O	Clock input/output for the serial interface
	ISRXD2	I	Receive data input for the serial interface
	ISTXD2	0	Transmit data output for the serial interface
	IEIN		Receive data input for the serial interface
	IEOUT	0	Transmit data output for the serial interface
Multi-master I ² C-	MSDA	I/O	Serial data input/output
bus	MSCL	I/O	Transmit/receive clock input/output

Table 1.19 Pin Specifications

	Pac	kage	Selectable Functions		
Pin names	176- pin	144- pin	Pull-up resistor (1)	N-channel open drain ⁽²⁾	5 V tolerant input (3)
P0_0 to P0_7	✓	✓	✓		
P1_0 to P1_7	✓	✓	✓		
P2_0 to P2_7	✓	✓	✓	✓	
P3_0 to P3_7	✓	✓	✓		
P4_0 to P4_7	✓	✓		✓	✓
P5_0 to P5_3	✓	✓	✓		
P5_4 to P5_7	✓	✓		✓	✓
P6_0 to P6_7	✓	✓		✓	✓
P7_0 to P7_7	✓	✓		✓	✓
P8_0 to P8_3	✓	✓		✓	✓
P8_4, P8_6, P8_7	✓	✓	✓		
P9_0 to P9_7	✓	✓	✓	✓	
P10_0 to P10_7	✓	✓	✓		
P11_0 to P11_3	✓	✓	✓	✓	
P11_4 to P11_7	✓	✓	✓		
P12_0 to P12_7	✓	✓		✓	✓
P13_0 to P13_7	✓	✓	✓		
P14_1, P14_3	✓	✓	✓		
P14_4 to P14_7	✓	✓	✓		
P15_0 to P15_7	✓	✓	✓	✓	
P16_0 to P16_7	✓			✓	✓
P17_0 to P17_3	✓			✓	✓
P17_4 to P17_7	✓		✓		
P18_0 to P18_7	✓		✓		
P19_0 to P19_7	✓		✓		

Notes:

- 1. Pull-up resistors are selected for the following 4-pin units, but are enabled only for the input pins: Pi_0 to Pi_3 and Pi_4 to Pi_7 (i = 0 to 19).
- 2. N-channel open drain output can be enabled on the applicable pins on a discrete pin basis.
- 3. 5 V tolerant input is enabled when an applicable pin is set as an input port. When it is set as an I/O port, to enable 5 V tolerant input, this pin should be set as N-channel open drain output.

2. Central Processing Unit (CPU)

The CPU contains the registers shown below. There are two register banks each consisting of registers R2R0, R3R1, R6R4, R7R5, A0 to A3, SB, and FB.

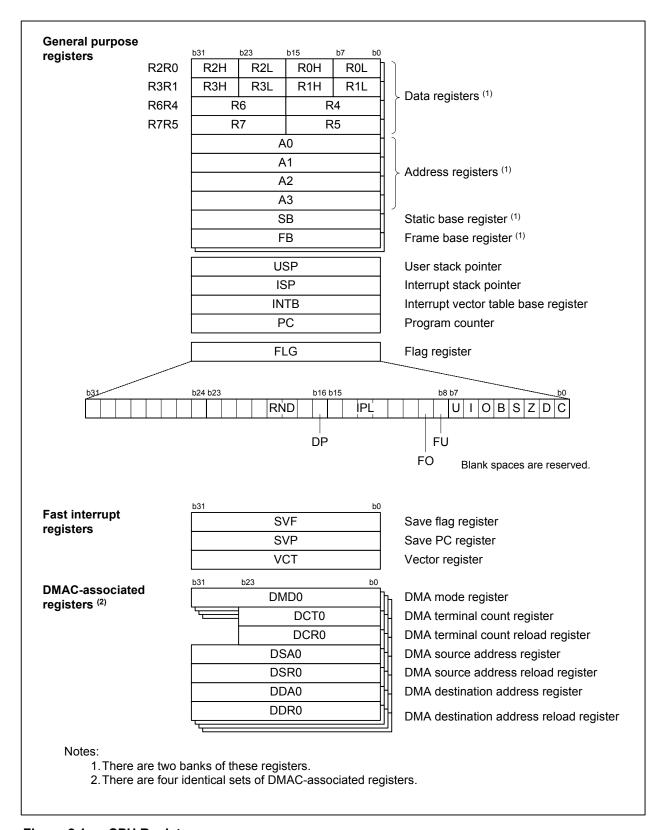


Figure 2.1 CPU Registers

2.1 General Purpose Registers

2.1.1 Data Registers (R2R0, R3R1, R6R4, and R7R5)

These 32-bit registers are primarily used for transfers and arithmetic/logic operations.

Each of the registers can be divided into upper and lower 16-bit registers, e.g. R2R0 can be divided into R2 and R0, R3R1 can be divided into R3 and R1, etc.

Moreover, data registers R2R0 and R3R1 can be divided into four 8-bit data registers: upper (R2H and R3H), mid-upper (R2L and R3L), mid-lower (R0H and R1H), and lower (R0L and R1L).

2.1.2 Address Registers (A0, A1, A2, and A3)

These 32-bit registers have functions similar to data registers. They are also used for address register indirect addressing and address register relative addressing.

2.1.3 Static Base Register (SB)

This 32-bit register is used for SB relative addressing.

2.1.4 Frame Base Register (FB)

This 32-bit register is used for FB relative addressing.

2.1.5 Program Counter (PC)

This 32-bit counter indicates the address of the instruction to be executed next.

2.1.6 Interrupt Vector Table Base Register (INTB)

This 32-bit register indicates the start address of a relocatable vector table.

2.1.7 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Two types of 32-bit stack pointers (SPs) are provided: user stack pointer (USP) and interrupt stack pointer (ISP).

Use the stack pointer select flag (U flag) to select either the user stack pointer (USP) or the interrupt stack pointer (ISP). The U flag is bit 7 in the flag register (FLG). Refer to 2.1.8 "Flag Register (FLG)" for details.

To minimize the overhead of interrupt sequence due to less memory access, set the user stack pointer (USP) or the interrupt stack pointer (ISP) to a multiple of 4.

2.1.8 Flag Register (FLG)

This 32-bit register indicates the CPU status.

2.1.8.1 Carry Flag (C flag)

This flag retains a carry, borrow, or shifted-out bit generated by the arithmetic logic unit (ALU).

2.1.8.2 Debug Flag (D flag)

This flag is only for debugging. Only set this bit to 0.

2.1.8.3 Zero Flag (Z flag)

This flag becomes 1 when the result of an operation is 0; otherwise it is 0.

2.1.8.4 Sign Flag (S flag)

This flag becomes 1 when the result of an operation is a negative value; otherwise it is 0.

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when register bank 0 is selected, and 1 when register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 when the result of an operation overflows; otherwise it is 0.

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt is accepted, the flag becomes 0.

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set this flag to 1.

It becomes 0 when a hardware interrupt is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of 3 bits, selects a processor interrupt priority level from level 0 to 7. An interrupt is enabled when the interrupt request level is higher than the selected IPL.

When the processor interrupt priority level (IPL) is set to 111b (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to extract. It is used for the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

2.1.8.14 Reserved

Only set this bit to 0. The read value is undefined.

2.2 Fast Interrupt Registers

The following three registers are provided to minimize the overhead of the interrupt sequence. Refer to 11.4 "Fast Interrupt" for details.

2.2.1 Save Flag Register (SVF)

This 32-bit register is used to save the flag register when a fast interrupt occurs.

2.2.2 Save PC Register (SVP)

This 32-bit register is used to save the program counter when a fast interrupt occurs.

2.2.3 Vector Register (VCT)

This 32-bit register is used to indicate a jump address when a fast interrupt occurs.

2.3 DMAC-associated Registers

There are seven types of DMAC-associated registers. Refer to 13. "DMAC" for details.

2.3.1 DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3)

These 32-bit registers are used to set DMA transfer mode, bit rate, etc.

2.3.2 DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3)

These 24-bit registers are used to set the number of DMA transfers.

2.3.3 DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3)

These 24-bit registers are used to set the reloaded values for DMA terminal count registers.

2.3.4 DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3)

These 32-bit registers are used to set DMA source addresses.

2.3.5 DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3)

These 32-bit registers are used to set the reloaded values for DMA source address registers.

2.3.6 DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3)

These 32-bit registers are used to set DMA destination addresses.

2.3.7 DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3)

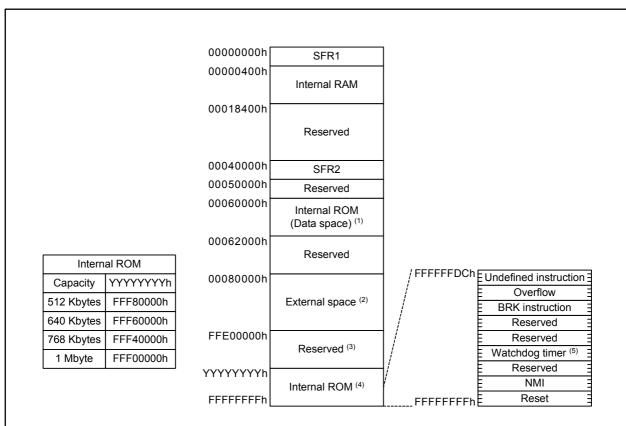
These 32-bit registers are used to set reloaded values for DMA destination address registers.

R32C/116A Group 3. Memory

3. Memory

Figure 3.1 shows the memory map of the R32C/116A Group.

The R32C/116A Group provides a 4-Gbyte address space from 00000000h to FFFFFFFh.


The internal ROM is mapped from address FFFFFFFh in the inferior direction. For example, the 1-Mbyte internal ROM is mapped from FFF00000h to FFFFFFFh.

The fixed interrupt vector table contains the start address of interrupt handlers and is mapped from FFFFFFDCh to FFFFFFFh.

The internal RAM is mapped from address 00000400h in the superior direction. For example, the 96-Kbyte internal RAM is mapped from 00000400h to 000183FFh. Besides being used for data storage, the internal RAM functions as a stack(s) for subroutine calls and/or interrupt handlers.

Special function registers (SFRs), which are control registers for peripheral functions, are mapped from 00000000h to 000003FFh, and from 00040000h to 0004FFFFh. Unoccupied SFR locations are reserved, and no access is allowed.

In memory expansion mode or microprocessor mode, some spaces are reserved for internal use and should not be accessed.

Notes:

- 1. The flash memory version provides two additional 4-Kbyte spaces (blocks A and B) for storing data.
- This space can be used in memory expansion mode or microprocessor mode. Addresses from 02000000h to FDFFFFFh are inaccessible.
- 3. This space is reserved in memory expansion mode. It becomes an external space in microprocessor mode.
- This space can be used in single-chip mode or memory expansion mode. It becomes an external space in microprocessor mode.
- The watchdog timer interrupt shares a vector with the oscillator stop detection interrupt and low voltage detection interrupt.

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

SFRs are memory-mapped peripheral registers that control the operation of peripherals. Table 4.1 SFR List (1) to Table 4.27 SFR List (27) list the SFR details.

Table 4.1 SFR List (1)

Address	Register	Symbol	Reset Value
000000h			
000001h			
000002h			
000003h			
000004h	Clock Control Register	CCR	0001 1000b
000005h			
000006h	Flash Memory Control Register	FMCR	0000 0001b
	Protect Release Register	PRR	00h
	Flash Memory Rewrite Bus Control Register	FEBC	0000h
000009h			
00000Ah			
00000Bh			
00000Ch			
00000Dh			
00000Eh			
00000Fh			
	External Bus Control Register 3	EBC3	0000h
000011h			
	Chip Selects 2 and 3 Boundary Setting Register	CB23	00h
000013h			
000014h	External Bus Control Register 2	EBC2	0000h
000015h			
000016h	Chip Selects 1 and 2 Boundary Setting Register	CB12	00h
000017h			
000018h	External Bus Control Register 1	EBC1	0000h
000019h			
	Chip Selects 0 and 1 Boundary Setting Register	CB01	00h
00001Bh			
	External Bus Control Register 0	EBC0	0000h
00001Dh			
	Peripheral Bus Control Register	PBC	0504h
00001Fh			
000020h to			
00005Fh			
X: Undefine	d		

X: Undefined

Table 4.2 SFR List (2)

Address	Register	Symbol	Reset Value
000060h			
	Timer B5 Interrupt Control Register	TB5IC	XXXX X000b
	UART5 Transmit/NACK Interrupt Control Register	S5TIC	XXXX X000b
000063h	UART2 Receive/ACK Interrupt Control Register/I ² C-bus Line	S2RIC/I2CLIC	XXXX X000b
	Interrupt Control Register		
	UART6 Transmit/NACK Interrupt Control Register	S6TIC	XXXX X000b
	UART3 Receive/ACK Interrupt Control Register	S3RIC	XXXX X000b
000066h	UART5/6 Bus Collision, Start Condition/Stop Condition	BCN5IC/BCN6IC	XXXX X000b
	Detection Interrupt Control Register		
	UART4 Receive/ACK Interrupt Control Register	S4RIC	XXXX X000b
	DMA0 Transfer Complete Interrupt Control Register	DM0IC	XXXX X000b
000069h	UART0/3 Bus Collision, Start Condition/Stop Condition	BCN0IC/BCN3IC	XXXX X000b
	Detection Interrupt Control Register		
	DMA2 Transfer Complete Interrupt Control Register	DM2IC	XXXX X000b
	A/D Converter 0 Convert Completion Interrupt Control Register	AD0IC	XXXX X000b
	Timer A0 Interrupt Control Register	TA0IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 0	IIO0IC	XXXX X000b
	Timer A2 Interrupt Control Register	TA2IC	XXXX X000b
00006Fh	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X000b
	Timer A4 Interrupt Control Register	TA4IC	XXXX X000b
000071h	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X000b
000072h	UART0 Receive/ACK Interrupt Control Register	S0RIC	XXXX X000b
000073h	Intelligent I/O Interrupt Control Register 6	IIO6IC	XXXX X000b
000074h	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X000b
000075h	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X000b
000076h	Timer B1 Interrupt Control Register	TB1IC	XXXX X000b
000077h	Intelligent I/O Interrupt Control Register 10	IIO10IC	XXXX X000b
000078h	Timer B3 Interrupt Control Register	TB3IC	XXXX X000b
000079h			
00007Ah	INT5 Interrupt Control Register	INT5IC	XX00 X000b
00007Bh			
00007Ch	INT3 Interrupt Control Register	INT3IC	XX00 X000b
00007Dh			
00007Eh	INT1 Interrupt Control Register	INT1IC	XX00 X000b
00007Fh			
000080h			
000081h	UART2 Transmit/NACK Interrupt Control Register/I ² C-bus	S2TIC/I2CIC	XXXX X000b
	Interrupt Control Register		
000082h	UART5 Receive/ACK Interrupt Control Register	S5RIC	XXXX X000b
	UART3 Transmit/NACK Interrupt Control Register	S3TIC	XXXX X000b
	UART6 Receive/ACK Interrupt Control Register	S6RIC	XXXX X000b
	UART4 Transmit/NACK Interrupt Control Register	S4TIC	XXXX X000b
000086h	·		
		BCN2IC	XXXX X000b
	Interrupt Control Register		

Table 4.3 SFR List (3)

Address	Register	Symbol	Reset Value
	DMA1 Transfer Complete Interrupt Control Register	DM1IC	XXXX X000b
000089h	UART1/4 Bus Collision, Start Condition/Stop Condition Detection Interrupt Control Register	BCN1IC/BCN4IC	XXXX X000b
00008Ah	DMA3 Transfer Complete Interrupt Control Register	DM3IC	XXXX X000b
00008Bh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
00008Ch	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 1	IIO1IC	XXXX X000b
00008Eh	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
00008Fh	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X000b
	UART0 Transmit/NACK Interrupt Control Register	S0TIC	XXXX X000b
	Intelligent I/O Interrupt Control Register 5	IIO5IC	XXXX X000b
000092h	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X000b
	Intelligent I/O Interrupt Control Register 7	IIO7IC	XXXX X000b
	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 9	IIO9IC	XXXX X000b
	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 11	IIO11IC	XXXX X000b
000098h	Timer B4 Interrupt Control Register	TB4IC	XXXX X000b
000099h			
00009Ah	INT4 Interrupt Control Register	INT4IC	XX00 X000b
00009Bh			
00009Ch	INT2 Interrupt Control Register	INT2IC	XX00 X000b
00009Dh			
	INT0 Interrupt Control Register	INT0IC	XX00 X000b
00009Fh			
	Intelligent I/O Interrupt Request Register 0	IIO0IR	0000 0XX1b
	Intelligent I/O Interrupt Request Register 1	IIO1IR	0000 0XX1b
0000A2h	Intelligent I/O Interrupt Request Register 2	IIO2IR	0000 0X01b
0000A3h	Intelligent I/O Interrupt Request Register 3	IIO3IR	0000 XXX1b
	Intelligent I/O Interrupt Request Register 4	IIO4IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 5	IIO5IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 6	IIO6IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 7	IIO7IR	X00X 0XX1b
	Intelligent I/O Interrupt Request Register 8	IIO8IR	XX0X 0XX1b
	Intelligent I/O Interrupt Request Register 9	IIO9IR	0X00 0XX1b
	Intelligent I/O Interrupt Request Register 10	IIO10IR	0X00 0XX1b
	Intelligent I/O Interrupt Request Register 11	IIO11IR	0X00 0XX1b
0000ACh			
0000ADh			
0000AEh			
0000AFh			

Table 4.4 SFR List (4)

	Of R Elst (4)		
Address	Register	Symbol	Reset Value
	Intelligent I/O Interrupt Enable Register 0	IIO0IE	00h
	Intelligent I/O Interrupt Enable Register 1	IIO1IE	00h
	Intelligent I/O Interrupt Enable Register 2	IIO2IE	00h
	Intelligent I/O Interrupt Enable Register 3	IIO3IE	00h
	Intelligent I/O Interrupt Enable Register 4	IIO4IE	00h
0000B5h	Intelligent I/O Interrupt Enable Register 5	IIO5IE	00h
	Intelligent I/O Interrupt Enable Register 6	IIO6IE	00h
0000B7h	Intelligent I/O Interrupt Enable Register 7	IIO7IE	00h
0000B8h	Intelligent I/O Interrupt Enable Register 8	IIO8IE	00h
0000B9h	Intelligent I/O Interrupt Enable Register 9	IIO9IE	00h
0000BAh	Intelligent I/O Interrupt Enable Register 10	IIO10IE	00h
0000BBh	Intelligent I/O Interrupt Enable Register 11	IIO11IE	00h
0000BCh			
0000BDh			
0000BEh			
0000BFh			
0000C0h			
0000C1h			
0000C2h			
0000C3h			
0000C4h			
0000C5h			
0000C6h			
0000C7h			
0000C8h			
0000C9h			
0000CAh			
0000CBh			
0000CCh			
0000CDh			
0000CEh			
0000CFh			
0000D0h			
0000D01			
0000D11			
0000D2f			
0000D3r			
0000D4f			
0000D3r			
0000D01			
0000D71			
	UART9 Transmit Interrupt Control Register	S9TIC	XXXX X000b
0000D9i		03110	^^^ ^UUUU
	UART10 Transmit Interrupt Control Register	S10TIC	XXXX X000b
0000DBI		310110	^^^ ^UUUU
		S7TIC	XXXX X000b
	UART7 Transmit Interrupt Control Register	INT7IC	XXXX X000b
	INT7 Interrupt Control Register		
0000DFr	UART8 Transmit Interrupt Control Register	S8TIC	XXXX X000b

Table 4.5 SFR List (5)

Address	Register	Symbol	Reset Value
0000E0h			
0000E1h			
0000E2h			
0000E3h			
0000E4h			
0000E5h			
0000E6h			
0000E7h			
0000E8h			
0000E9h			
0000EAh			
0000EBh			
0000ECh			
0000EDh			
0000EEh			
0000EFh			
0000F0h			
0000F1h			
0000F2h			
0000F3h			
0000F4h			
0000F5h			
0000F6h			
0000F7h			
0000F8h			
0000F9h	UART9 Receive Interrupt Control Register	S9RIC	XXXX X000b
0000FAh			
	UART10 Receive Interrupt Control Register	S10RIC	XXXX X000b
	INT8 Interrupt Control Register	INT8IC	XX00 X000b
	UART7 Receive Interrupt Control Register	S7RIC	XXXX X000b
	INT6 Interrupt Control Register	INT6IC	XX00 X000b
	UART8 Receive Interrupt Control Register	S8RIC	XXXX X000b
	Group 1 Time Measurement/Waveform Generation Register 0	G1TM0/G1PO0	XXXXh
000101h			
	Group 1 Time Measurement/Waveform Generation Register 1	G1TM1/G1PO1	XXXXh
000103h			
	Group 1 Time Measurement/Waveform Generation Register 2	G1TM2/G1PO2	XXXXh
000105h			
	Group 1 Time Measurement/Waveform Generation Register 3	G1TM3/G1PO3	XXXXh
000107h			
X: Undefine	4		-

Table 4.6 SFR List (6)

Address	Register	Symbol	Reset Value
000108h	Group 1 Time Measurement/Waveform Generation Register 4	G1TM4/G1PO4	XXXXh
000109h			
00010Ah	Group 1 Time Measurement/Waveform Generation Register 5	G1TM5/G1PO5	XXXXh
00010Bh			
00010Ch	Group 1 Time Measurement/Waveform Generation Register 6	G1TM6/G1PO6	XXXXh
00010Dh			
00010Eh	Group 1 Time Measurement/Waveform Generation Register 7	G1TM7/G1PO7	XXXXh
00010Fh			
000110h	Group 1 Waveform Generation Control Register 0	G1POCR0	0000 X000b
000111h	Group 1 Waveform Generation Control Register 1	G1POCR1	0X00 X000b
000112h	Group 1 Waveform Generation Control Register 2	G1POCR2	0X00 X000b
000113h	Group 1 Waveform Generation Control Register 3	G1POCR3	0X00 X000b
000114h	Group 1 Waveform Generation Control Register 4	G1POCR4	0X00 X000b
	Group 1 Waveform Generation Control Register 5	G1POCR5	0X00 X000b
000116h	Group 1 Waveform Generation Control Register 6	G1POCR6	0X00 X000b
000117h	Group 1 Waveform Generation Control Register 7	G1POCR7	0X00 X000b
000118h	Group 1 Time Measurement Control Register 0	G1TMCR0	00h
000119h	Group 1 Time Measurement Control Register 1	G1TMCR1	00h
00011Ah	Group 1 Time Measurement Control Register 2	G1TMCR2	00h
00011Bh	Group 1 Time Measurement Control Register 3	G1TMCR3	00h
00011Ch	Group 1 Time Measurement Control Register 4	G1TMCR4	00h
00011Dh	Group 1 Time Measurement Control Register 5	G1TMCR5	00h
00011Eh	Group 1 Time Measurement Control Register 6	G1TMCR6	00h
00011Fh	Group 1 Time Measurement Control Register 7	G1TMCR7	00h
000120h	Group 1 Base Timer Register	G1BT	XXXXh
000121h			
000122h	Group 1 Base Timer Control Register 0	G1BCR0	0000 0000b
000123h	Group 1 Base Timer Control Register 1	G1BCR1	0000 0000b
000124h	Group 1 Time Measurement Prescaler Register 6	G1TPR6	00h
000125h	Group 1 Time Measurement Prescaler Register 7	G1TPR7	00h
	Group 1 Function Enable Register	G1FE	00h
000127h	Group 1 Function Select Register	G1FS	00h
000128h			
000129h			
00012Ah			
00012Bh			
00012Ch			
00012Dh			
00012Eh			
00012Fh			
000130h to			
00013Fh			
X: Undefine	d		

Table 4.7 SFR List (7)

Address	Register	Symbol	Reset Value
	Group 2 Waveform Generation Register 0	G2PO0	XXXXh
000140H		021 00	777711
	Group 2 Waveform Generation Register 1	G2PO1	XXXXh
000142h	<u> </u>	J2. 31	70001
	Group 2 Waveform Generation Register 2	G2PO2	XXXXh
000111h	<u> </u>	02. 02	700041
	Group 2 Waveform Generation Register 3	G2PO3	XXXXh
000110h		02. 00	700041
	Group 2 Waveform Generation Register 4	G2PO4	XXXXh
000110h		021 01	700041
	Group 2 Waveform Generation Register 5	G2PO5	XXXXh
00011741 00014Bh	<u> </u>	02. 00	700041
	Group 2 Waveform Generation Register 6	G2PO6	XXXXh
000110h		02. 00	700041
	Group 2 Waveform Generation Register 7	G2PO7	XXXXh
00014Eh		J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Group 2 Waveform Generation Control Register 0	G2POCR0	0000 0000b
	Group 2 Waveform Generation Control Register 1	G2POCR1	0000 0000b
	Group 2 Waveform Generation Control Register 2	G2POCR2	0000 0000b
	Group 2 Waveform Generation Control Register 3	G2POCR3	0000 0000b
	Group 2 Waveform Generation Control Register 4	G2POCR4	0000 0000b
	Group 2 Waveform Generation Control Register 5	G2POCR5	0000 0000b
	Group 2 Waveform Generation Control Register 6	G2POCR6	0000 0000b
	Group 2 Waveform Generation Control Register 7	G2POCR7	0000 0000b
000158h		021 00111	0000 00000
000159h			
00015Ah			
00015Bh			
00015Ch			
00015Dh			
00015Eh			
00015Fh			
	Group 2 Base Timer Register	G2BT	XXXXh
000161h		022.	7 0 0 0
	Group 2 Base Timer Control Register 0	G2BCR0	0000 0000b
	Group 2 Base Timer Control Register 1	G2BCR1	0000 0000b
	Base Timer Start Register	BTSR	XXXX 0000b
000165h			
	Group 2 Function Enable Register	G2FE	00h
	Group 2 RTP Output Buffer Register	G2RTP	00h
000168h			
000169h			
	Group 2 Serial Interface Mode Register	G2MR	00XX X000b
	Group 2 Serial Interface Control Register	G2CR	0000 X110b
	Group 2 SI/O Transmit Buffer Register	G2TB	XXXXh
00016Dh			
	Group 2 SI/O Receive Buffer Register	G2RB	XXXXh
00016Eh	_ · · · · · · · · · · · · · · · · · · ·		
Y: Undefine		<u> </u>	

Table 4.8 SFR List (8)

Address	Register	Symbol	Reset Value
000170h	Group 2 IEBus Address Register	IEAR	XXXXh
000171h	-		
000172h	Group 2 IEBus Control Register	IECR	00XX X000b
	Group 2 IEBus Transmit Interrupt Source Detect Register	IETIF	XXX0 0000b
	Group 2 IEBus Receive Interrupt Source Detect Register	IERIF	XXX0 0000b
000175h			
000176h			
000177h			
000178h			
000179h			
00017Ah			
00017Bh			
00017Ch			
00017Dh			
00017Eh			
00017Fh			
000180h	Group 0 Time Measurement/Waveform Generation Register 0	G0TM0/G0PO0	XXXXh
000181h			
000182h	Group 0 Time Measurement/Waveform Generation Register 1	G0TM1/G0PO1	XXXXh
000183h			
000184h	Group 0 Time Measurement/Waveform Generation Register 2	G0TM2/G0PO2	XXXXh
000185h			
000186h	Group 0 Time Measurement/Waveform Generation Register 3	G0TM3/G0PO3	XXXXh
000187h			
000188h	Group 0 Time Measurement/Waveform Generation Register 4	G0TM4/G0PO4	XXXXh
000189h			
	Group 0 Time Measurement/Waveform Generation Register 5	G0TM5/G0PO5	XXXXh
00018Bh			
00018Ch	Group 0 Time Measurement/Waveform Generation Register 6	G0TM6/G0PO6	XXXXh
00018Dh			
	Group 0 Time Measurement/Waveform Generation Register 7	G0TM7/G0PO7	XXXXh
00018Fh			
	Group 0 Waveform Generation Control Register 0	G0POCR0	0000 X000b
	Group 0 Waveform Generation Control Register 1	G0POCR1	0X00 X000b
000192h	Group 0 Waveform Generation Control Register 2	G0POCR2	0X00 X000b
000193h	Group 0 Waveform Generation Control Register 3	G0POCR3	0X00 X000b
	Group 0 Waveform Generation Control Register 4	G0POCR4	0X00 X000b
	Group 0 Waveform Generation Control Register 5	G0POCR5	0X00 X000b
	Group 0 Waveform Generation Control Register 6	G0POCR6	0X00 X000b
	Group 0 Waveform Generation Control Register 7	G0POCR7	0X00 X000b
000198h	Group 0 Time Measurement Control Register 0	G0TMCR0	00h
	Group 0 Time Measurement Control Register 1	G0TMCR1	00h
	Group 0 Time Measurement Control Register 2	G0TMCR2	00h
	Group 0 Time Measurement Control Register 3	G0TMCR3	00h
	Group 0 Time Measurement Control Register 4	G0TMCR4	00h
	Group 0 Time Measurement Control Register 5	G0TMCR5	00h
	Group 0 Time Measurement Control Register 6	G0TMCR6	00h
00019Fh	Group 0 Time Measurement Control Register 7	G0TMCR7	00h

Table 4.9 SFR List (9)

	OTTE LIST (0)		
Address	Register	Symbol	Reset Value
	Group 0 Base Timer Register	G0BT	XXXXh
0001A1h			
	Group 0 Base Timer Control Register 0	G0BCR0	0000 0000b
0001A3h	Group 0 Base Timer Control Register 1	G0BCR1	0000 0000b
0001A4h	Group 0 Time Measurement Prescaler Register 6	G0TPR6	00h
	Group 0 Time Measurement Prescaler Register 7	G0TPR7	00h
0001A6h	Group 0 Function Enable Register	G0FE	00h
0001A7h	Group 0 Function Select Register	G0FS	00h
0001A8h			
0001A9h			
0001AAh			
0001ABh			
0001ACh			
0001ADh			
0001AEh			
0001AFh			
0001B0h			
0001B1h			
0001B2h			
0001B3h			
0001B4h			
0001B5h			
0001B6h			
0001B7h			
0001B8h			
0001B9h			
0001BAh			
0001BBh			
0001BCh			
0001BDh			
0001BEh			
0001BEh			
0001C0h			
0001C1h			
0001C1h			
0001C3h			
	UART5 Special Mode Register 4	U5SMR4	00h
	UART5 Special Mode Register 3	U5SMR3	00h
	UART5 Special Mode Register 2	U5SMR2	00h
	UART5 Special Mode Register	U5SMR	00h
	UART5 Transmit/Receive Mode Register	U5MR	00h
	UART5 Bit Rate Register	U5BRG	XXh
	UART5 Transmit Buffer Register	U5TB	XXXXh
		מונטן	^^^\\II
0001CBh		LIECO	0000 10005
	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
	UART5 Transmit/Receive Control Register 1	U5C1	0000 0010b
	UART5 Receive Buffer Register	U5RB	XXXXh
0001CFh			

Table 4.10 SFR List (10)

Address	Register	Symbol	Reset Value
0001D0h			
0001D1h			
0001D2h			
0001D3h			
0001D4h	UART6 Special Mode Register 4	U6SMR4	00h
0001D5h	UART6 Special Mode Register 3	U6SMR3	00h
0001D6h	UART6 Special Mode Register 2	U6SMR2	00h
0001D7h	UART6 Special Mode Register	U6SMR	00h
0001D8h	UART6 Transmit/Receive Mode Register	U6MR	00h
0001D9h	UART6 Bit Rate Register	U6BRG	XXh
0001DAh	UART6 Transmit Buffer Register	U6TB	XXXXh
0001DBh			
0001DCh	UART6 Transmit/Receive Control Register 0	U6C0	0000 1000b
0001DDh	UART6 Transmit/Receive Control Register 1	U6C1	0000 0010b
0001DEh	UART6 Receive Buffer Register	U6RB	XXXXh
0001DFh			
0001E0h	UART7 Transmit/Receive Mode Register	U7MR	00h
0001E1h	UART7 Bit Rate Register	U7BRG	XXh
0001E2h	UART7 Transmit Buffer Register	U7TB	XXXXh
0001E3h			
0001E4h	UART7 Transmit/Receive Control Register 0	U7C0	00X0 1000b
0001E5h	UART7 Transmit/Receive Control Register 1	U7C1	XXXX 0010b
0001E6h	UART7 Receive Buffer Register	U7RB	XXXXh
0001E7h			
0001E8h	UART8 Transmit/Receive Mode Register	U8MR	00h
0001E9h	UART8 Bit Rate Register	U8BRG	XXh
0001EAh	UART8 Transmit Buffer Register	U8TB	XXXXh
0001EBh			
0001ECh	UART8 Transmit/Receive Control Register 0	U8C0	00X0 1000b
0001EDh	UART8 Transmit/Receive Control Register 1	U8C1	XXXX 0010b
0001EEh	UART8 Receive Buffer Register	U8RB	XXXXh
0001EFh			
0001F0h	UART7, UART8 Transmit/Receive Control Register 2	U78CON	X000 0000b
0001F1h			
0001F2h			
0001F3h			
0001F4h			
0001F5h			
0001F6h			
0001F7h			
0001F8h			
0001F9h			
0001FAh			
0001FBh			
0001FCh			
0001FDh			
0001FEh			
0001FFh			
Y: Undefine		+	*

Table 4.11 SFR List (11)

Address	Register	Symbol	Reset Value
000200h to			
0002BFh			
	X0 Register/Y0 Register	X0R/Y0R	XXXXh
0002C1h		24420442	10000
	X1 Register/Y1 Register	X1R/Y1R	XXXXh
0002C3h			10000
	X2 Register/Y2 Register	X2R/Y2R	XXXXh
0002C5h			10000
	X3 Register/Y3 Register	X3R/Y3R	XXXXh
0002C7h		V450/45	20004
	X4 Register/Y4 Register	X4R/Y4R	XXXXh
0002C9h		V5D 0/5D	20004
	X5 Register/Y5 Register	X5R/Y5R	XXXXh
0002CBh		V0D 0/0D	20004
	X6 Register/Y6 Register	X6R/Y6R	XXXXh
0002CDh		VZDAZD	VVVVL
	X7 Register/Y7 Register	X7R/Y7R	XXXXh
0002CFh		VODAVOD	V/V/VI-
	X8 Register/Y8 Register	X8R/Y8R	XXXXh
0002D1h		VODAVOD	V/V/VI-
	X9 Register/Y9 Register	X9R/Y9R	XXXXh
0002D3h		V40D0/40D	VVVVh
	X10 Register/Y10 Register	X10R/Y10R	XXXXh
0002D5h		VAADAAAD	VVVVh
0002D6H	X11 Register/Y11 Register	X11R/Y11R	XXXXh
	X12 Register/Y12 Register	X12R/Y12R	XXXXh
0002D8h	· · ·	X12R/112R	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	X13 Register/Y13 Register	X13R/Y13R	XXXXh
0002DAI1	· · ·	A 13R/113R	^^^
	X14 Register/Y14 Register	X14R/Y14R	XXXXh
0002DCh	· · ·	X14K/114K	^^^\
	X15 Register/Y15 Register	X15R/Y15R	XXXXh
0002DEh	· · ·	X15K/115K	^^^\
	X-Y Control Register	XYC	XXXX XX00b
0002E0h	_	XIC	XXXX XX000
0002E1h			
0002E3h			
	UART1 Special Mode Register 4	U1SMR4	00h
	UART1 Special Mode Register 3	U1SMR3	00h
	UART1 Special Mode Register 2	U1SMR2	00h
	UART1 Special Mode Register	U1SMR	00h
	UART1 Transmit/Receive Mode Register	U1MR	00h
	UART1 Bit Rate Register	U1BRG	XXh
	UART1 Transmit Buffer Register	U1TB	XXXXh
0002EAn		3115	700011
	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
	UART1 Transmit/Receive Control Register 1	U1C1	0000 1000b
	UART1 Receive Buffer Register	U1RB	XXXXh
	. S	101110	////////

Table 4.12 SFR List (12)

Address	Register	Symbol	Reset Value
0002F0h			
0002F1h			
0002F2h			
0002F3h			
	UART4 Special Mode Register 4	U4SMR4	00h
	UART4 Special Mode Register 3	U4SMR3	00h
	UART4 Special Mode Register 2	U4SMR2	00h
0002F7h	UART4 Special Mode Register	U4SMR	00h
	UART4 Transmit/Receive Mode Register	U4MR	00h
0002F9h	UART4 Bit Rate Register	U4BRG	XXh
0002FAh	UART4 Transmit Buffer Register	U4TB	XXXXh
0002FBh	Ī		
0002FCh	UART4 Transmit/Receive Control Register 0	U4C0	0000 1000b
0002FDr	UART4 Transmit/Receive Control Register 1	U4C1	0000 0010b
0002FEr	UART4 Receive Buffer Register	U4RB	XXXXh
0002FFr			
000300h	Count Start Register for Timers B3, B4, and B5	TBSR	000X XXXXb
000301h			
000302h	Timer A1-1 Register	TA11	XXXXh
000303h	1		
000304h	Timer A2-1 Register	TA21	XXXXh
000305h	1		
000306h	Timer A4-1 Register	TA41	XXXXh
000307h	1		
000308h	Three-phase PWM Control Register 0	INVC0	00h
	Three-phase PWM Control Register 1	INVC1	00h
	Three-phase Output Buffer Register 0	IDB0	XX11 1111b
	Three-phase Output Buffer Register 1	IDB1	XX11 1111b
	Dead Time Timer	DTT	XXh
00030Dh	Timer B2 Interrupt Generating Frequency Set Counter	ICTB2	XXh
00030Eh			
00030Fh			
	Timer B3 Register	TB3	XXXXh
000311h			
	Timer B4 Register	TB4	XXXXh
000313h			
	Timer B5 Register	TB5	XXXXh
000315h		1.2	
000316h			
000317h			
000318h			
000319h			
00031Ah			
	Timer B3 Mode Register	TB3MR	00XX 0000b
	Timer B4 Mode Register	TB4MR	00XX 0000b
	Timer B5 Mode Register	TB5MR	00XX 0000b
00031Br		IDOWIN	00/// 00000
00031E1			
· Undefine			

Table 4.13 SFR List (13)

000322h 000322h 000321h 000322h 000322h 000322h 000324b UART3 Special Mode Register 3 U3SMR3 00h 00032h UART3 Special Mode Register 2 U3SMR2 00h 00032h UART3 Special Mode Register U3SMR 00h 00032h UART3 Special Mode Register U3SMR 00h 00032h UART3 Transmit/Receive Mode Register U3MR 00h 00032h UART3 Transmit/Receive Mode Register U3BRG XXh 00032h UART3 Transmit/Receive Control Register U3C0 0000 1000b 00032b UART3 Transmit/Receive Control Register 0 U3C0 0000 1000b 00032ch UART3 Transmit/Receive Control Register 1 U3C1 0000 00000b 00032h UART3 Receive Buffer Register U3RB XXXXh 00032h UART3 Special Mode Register 4 U2SMR4 00h 00033h UART2 Special Mode Register 2 U2SMR3 00h 00033h UART2 Special Mode Register 2 U2SMR2 00h 0003	Address	Register	Symbol	Reset Value
000322h 000322h 000325h UART3 Special Mode Register 4	000320h			
000323h	000321h			
000324h UART3 Special Mode Register 4	000322h			
000325h UART3 Special Mode Register 3 U3SMR2 00h 000327b UART3 Special Mode Register 2 U3SMR2 00h 000327b UART3 Special Mode Register 9 U3SMR 00h 000327b UART3 Special Mode Register 000328h UART3 Transmit/Receive Mode Register 000324h UART3 Transmit/Receive Mode Register 000324h UART3 Transmit/Receive Control Register 000324h UART3 Transmit/Receive Control Register 000322h UART3 Transmit/Receive Control Register 1000322h UART3 Transmit/Receive Control Register 1000322h UART3 Receive Buffer Register 1000322h UART3 Receive Buffer Register 1000322h UART3 Receive Buffer Register 1000332h UART3 Special Mode Register 1000333h UART2 Transmit/Receive Control Register 1000333h UART2 Transmit/Receive Control Register 1000335h UART2 Transmit/Receive Control Register 1000336h UART2 Transmit/Receive Control Register 10000346h UART2 Receive Buffer Register 10000346h UART2 Receive Buffer Register 1000000000000000000000000000000000000	000323h			
000326h UART3 Special Mode Register 2 U3SMR2 00h 000327h UART3 Special Mode Register U3MR 00h 000328h UART3 Bit Rate Register U3MR 00h 000329h UART3 Bit Rate Register U3BRG XXh 000329h UART3 Transmit Buffer Register U3TB XXXXh 000320h UART3 Transmit/Receive Control Register 0 U3C0 0000 1000 1000 1000 1000 1000 1000 100	000324h	UART3 Special Mode Register 4		00h
000327h UART3 Special Mode Register U3MR 00h 000328h UART3 Transmit/Receive Mode Register U3MR 00h 000329h UART3 Bit Rate Register U3BRG XXh 00032Dh UART3 Transmit Buffer Register U3TB XXXXh 00032Ch UART3 Transmit/Receive Control Register 0 U3C0 0000 1000b 00032Ch UART3 Transmit/Receive Control Register 1 U3C1 0000 0010b 00032Ch UART3 Receive Buffer Register U3RB XXXXh 00032Ch UART3 Receive Buffer Register U3RB XXXXh 00033Ch UART3 Receive Buffer Register U3RB XXXXh 00033Ch UART2 Special Mode Register 4 U2SMR4 00h 000333h UART2 Special Mode Register 3 U2SMR3 00h 000333h UART2 Special Mode Register 2 U2SMR 00h 00h 000337h UART2 Special Mode Register 2 U2SMR 00h 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 00h 000339h UART2 Bit Rate Register U2BRG XXh XXXh 000339h UART2 Transmit/Receive Control Register 0 U2C0 0000 10000 00000000 000332h UART2 Tra	000325h	UART3 Special Mode Register 3	U3SMR3	00h
000328h UART3 Transmit/Receive Mode Register U3MR 00h 000329h UART3 Bit Rate Register U3BRG XXh 000320h UART3 Transmit/Buffer Register U3TB XXXXh 000320h UART3 Transmit/Receive Control Register 0 U3C0 0000 1000b 000320h UART3 Transmit/Receive Control Register 1 U3C1 0000 0010b 000322h UART3 Receive Buffer Register U3RB XXXXh 000327h 000330h 000330h 000331h 000331h 000333h UART2 Special Mode Register 4 U2SMR4 00h 00h 000333h UART2 Special Mode Register 3 U2SMR3 00h 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 00h 000336h UART2 Transmit/Receive Mode Register U2SMR 00h 000338h UART2 Transmit/Receive Mode Register U2SMR 00h 000338h UART2 Transmit/Receive Mode Register U2BRG XXh 000338h UART2 Transmit/Receive Control Register U2BRG XXh 000336h UART2 Transmit/Receive Control Register U2BR XXXXh 000336h UART2 Transmit/Receive Control Register U2C0 0000 0000 0000 0000 000336h UART2 Transmit/Receive Control Register U2RB XXXXh 000336h UART2 Transmit/Receive Control Register U2RB XXXXh 000346h Count Start Register U2C0 0000 00000 0000 0000 0000 00000 00034h Count Start Register U2RB XXXXh 0000 00000 00000 00000 00000 00000 0000	000326h	UART3 Special Mode Register 2	U3SMR2	00h
000329h UART3 Bit Rate Register U3BRG XXh	000327h	UART3 Special Mode Register	U3SMR	00h
00032Ah 00032Bh 00032Ch 00032Ch 00032Ch 00032Ch 00032Dh 00032Ch 00032Ch 00032Ch 00033Ch 00033Ch 000331h 000331h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000333h 000336h 000335h 000337h 000336h 000337h 000337h 000337h 000337h 000338h 000348h	000328h	UART3 Transmit/Receive Mode Register	U3MR	00h
00032Bh	000329h	UART3 Bit Rate Register	U3BRG	XXh
00032Ch UART3 Transmit/Receive Control Register 0 U3C0 0000 1000b 00032Dh UART3 Transmit/Receive Control Register 1 U3C1 0000 0010b 00032Fh UART3 Receive Buffer Register U3RB XXXXh 00032Ph U3RB XXXXh 000330h U3RB XXXXh 000331h 000331h U3RB XXXXh 000332h U3RB XXXXh 000333h U3RT2 Special Mode Register 4 U2SMR3 00h 000335h U3RT2 Special Mode Register 2 U2SMR2 00h 000335h U3RT2 Special Mode Register 2 U2SMR 00h 000337h U3RT2 Special Mode Register 2 U2SMR 00h 000338h U3RT2 Transmit/Receive Register U2RMR 00h 000338h U3RT2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Bh			U3TB	XXXXh
00032Dh UART3 Transmit/Receive Control Register U3C1 0000 0010b 00032Eh UART3 Receive Buffer Register U3RB XXXXh 00032Fh 00033Ch WXXXh XXXXh 000330h 000331h U00332h U00332h 00h 000333h UART2 Special Mode Register 3 U2SMR3 00h 000335h UART2 Special Mode Register 3 U2SMR3 00h 000337h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register U2SMR2 00h 000337h UART2 Special Mode Register U2SMR 00h 000337h UART2 Special Mode Register U2MR 00h 000338h UART2 Tensmit/Receive Mode Register U2MR 00h 000339h UART2 Transmit/Receive Mode Register U2BRG XXh 000339h UART2 Bit Rate Register U2TB XXXXh 000331h UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 000332h UART2 Transmit/Receive Control Register 1 U2C1 000	00032Bh	· ·		
00032Dh UART3 Transmit/Receive Control Register U3C1 0000 0010b 00032Eh UART3 Receive Buffer Register U3RB XXXXh 00032Fh 000330h 000330h 000331h 000331h 000332h 000 000333h 000333h UART2 Special Mode Register 3 U2SMR3 00h 000335h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register U2SMR 00h 000337h UART2 Special Mode Register U2SMR 00h 000337h UART2 Special Mode Register U2SMR 00h 000337h UART2 Special Mode Register U2MR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Transmit/Receive Mode Register U2BRG XXh 000339h UART2 Bit Rate Register U2TB XXXXh 000339h UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 000331h UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b	00032Ch	UART3 Transmit/Receive Control Register 0	U3C0	0000 1000b
UART3 Receive Buffer Register				
00033Fh 000330h 000331h 000332h 000332h 000332h 000333h 000334h UART2 Special Mode Register 4 U2SMR4 000h 000335h UART2 Special Mode Register 2 U2SMR2 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 000336h UART2 Special Mode Register U2SMR 00h 000338h UART2 Special Mode Register U2MR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000338h UART2 Transmit/Receive Mode Register U2BRG XXh 000338h UART2 Transmit/Receive Control Register U2TB XXXXh 000338h UART2 Transmit/Receive Control Register U2C0 0000 1000b 000335h UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 000335h UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 000335h UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000340h 00034th Cone-shot Start Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000344h Tingger Select Register TRGSR 0000 0000b 000345h 000346h Timer A0 Register TA0 XXXXh 000349h Timer A1 Register TA2 XXXXh 000346h Timer A2 Register TA2 XXXXh 000346h Timer A3 Register TA2 XXXXh 000346h Timer A3 Register TA3 XXXXh 000346h Timer A4 Register Tax XXXXh 000346h Timer A4 Register TA3 XXXXh 000346h Timer A4 Register TA4 XXXXh 000346h Timer A4 Register TA5 XXXXh XXXXh 000346h Timer A4 Register TA5 XXXXh XXXXh 000346h Timer A4 Register TA5 XXXXh			U3RB	XXXXh
000330h 000331h 000332h 000333h 000333h UART2 Special Mode Register 4 U2SMR3 00h 000335h UART2 Special Mode Register 3 U2SMR3 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register U2SMR 00h 000337h UART2 Special Mode Register U2MR 00h 000337h UART2 Special Mode Register U2MR 00h 000337h UART2 Special Mode Register U2MR 00h 000338h UART2 Special Mode Register U2MR 00h 000338h UART2 Special Mode Register U2MR 00h 000338h UART2 Transmit/Receive Mode Register U2BR XXXXX 000338h UART2 Bit Rate Register U2CBR XXXXX 000335h UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 000335h UART2 Receive Buffer Register U2RB XXXXX 000349h Count Start Register TABSR 0000 0000b				
000331h 000332h 000333h 000334h 000334h UART2 Special Mode Register 3 U2SMR3 000336h UART2 Special Mode Register 2 U2SMR2 000337h UART2 Special Mode Register U2SMR 000337h UART2 Special Mode Register U2SMR 000338h UART2 Transmit/Receive Mode Register U2MR 000339h UART2 Bit Rate Register U2BRG XXh 000339h UART2 Transmit Buffer Register U2CB XXXXh 00033Ch UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Eh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Fh UART2 Receive Buffer Register U2RB XXXXh 00033Fh Count Start Register TABSR 0000 0000 0000b 00034Th Clock Prescaler Reset Register CPSRF 0XXX XXXXX 00034Ph One-shot Start Register TRGSR 0000 0000b 00034Ph Increment/Decrement Select Register UDF 0000 0000b 00034Ph Timer A1 Regist				
000332h 000333h UART2 Special Mode Register 4 U2SMR4 00h 000335h UART2 Special Mode Register 3 U2SMR3 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register U2SMR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Bit Rate Register U2BRG XXh 000339h UART2 Transmit Buffer Register U2TB XXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Ch UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Bh UART2 Receive Buffer Register U2RB XXXXh 00033Eh UART2 Receive Buffer Register U2RB XXXXh 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000341h Clock Prescaler Register CPSRF 0XXX XXXXb 000341h Increment/Decrement Select Register TRGSR 0000 0000b 000345h Timer A0 Register </td <td></td> <td></td> <td></td> <td></td>				
000333h				
000334h UART2 Special Mode Register 4 U2SMR3 00h 000335h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register 9 U2SMR 9 00h 000338h UART2 Transmit/Receive Mode Register 9 U2MR 9 00h 000339h UART2 Bit Rate Register 9 U2BRG 9 XXh 000330h UART2 Transmit/Receive Control Register 9 U2C0 9 0000 1000b 000335h UART2 Transmit/Receive Control Register 1 U2C1 9 0000 0010b 000335h UART2 Receive Buffer Register 9 U2RB 9 XXXXXh 000335h UART2 Receive Buffer Register 9 U2RB 9 XXXXXXh 000340h Count Start Register 9 TABSR 9 0000 0000 0000b 000341h Clock Prescaler Reset Register 9 CPSRF 9 0XXX XXXb 000342h One-shot Start Register 9 ONSF 9 0000 0000b 000343h Trigger Select Register 9 TRGSR 9 0000 0000b 000345h Timer A0 Regist				
000335h UART2 Special Mode Register 3 U2SMR2 00h 000336h UART2 Special Mode Register 2 U2SMR2 00h 000337h UART2 Special Mode Register U2SMR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Bit Rate Register U2BRG XXh 000338h UART2 Transmit Buffer Register U2TB XXXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Bh UART2 Receive Buffer Register U2RB XXXXh 00033Bh UART2 Receive Buffer Register U2RB XXXXh 00033Bh UART2 Receive Buffer Register TABSR 0000 0000b 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000345h Timer A0 Register TA0 <t< td=""><td></td><td></td><td>U2SMR4</td><td>00h</td></t<>			U2SMR4	00h
000336h UART2 Special Mode Register 2 U2SMR 00h 000337h UART2 Special Mode Register U2SMR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Bit Rate Register U2BRG XXh 00033Ah UART2 Transmit Buffer Register U2TB XXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Ch UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Bh UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register TRGSR 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000345h UDF 0000 0000b 000346h Timer A0 Register TA1 XXXXh 000349h Timer A1 Register TA2 XXXXh 000340h				
000337h UART2 Special Mode Register U2MR 00h 000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Bit Rate Register U2BRG XXh 00033Ah UART2 Transmit Buffer Register U2TB XXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Ch UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 00034Dh Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000345h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA1 XXXXh 000347h 000348h Timer A2 Register TA2 XXXXh 000349h Timer A3 Register TA3 <				
000338h UART2 Transmit/Receive Mode Register U2MR 00h 000339h UART2 Bit Rate Register U2BRG XXh 00033Ah UART2 Transmit Buffer Register U2TB XXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 00034Dh Count Start Register U2RB XXXXh 000340h Count Start Register CPSRF 0XXX XXXXb 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register TRGSR 0000 0000b 000343h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA2 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Dh Timer A3 Register TA3 XXXXh				
000339h UART2 Bit Rate Register U2BRG XXh 00033Ah UART2 Transmit Buffer Register U2TB XXXXh 00033Bh UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Ch UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 00034Dh Count Start Register U2RB XXXXh 000340h Count Start Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000342h One-shot Start Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Ch Timer A3 Register TA3 XXXXh 00034Ch Timer A4 Register TA4 XXXXh				
00033Ah UART2 Transmit Buffer Register U2TB XXXXh 00033Bh 00033Ch UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 00034Dh Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Bh Timer A4 Register TA4 XXXXh				
00033Bh 00033Ch UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h 000345h 000345h XXXXh 000349h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Dh Timer A3 Register TA3 XXXXh 00034Eh Timer A4 Register TA4 XXXXh				
00033Ch UART2 Transmit/Receive Control Register 0 U2C0 0000 1000b 00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Ch Timer A4 Register TA4 XXXXh		•	0216	^^^
00033Dh UART2 Transmit/Receive Control Register 1 U2C1 0000 0010b 00033Eh UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Ch Timer A4 Register TA4 XXXXh			11300	0000 1000b
00033Eh UART2 Receive Buffer Register U2RB XXXXh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh				
00033Fh 000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh				
000340h Count Start Register TABSR 0000 0000b 000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh			U2RB	^^^
000341h Clock Prescaler Reset Register CPSRF 0XXX XXXXb 000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh			TARCR	0000 00006
000342h One-shot Start Register ONSF 0000 0000b 000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh				
000343h Trigger Select Register TRGSR 0000 0000b 000344h Increment/Decrement Select Register UDF 0000 0000b 000345h TA0 XXXXh 000347h 000348h Timer A1 Register TA1 XXXXh 000349h XXXXh 00034Bh				-
000344h Increment/Decrement Select Register UDF 0000 0000b 000345h 000346h Timer A0 Register TA0 XXXXh 000347h 000348h Timer A1 Register TA1 XXXXh 000349h 000349h Timer A2 Register TA2 XXXXh 00034Bh 00034Ch Timer A3 Register TA3 XXXXh 00034Dh 00034Eh Timer A4 Register TA4 XXXXh				
000345h Timer A0 Register TA0 XXXXh 000347h Timer A1 Register TA1 XXXXh 000348h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh				
000346h Timer A0 Register TA0 XXXXh 000347h 000348h Timer A1 Register TA1 XXXXh 000349h 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh		•	UDF	0000 0000b
000347h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Ah Timer A2 Register TA2 XXXXh 00034Ch Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh			74.0	10000
000348h Timer A1 Register TA1 XXXXh 000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh		•	TA0	XXXXh
000349h Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Ch Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh				
00034Ah Timer A2 Register TA2 XXXXh 00034Bh Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh		•	TA1	XXXXh
00034Bh 00034Ch Timer A3 Register TA3 XXXXh 00034Dh 00034Eh Timer A4 Register TA4 XXXXh				
00034Ch Timer A3 Register TA3 XXXXh 00034Dh Timer A4 Register TA4 XXXXh		•	TA2	XXXXh
00034Dh Image: Control of the control of				
00034Eh Timer A4 Register TA4 XXXXh			TA3	XXXXh
00034Fh			TA4	XXXXh
	00034Fh			

Table 4.14 SFR List (14)

Address	Register	Symbol	Reset Value
	Timer B0 Register	TB0	XXXXh
000351h		1 - 7	
	Timer B1 Register	TB1	XXXXh
000353h	1		
	Timer B2 Register	TB2	XXXXh
000355h	1		
	Timer A0 Mode Register	TAOMR	0000 0000b
	Timer A1 Mode Register	TA1MR	0000 0000b
	Timer A2 Mode Register	TA2MR	0000 0000b
	Timer A3 Mode Register	TA3MR	0000 0000b
	Timer A4 Mode Register	TA4MR	0000 0000b
	Timer B0 Mode Register	TB0MR	00XX 0000b
	Timer B1 Mode Register	TB1MR	00XX 0000b
	Timer B2 Mode Register	TB2MR	00XX 0000b
	Timer B2 Special Mode Register	TB2SC	XXXX XXX0b
	Count Source Prescaler Register	TCSPR	0000 0000b
000360h			
000361h			
000362h			
000363h			
	UART0 Special Mode Register 4	U0SMR4	00h
	UART0 Special Mode Register 3	U0SMR3	00h
	UART0 Special Mode Register 2	U0SMR2	00h
	UART0 Special Mode Register	U0SMR	00h
	UART0 Transmit/Receive Mode Register	U0MR	00h
	UART0 Bit Rate Register	U0BRG	XXh
	UART0 Transmit Buffer Register	U0TB	XXXXh
00036Bh	_		
00036Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
	UART0 Transmit/Receive Control Register 1	U0C1	0000 0010b
00036Eh	UART0 Receive Buffer Register	U0RB	XXXXh
00036Fh	, , , , , , , , , , , , , , , , , , ,		
000370h			
000371h			
000372h			
000373h			
000374h			
000375h			
000376h			
000377h			
000378h			
000379h			
00037Ah			
00037Bh			
00037Ch	CRC Data Register	CRCD	XXXXh
00037Dh			
00037Eh	CRC Input Register	CRCIN	XXh
00037Fh	, · · · · · · · · · · · · · · · · · · ·		
Y: Undefine			- !

Table 4.15 SFR List (15)

Address Register	Symbol	Reset Value
000380h A/D0 Register 0	AD00	00XXh
000381h		
000382h A/D0 Register 1	AD01	00XXh
000383h		
000384h A/D0 Register 2	AD02	00XXh
000385h		
000386h A/D0 Register 3	AD03	00XXh
000387h		
000388h A/D0 Register 4	AD04	00XXh
000389h		
00038Ah A/D0 Register 5	AD05	00XXh
00038Bh		
00038Ch A/D0 Register 6	AD06	00XXh
00038Dh		
00038Eh A/D0 Register 7	AD07	00XXh
00038Fh		
000390h		
000391h		
000392h A/D0 Control Register 4	AD0CON4	XXXX 00XXb
000393h A/D0 Control Register 5	AD0CON5	00h
000394h A/D0 Control Register 2	AD0CON2	XX0X X000b
000395h A/D0 Control Register 3	AD0CON3	XXXX X000b
000396h A/D0 Control Register 0	AD0CON0	00h
000397h A/D0 Control Register 1	AD0CON1	00h
000398h D/A Register 0	DA0	XXh
000399h	<i>B</i> 7.0	70(1)
00039Ah D/A Register 1	DA1	XXh
00039Bh	DAT	ZZII
00039Ch D/A Control Register	DACON	XXXX XX00b
00039Dh	DACON	XXXX XX000
00039Eh		
00039Eh		
00039711 0003A0h		
0003A0H		
0003A111 0003A2h		
0003A2h		
0003A4h		
0003A5h		
0003A6h		
0003A7h		
0003A8h		
0003A9h		
0003AAh		
0003ABh		
0003ACh		
0003ADh		
0003AEh		
0003AFh		

Table 4.16 SFR List (16)

0003B0h 0003B1h 0003B2h 0003B3h 0003B4h 0003B5h 0003B6h 0003B7h 0003B8h 0003B9h 0003BAh 0003BAh 0003BAh 0003BAh 0003BCh 0003BCh 0003BCh			
0003B2h 0003B3h 0003B4h 0003B5h 0003B6h 0003B8h 0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003B3h 0003B4h 0003B5h 0003B6h 0003B7h 0003B8h 0003B9h 0003BAh 0003BCh 0003BCh 0003BCh 0003BCh			
0003B4h 0003B5h 0003B6h 0003B7h 0003B9h 0003BAh 0003BAh 0003BCh 0003BCh 0003BCh			
0003B5h 0003B6h 0003B7h 0003B8h 0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh			
0003B6h 0003B7h 0003B8h 0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh			
0003B7h 0003B8h 0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003B8h 0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003B9h 0003BAh 0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003BAh 0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003BBh 0003BCh 0003BDh 0003BEh 0003BFh			
0003BCh 0003BDh 0003BEh 0003BFh			
0003BDh 0003BEh 0003BFh			
0003BEh 0003BFh			
0003BFh			
			ı
000000h Dart			
0003Con Port	P0 Register	P0	XXh
0003C1h Port		P1	XXh
0003C2h Port	P0 Direction Register	PD0	0000 0000b
0003C3h Port	P1 Direction Register	PD1	0000 0000b
0003C4h Port	P2 Register	P2	XXh
0003C5h Port	P3 Register	P3	XXh
0003C6h Port	P2 Direction Register	PD2	0000 0000b
0003C7h Port	P3 Direction Register	PD3	0000 0000b
0003C8h Port	P4 Register	P4	XXh
0003C9h Port	P5 Register	P5	XXh
0003CAh Port	P4 Direction Register	PD4	0000 0000b
0003CBh Port	P5 Direction Register	PD5	0000 0000b
0003CCh Port	P6 Register	P6	XXh
0003CDh Port	P7 Register	P7	XXh
0003CEh Port	P6 Direction Register	PD6	0000 0000b
0003CFh Port	P7 Direction Register	PD7	0000 0000b
0003D0h Port	P8 Register	P8	XXh
0003D1h Port	P9 Register	P9	XXh
0003D2h Port	P8 Direction Register	PD8	00X0 0000b
0003D3h Port	P9 Direction Register	PD9	0000 0000b
0003D4h Port	P10 Register	P10	XXh
0003D5h Port		P11	XXh
	P10 Direction Register	PD10	0000 0000b
	P11 Direction Register	PD11	0000 0000b
0003D8h Port		P12	XXh
0003D9h Port	•	P13	XXh
	P12 Direction Register	PD12	0000 0000b
	P13 Direction Register	PD13	0000 0000b
0003DCh Port		P14	XXh
0003DDh Port		P15	XXh
	P14 Direction Register	PD14	0000 0000b
	P15 Direction Register	PD15	0000 0000b

Table 4.17 SFR List (17)

Address	Register	Symbol	Reset Value
0003E0h	Port P16 Register	P16	XXh
0003E1h	Port P17 Register	P17	XXh
0003E2h	Port P16 Direction Register	PD16	0000 0000b
0003E3h	Port P17 Direction Register	PD17	0000 0000b
0003E4h	Port P18 Register	P18	XXh
	Port P19 Register	P19	XXh
	Port P18 Direction Register	PD18	0000 0000b
0003E7h	Port P19 Direction Register	PD19	0000 0000b
0003E8h			
0003E9h			
0003EAh			
0003EBh			
0003ECh			
0003EDh			
0003EEh			
0003EFh			
	Pull-up Control Register 0	PUR0	0000 0000b
	Pull-up Control Register 1	PUR1	XXXX X0XXb
	Pull-up Control Register 2	PUR2	X00X XXXXb
	Pull-up Control Register 3	PUR3	00XX 0000b
0003F4h	Pull-up Control Register 4	PUR4	0XXX 0000b
0003F5h	Pull-up Control Register 5	PUR5	XXXX 0000b
0003F6h			
0003F7h			
0003F8h			
0003F9h			
0003FAh			
0003FBh			
0003FCh			
0003FDh			
0003FEh			
0003FFh	Port Control Register	PCR	?0XX 0XX0b (1)
<u> </u>	<u> </u>		

X: Undefined

Blanks are reserved. No access is allowed.

Note:

1. The bit 7 is 0 in the 144-pin package and 1 in the 176-pin package.

Table 4.18 SFR List (18)

Address	Register	Symbol	Reset Value
	Flash Memory Control Register 0	FMR0	0001 XX00b
	Flash Memory Status Register 0	FMSR0	1000 0000b
040002h	, ,		
040003h			
040004h			
040005h			
040006h			
040007h			
040008h	Flash Register Protection Unlock Register 0	FPR0	00h
040009h	Flash Memory Control Register 1	FMR1	0000 0010b
04000Ah	Block Protect Bit Monitor Register 0	FBPM0	??X? ????b (1)
04000Bh	Block Protect Bit Monitor Register 1	FBPM1	XXX? ????b (1)
04000Ch	=		
04000Dh			
04000Eh			
04000Fh			
040010h			
040011h	Block Protect Bit Monitor Register 2	FBPM2	???? ????b ⁽¹⁾
040012h			-
040013h			
040014h			
040015h			
040016h			
040017h			
040018h			
040019h			
04001Ah			
04001Bh			
04001Ch			
04001Dh			
04001Eh			
04001Fh			
	PLL Control Register 0	PLC0	0000 0001b
	PLL Control Register 1	PLC1	0001 1111b
040022h			
040023h			
040024h			
040025h			
040026h			
040027h			
040028h			
040029h			
04002Ah			
04002Bh			
04002Ch			
04002Dh			
04002Eh			
04002Fh			

Blanks are reserved. No access is allowed.

Note:

1. The reset value reflects the value of the protect bit for each block in the flash memory.

Table 4.19 SFR List (19)

Address	Register	Symbol	Reset Value
040030h to	_	,	
04003Fh			
040040h			
040041h			
040042h			
040043h			
040044h	Processor Mode Register 0 (1)	PM0	1000 0000b (CNVSS pin = Low) 0000 0011b (CNVSS pin = High)
040045h			
040046h	System Clock Control Register 0	CM0	0000 1000b
040047h	System Clock Control Register 1	CM1	0010 0000b
040048h	Processor Mode Register 3	PM3	00h
040049h			
	Protect Register	PRCR	XXXX X000b
04004Bh			
	Protect Register 3	PRCR3	0000 0000b
	Oscillator Stop Detection Register	CM2	00h
04004Eh	. •	0.11.2	0011
04004Fh			
040050h			
040051h			
040051h			
	Processor Mode Register 2	PM2	00h
	Chip Select Output Pin Setting Register 0	CSOP0	1000 XXXXb
	Chip Select Output Pin Setting Register 0 Chip Select Output Pin Setting Register 1	CSOP1	01X0 XXXXb
	Chip Select Output Pin Setting Register 1 Chip Select Output Pin Setting Register 2	CSOP1	XXXX 0000b
040056h		CSOP2	XXXX 0000b
040058h			
040059h			2000/20/00/
	Low Speed Mode Clock Control Register	CM3	XXXX XX00b
04005Bh			
04005Ch			
04005Dh			
04005Eh			
04005Fh			
	Voltage Regulator Control Register	VRCR	0000 0000b
040061h			
	Low Voltage Detector Control Register	LVDC	0000 XX00b
040063h			
040064h	Detection Voltage Configuration Register	DVCR	0000 XXXXb
040065h			
040066h			
040067h			
040068h to			
040093h			
X: Undefine		L	•

Blanks are reserved. No access is allowed.

Note:

1. The value in the PM0 register is retained even after a software reset or watchdog timer reset.

Table 4.20 SFR List (20)

Address	Register	Symbol	Reset Value
040094h			
040095h			
040096h			
	Three-phase Output Buffer Control Register	IOBC	0XXX XXXXb
040098h	Input Function Select Register 0	IFS0	X000 0000b
040099h			
	Input Function Select Register 2	IFS2	0000 00X0b
	Input Function Select Register 3	IFS3	XX00 XX00b
04009Ch			
04009Dh			
04009Eh			
04009Fh			
0400A0h	Port P0_0 Function Select Register	P0_0S	0XXX X000b
	Port P1_0 Function Select Register	P1_0S	XXXX X000b
	Port P0_1 Function Select Register	P0_1S	0XXX X000b
	Port P1_1 Function Select Register	P1_1S	XXXX X000b
	Port P0_2 Function Select Register	P0_2S	0XXX X000b
	Port P1_2 Function Select Register	P1_2S	XXXX X000b
0400A6h	Port P0_3 Function Select Register	P0_3S	0XXX X000b
0400A7h	Port P1_3 Function Select Register	P1_3S	XXXX X000b
	Port P0_4 Function Select Register	P0_4S	0XXX X000b
0400A9h	Port P1_4 Function Select Register	P1_4S	XXXX X000b
	Port P0_5 Function Select Register	P0_5S	0XXX X000b
0400ABh	Port P1_5 Function Select Register	P1_5S	XXXX X000b
0400ACh	Port P0_6 Function Select Register	P0_6S	0XXX X000b
0400ADh	Port P1_6 Function Select Register	P1_6S	XXXX X000b
	Port P0_7 Function Select Register	P0_7S	0XXX X000b
0400AFh	Port P1_7 Function Select Register	P1_7S	XXXX X000b
0400B0h	Port P2_0 Function Select Register	P2_0S	00XX X000b
0400B1h	Port P3_0 Function Select Register	P3_0S	XXXX X000b
0400B2h	Port P2_1 Function Select Register	P2_1S	00XX X000b
	Port P3_1 Function Select Register	P3_1S	XXXX X000b
	Port P2_2 Function Select Register	P2_2S	00XX X000b
0400B5h	Port P3_2 Function Select Register	P3_2S	XXXX X000b
0400B6h	Port P2_3 Function Select Register	P2_3S	00XX X000b
	Port P3_3 Function Select Register	P3_3S	XXXX X000b
0400B8h	Port P2_4 Function Select Register	P2_4S	00XX X000b
0400B9h	Port P3_4 Function Select Register	P3_4S	XXXX X000b
	Port P2_5 Function Select Register	P2_5S	00XX X000b
0400BBh	Port P3_5 Function Select Register	P3_5S	XXXX X000b
	Port P2_6 Function Select Register	P2_6S	00XX X000b
	Port P3_6 Function Select Register	P3_6S	XXXX X000b
	Port P2_7 Function Select Register	P2_7S	00XX X000b
	Port P3_7 Function Select Register	P3_7S	XXXX X000b

Table 4.21 SFR List (21)

Address	Register	Symbol	Reset Value
	Port P4_0 Function Select Register	P4_0S	X0XX X000b
	Port P5_0 Function Select Register	P5_0S	XXXX X000b
0400C2h I	Port P4_1 Function Select Register	P4_1S	X0XX X000b
0400C3h I	Port P5_1 Function Select Register	P5_1S	XXXX X000b
	Port P4_2 Function Select Register	P4_2S	X0XX X000b
	Port P5_2 Function Select Register	P5_2S	XXXX X000b
0400C6h l	Port P4_3 Function Select Register	P4_3S	X0XX X000b
0400C7h I	Port P5_3 Function Select Register	P5_3S	XXXX X000b
0400C8h I	Port P4_4 Function Select Register	P4_4S	X0XX X000b
0400C9h I	Port P5_4 Function Select Register	P5_4S	X0XX X000b
0400CAh I	Port P4_5 Function Select Register	P4_5S	X0XX X000b
	Port P5_5 Function Select Register	P5_5S	X0XX X000b
0400CCh I	Port P4_6 Function Select Register	P4_6S	X0XX X000b
	Port P5_6 Function Select Register	P5_6S	X0XX X000b
	Port P4_7 Function Select Register	P4_7S	X0XX X000b
	Port P5_7 Function Select Register	P5_7S	X0XX X000b
	Port P6_0 Function Select Register	P6_0S	X0XX X000b
	Port P7_0 Function Select Register	P7_0S	X0XX X000b
	Port P6_1 Function Select Register	P6_1S	X0XX X000b
	Port P7_1 Function Select Register	P7_1S	X0XX X000b
	Port P6_2 Function Select Register	P6_2S	X0XX X000b
0400D5h I	Port P7_2 Function Select Register	P7_2S	X0XX X000b
0400D6h I	Port P6_3 Function Select Register	P6_3S	X0XX X000b
0400D7h I	Port P7_3 Function Select Register	P7_3S	X0XX X000b
	Port P6_4 Function Select Register	P6_4S	X0XX X000b
0400D9h I	Port P7_4 Function Select Register	P7_4S	X0XX X000b
0400DAh I	Port P6_5 Function Select Register	P6_5S	X0XX X000b
0400DBh I	Port P7_5 Function Select Register	P7_5S	X0XX X000b
0400DCh I	Port P6_6 Function Select Register	P6_6S	X0XX X000b
0400DDh I	Port P7_6 Function Select Register	P7_6S	X0XX X000b
0400DEh I	Port P6_7 Function Select Register	P6_7S	X0XX X000b
0400DFh I	Port P7_7 Function Select Register	P7_7S	X0XX X000b
	Port P8_0 Function Select Register	 P8_0S	X0XX X000b
	Port P9_0 Function Select Register	P9_0S	X0XX X000b
	Port P8_1 Function Select Register	 P8_1S	X0XX X000b
	Port P9_1 Function Select Register	P9_1S	X0XX X000b
	Port P8_2 Function Select Register	P8_2S	X0XX X000b
	Port P9_2 Function Select Register	P9_2S	X0XX X000b
	Port P8_3 Function Select Register	P8_3S	X0XX X000b
	Port P9_3 Function Select Register	P9_3S	00XX X000b
	Port P8_4 Function Select Register	P8_4S	XXXX X000b
	Port P9_4 Function Select Register	P9_4S	00XX X000b
0400EAh	<u> </u>		
	Port P9_5 Function Select Register	P9_5S	00XX X000b
	Port P8_6 Function Select Register	P8_6S	XXXX X000b
	Port P9_6 Function Select Register	P9_6S	00XX X000b
	Port P8_7 Function Select Register	P8_7S	XXXX X000b
	Port P9_7 Function Select Register	P9_7S	X0XX X000b

Table 4.22 SFR List (22)

Address	Register	Symbol	Reset Value
0400F0h	Port P10_0 Function Select Register	P10_0S	0XXX X000b
0400F1h	Port P11_0 Function Select Register	P11_0S	X0XX X000b
0400F2h	Port P10_1 Function Select Register	P10_1S	0XXX X000b
0400F3h	Port P11_1 Function Select Register	P11_1S	X0XX X000b
0400F4h	Port P10_2 Function Select Register	P10_2S	0XXX X000b
0400F5h	Port P11_2 Function Select Register	P11_2S	X0XX X000b
0400F6h	Port P10_3 Function Select Register	P10_3S	0XXX X000b
0400F7h	Port P11_3 Function Select Register	P11_3S	X0XX X000b
0400F8h	Port P10_4 Function Select Register	P10_4S	0XXX X000b
0400F9h	Port P11_4 Function Select Register	P11_4S	XXXX X000b
0400FAh	Port P10_5 Function Select Register	P10_5S	0XXX X000b
0400FBh	Port P11_5 Function Select Register	P11_5S	XXXX X000b
0400FCh	Port P10_6 Function Select Register	P10_6S	0XXX X000b
0400FDh	Port P11_6 Function Select Register	P11_6S	XXXX X000b
0400FEh	Port P10_7 Function Select Register	P10_7S	0XXX X000b
	Port P11_7 Function Select Register	P11_7S	XXXX X000b
040100h	Port P12_0 Function Select Register	P12_0S	X0XX X000b
	Port P13_0 Function Select Register	P13_0S	XXXX X000b
040102h	Port P12_1 Function Select Register	P12_1S	X0XX X000b
040103h	Port P13_1 Function Select Register	P13_1S	XXXX X000b
040104h	Port P12_2 Function Select Register	P12_2S	X0XX X000b
040105h	Port P13_2 Function Select Register	P13_2S	XXXX X000b
040106h	Port P12_3 Function Select Register	P12_3S	X0XX X000b
040107h	Port P13_3 Function Select Register	P13_3S	XXXX X000b
040108h	Port P12_4 Function Select Register	P12_4S	X0XX X000b
040109h	Port P13_4 Function Select Register	P13_4S	XXXX X000b
04010Ah	Port P12_5 Function Select Register	P12_5S	X0XX X000b
04010Bh	Port P13_5 Function Select Register	P13_5S	XXXX X000b
04010Ch	Port P12_6 Function Select Register	P12_6S	X0XX X000b
04010Dh	Port P13_6 Function Select Register	P13_6S	XXXX X000b
04010Eh	Port P12_7 Function Select Register	P12_7S	X0XX X000b
	Port P13_7 Function Select Register	P13_7S	XXXX X000b
040110h			
040111h	Port P15_0 Function Select Register	P15_0S	00XX X000b
040112h			
	Port P15_1 Function Select Register	P15_1S	00XX X000b
040114h			
	Port P15_2 Function Select Register	P15_2S	00XX X000b
	Port P14_3 Function Select Register	P14_3S	XXXX X000b
	Port P15_3 Function Select Register	P15_3S	00XX X000b
	Port P14_4 Function Select Register	P14_4S	XXXX X000b
	Port P15_4 Function Select Register	P15_4S	00XX X000b
	Port P14_5 Function Select Register	P14_5S	XXXX X000b
	Port P15_5 Function Select Register	P15_5S	00XX X000b
	Port P14_6 Function Select Register	P14_6S	XXXX X000b
	Port P15_6 Function Select Register	P15_6S	00XX X000b
	Port P14_7 Function Select Register	P14_7S	XXXX X000b
04011Fh	Port P15_7 Function Select Register	P15_7S	00XX X000b

Table 4.23 SFR List (23)

Address	Register	Symbol	Reset Value
040120h	Port P16_0 Function Select Register	P16_0S	X0XX X000b
040121h	Port P17_0 Function Select Register	P17_0S	X0XX X000b
040122h	Port P16_1 Function Select Register	P16_1S	X0XX X000b
040123h	Port P17_1 Function Select Register	P17_1S	X0XX X000b
040124h	Port P16_2 Function Select Register	P16_2S	X0XX X000b
040125h	Port P17_2 Function Select Register	P17_2S	X0XX X000b
040126h	Port P16_3 Function Select Register	P16_3S	X0XX X000b
040127h	Port P17_3 Function Select Register	P17_3S	X0XX X000b
040128h	Port P16_4 Function Select Register	P16_4S	X0XX X000b
	Port P17_4 Function Select Register	P17_4S	XXXX X000b
	Port P16_5 Function Select Register	P16_5S	X0XX X000b
	Port P17_5 Function Select Register	P17_5S	XXXX X000b
	Port P16_6 Function Select Register	P16_6S	X0XX X000b
	Port P17_6 Function Select Register	P17_6S	XXXX X000b
	Port P16_7 Function Select Register	P16_7S	X0XX X000b
	Port P17_7 Function Select Register	P17_7S	XXXX X000b
	Port P18_0 Function Select Register	P18_0S	XXXX X000b
	Port P19_0 Function Select Register	P19_0S	XXXX X000b
	Port P18_1 Function Select Register	P18_1S	XXXX X000b
	Port P19_1 Function Select Register	P19_1S	XXXX X000b
	Port P18_2 Function Select Register	P18_2S	XXXX X000b
	Port P19_2 Function Select Register	P19_2S	XXXX X000b
	Port P18_3 Function Select Register	P18_3S	XXXX X000b
	Port P19_3 Function Select Register	P19_3S	XXXX X000b
	Port P18_4 Function Select Register	P18_4S	XXXX X000b
	Port P19_4 Function Select Register	P19_4S	XXXX X000b
	Port P18_5 Function Select Register	P18_5S	XXXX X000b
	Port P19_5 Function Select Register	P19_5S	XXXX X000b
	Port P18_6 Function Select Register	P18_6S	XXXX X000b
	Port P19_6 Function Select Register	P19_6S	XXXX X000b
	Port P18_7 Function Select Register	P18_7S	XXXX X000b
	Port P19_7 Function Select Register	P19_7S	XXXX X000b
040140h			
040141h			
040142h			
040143h			
040144h			
040145h			
040146h			
040147h			
040148h			
040149h 04014Ah			
04014An			
04014Bh			
04014Ch			
04014DH 04014Eh			
04014EII			
X: Undefined	4		

Table 4.24 SFR List (24)

14016 4.24	3FK LISI (24)		
Address	Register	Symbol	Reset Value
040150h to			
0402FFh			
	UART9 Transmit/Receive Mode Register	U9MR	00h
	UART9 Bit Rate Register	U9BRG	XXh
040302h	UART9 Transmit Buffer Register	U9TB	XXXXh
040303h			
040304h	UART9 Transmit/Receive Control Register 0	U9C0	00X0 1000b
040305h	UART9 Transmit/Receive Control Register 1	U9C1	XXXX 0010b
040306h	UART9 Receive Buffer Register	U9RB	XXXXh
040307h	-		
040308h	UART10 Transmit/Receive Mode Register	U10MR	00h
	UART10 Bit Rate Register	U10BRG	XXh
	UART10 Transmit Buffer Register	U10TB	XXXXh
04030Bh			
04030Ch	UART10 Transmit/Receive Control Register 0	U10C0	00X0 1000b
	UART10 Transmit/Receive Control Register 1	U10C1	XXXX 0010b
	UART10 Receive Buffer Register	U10RB	XXXXh
04030Fh			
	UART9, UART10 Transmit/Receive Control Register 2	U910CON	X000 0000b
040311h		00100011	7,000 0000
040312h			
040313h			
040314h			
040314h			
040316h			
04031011 040317h			
04031711 040318h to			
0403161110 041FFFh			
	Protected Area 0		Undefined
04200011 to		_	Ondenned
	Protected Area 1		Undefined
04203Fh		_	Officentica
	Protected Area 2		Undefined
04205Fh			Ondomica
	Protected Area 3		Undefined
04207Fh			Grideinied
	Protected Area 4	_	Undefined
04209Fh			
0420A0h to			
0420EFh			
	Protected Area Protect Release Register	PAPR	XXX0 0000b
0420F1h	ı		
	Protected Area Write Access Flag Register	PAWF	XXX0 0000b
0420F3h	,		
0420F4h			
0420F5h			
0420F6h			
0420F7h			
0420F8h to			
043FFFh			
Y: Undefine			

Table 4.25 SFR List (25)

Address	Register	Symbol	Reset Value
044000h to			
04403Fh			
044040h			
044041h			
044042h			
044043h			
044044h			
044045h			
044046h			
044047h			
044048h			
044049h			
04404Ah			
04404Bh			
04404Ch	Protect Register 4	PRCR4	0000 0000b
04404Dh	Watchdog Timer Clock Control Register	WDK	0000 000?b (1)
04404Eh	Watchdog Timer Start Register	WDTS	XXXX XXXXb
04404Fh	Watchdog Timer Control Register	WDC	000X XXXXb
044050h			
044051h			
044052h			
044053h			
044054h			
044055h			
044056h			
044057h			
044058h			
044059h			
04405Ah			
04405Bh			
04405Ch			
04405Dh			
04405Eh			

X: Undefined

Blanks are reserved. No access is allowed.

Note:

1. The bit 0 is set to 1 when the most recent reset is caused by the watchdog timer. Otherwise, it is set to 0.

Table 4.26 SFR List (26)

Address	Register	Symbol	Reset Value
044060h			
044061h			
044062h			
044063h			
044064h			
044065h			
044066h			
044067h			
044068h			
044069h			
04406Ah			
04406Bh			
04406Ch			
04406Dh	External Interrupt Request Source Select Register 1	IFSR1	X0XX X000b
04406Eh			
	External Interrupt Request Source Select Register 0	IFSR0	0000 0000b
	DMA0 Request Source Select Register 2	DM0SL2	XX00 0000b
	DMA1 Request Source Select Register 2	DM1SL2	XX00 0000b
	DMA2 Request Source Select Register 2	DM2SL2	XX00 0000b
	DMA3 Request Source Select Register 2	DM3SL2	XX00 0000b
044074h			
044075h			
044076h			
044077h			
044078h	DMA0 Request Source Select Register	DM0SL	XXX0 0000b
	DMA1 Request Source Select Register	DM1SL	XXX0 0000b
	DMA2 Request Source Select Register	DM2SL	XXX0 0000b
	DMA3 Request Source Select Register	DM3SL	XXX0 0000b
04407Ch			
04407Dh	Wake-up IPL Setting Register 2	RIPL2	XX0X 0000b
04407Eh			
04407Fh	Wake-up IPL Setting Register 1	RIPL1	XX0X 0000b
044080h			
044081h			
044082h			
044083h			
044084h			
044085h			
044086h			
044087h			
044088h			
044089h			
04408Ah			
04408Bh			
04408Ch			
04408Dh			
04408Eh			
04408Fh			
Y: Undefine			<u> </u>

Table 4.27 SFR List (27)

Address	Register	Symbol	Reset Value
044090h to			
0443FFh			
044400h	I ² C-bus Transmit/Receive Shift Register	I2CTRSR	XXh
044401h			
044402h	I ² C-bus Slave Address Register	I2CSAR	00h
044403h	I ² C-bus Control Register 0	I2CCR0	0000 0000b
044404h	I ² C-bus Clock Control Register	I2CCCR	0000 0000b
044405h	I ² C-bus START and STOP Conditions Control Register	I2CSSCR	0001 1010b
044406h	I ² C-bus Control Register 1	I2CCR1	0011 0000b
044407h	I ² C-bus Control Register 2	I2CCR2	0X00 0000b
	I ² C-bus Status Register	I2CSR	0001 000Xb
044409h			
04440Ah			
04440Bh			
04440Ch			
04440Dh			
04440Eh			
04440Fh			
	I ² C-bus Mode Register	I2CMR	XXXX 0000b
044411h			
044412h			
044413h			
044414h			
044415h			
044416h			
044417h			
044418h			
044419h			
04441Ah			
04441Bh			
04441Ch			
04441Dh			
04441Eh			
04441Fh			
044420h to 04FFFFh			
V4FFFFII Y: Undefine			

5. Resets

There are three types of operations for resetting the MCU: hardware reset, software reset, and watchdog timer reset.

5.1 Hardware Reset

A hardware reset is generated when a low signal is applied to the $\overline{\text{RESET}}$ pin under the recommended operating conditions of the supply voltage. When the $\overline{\text{RESET}}$ pin is driven low, all pins, and oscillators are reset (refer to Table 5.1 for details), and the main clock starts oscillating. The CPU and SFRs are reset by a low-to-high transition on the $\overline{\text{RESET}}$ pin. Then, the CPU starts executing the program from the address indicated by the reset vector. Internal RAM is not affected by a hardware reset. However, if a hardware reset occurs during a write operation to the internal RAM, the value is undefined.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows the reset sequence. Table 5.1 lists pin states while the RESET pin is held low. Figure 5.3 shows CPU register states after a reset. Refer to 4. "Special Function Registers (SFRs)" for details on the states of SFRs after a reset.

- A. Reset when the supply voltage is stable
 - (1) Drive the \overline{RESET} pin low.
 - (2) Input at least 20 clock cycles to the XIN pin.
 - (3) Drive the \overline{RESET} pin high.
- B. Reset when turning on the power
 - (1) Drive the RESET pin low.
 - (2) Raise the supply voltage to the recommended operating voltage.
 - (3) Wait td(P-R) ms until the internal voltage is stabilized.
 - (4) Input at least 20 clock cycles to the XIN pin.
 - (5) Drive the \overline{RESET} pin high.

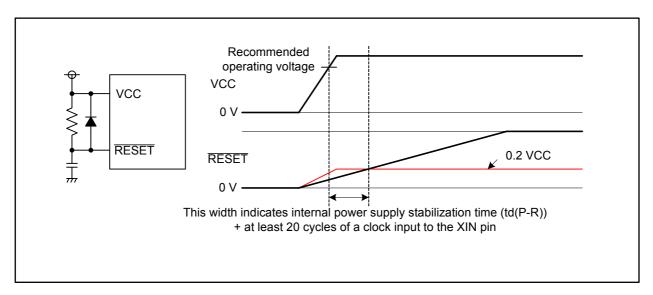


Figure 5.1 Reset Circuitry

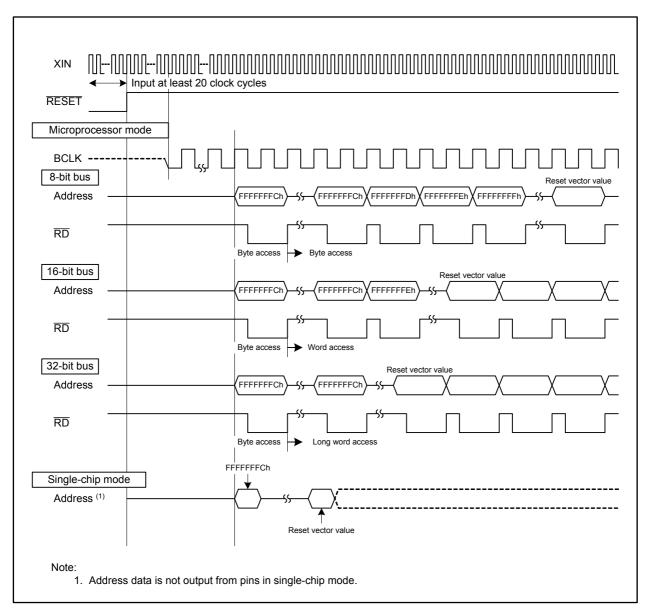


Figure 5.2 Reset Sequence

Table 5.1 Pin States while RESET Pin is Held Low (1)

Pin Name	Pin States				
Fill Name	CNVSS = VSS	CNVSS = VCC			
P0	Input port (high-impedance)	Inputs data			
P1	Input port (high-impedance)	Input port (high-impedance)			
P2, P3	Input port (high-impedance)	Output addresses (undefined)			
P4_0 to P4_6	Input port (high-impedance)	Output addresses (undefined)			
P4_7	Input port (high-impedance)	Outputs the CSO signal (high)			
P5_0	Input port (high-impedance)	Outputs the WR signal (high)			
P5_1	Input port (high-impedance)	Outputs the BC1 signal (undefined)			
P5_2	Input port (high-impedance)	Outputs the RD signal (high)			
P5_3	Input port (high-impedance)	Outputs BCLK (2)			
P5_4	Input port (high-impedance)	Outputs the HLDA signal (output signal depends on an input signal to the HOLD pin) (2)			
P5_5	Input port (high-impedance)	Inputs the HOLD signal (high-impedance)			
P5_6	Input port (high-impedance)	Outputs the CS2 signal (high)			
P5_7	Input port (high-impedance)	Inputs the RDY signal (high-impedance)			
P6 to P19 ⁽³⁾	Input port (high-impedance)	Input port (high-impedance)			

Notes:

- 1. Whether a pull-up resistor is enabled or not is undefined until the internal voltage is stabilized.
- State after power is on and the internal voltage has stabilized. It is undefined until the internal voltage is stabilized
- Ports P16 to P19 are available in the 176-pin package only.

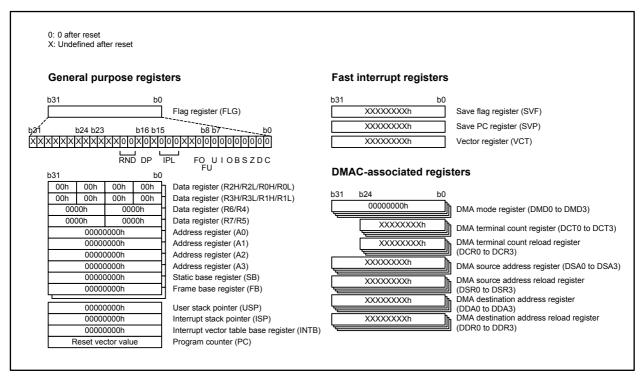


Figure 5.3 CPU Registers after Reset

5.2 Software Reset

The CPU, SFRs, and pins are reset when the PM03 bit in the PM0 register is set to 1 (the MCU is reset). Then, the CPU executes the program from the address indicated by the reset vector.

Set the PM03 bit to 1 while the PLL clock is selected as the CPU clock source and the main clock oscillation is completely stable.

There is no change in processor mode since bits PM01 and PM00 in the PM0 register are not affected by a software reset.

5.3 Watchdog Timer Reset

The CPU, SFRs, and pins are reset when the watchdog timer underflows while the CM06 bit in the CM0 register is 1 (reset when watchdog timer underflows). Then, the CPU executes the program from the address indicated by the reset vector.

There is no change in processor mode since bits PM01 and PM00 in the PM0 register are not affected by a watchdog timer reset.

5.4 Reset Vector

The reset vector in the R32C/100 Series is configured as shown in Figure 5.4.

The start address of a program consists of the upper 30 bits of the reset vector and 00b as lower 2 bits. The lower 2 bits of the reset vector are bits to select the external bus width in microprocessor mode. Therefore, the start address of a program requires 4-byte alignment so that the lower 2 bits are 00b. In single-chip mode, set the external bus width select bits to 00b.

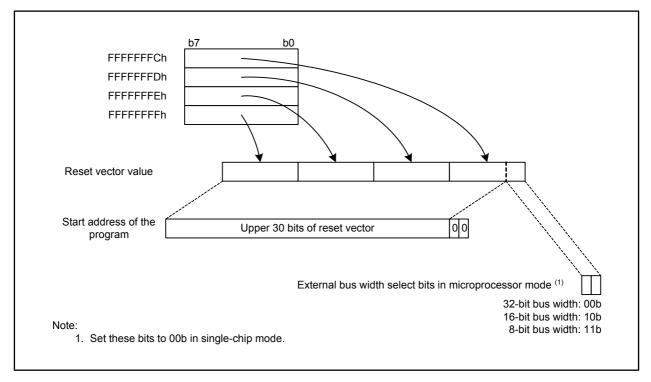


Figure 5.4 Reset Vector Configuration

6. Power Management

6.1 Voltage Regulators for Internal Logic

The supply voltage for internal logic is generated by reducing the input voltage from the VCC pin with the voltage regulators. Figure 6.1 shows a block diagram of the voltage regulators for internal logic, and Figure 6.2 shows the VRCR register.

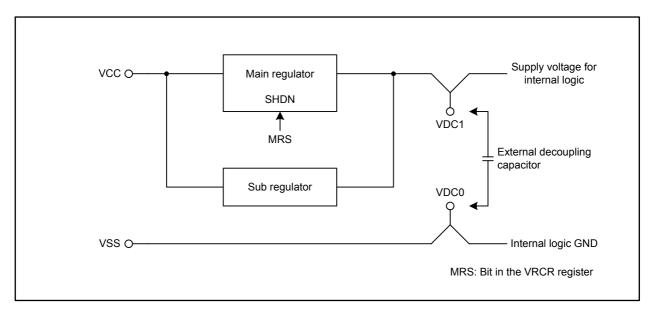


Figure 6.1 Block Diagram of Voltage Regulators for Internal Logic

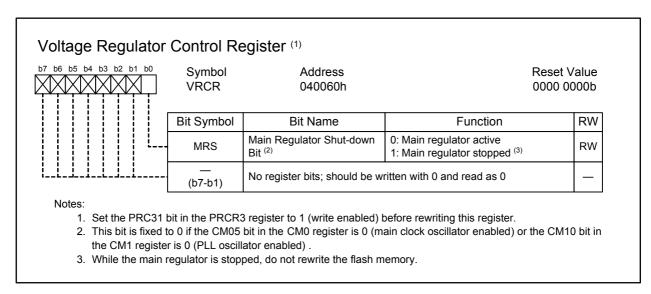


Figure 6.2 VRCR Register

6.1.1 Decoupling Capacitor

An external decoupling capacitor is required to stabilize internal voltage. The capacitor should be beneficially effective at higher frequencies and maintain a more stable capacitance irrespective of temperature change. In general, ceramic capacitors are recommended. The capacitance varies by conditions such as operating temperature, DC bias, and aging. To select an appropriate capacitor, these conditions should be considered. Also, refer to the recommended capacitor specifications listed in Table 6.1.

The traces between the capacitor and the VDC1/VDC0 pins should be as short and wide as physically possible.

 Table 6.1
 Recommended Capacitor Specifications

	Tempe	erature Characterist		Nominal		
Applicable	standard	Operating temperature range (°C)	Capacitance change (%)	Rated Voltage (V)	Capacitance (µF)	Capacitance Tolerance (%)
В	JIS	-25 to 85	±10	6.3 or higher	4.7	±20 or better
R	JIS	-55 to 125	±15	6.3 or higher	4.7	±20 or better
X5R	EIA	-55 to 85	±15	6.3 or higher	4.7	±20 or better
X7R	EIA	-55 to 125	±15	6.3 or higher	4.7	±20 or better
X8R	EIA	-55 to 150	±15	6.3 or higher	4.7	±20 or better
X6S	EIA	-55 to 105	±22	6.3 or higher	4.7	±20 or better
X7S	EIA	-55 to 125	±22	6.3 or higher	4.7	±20 or better

6.2 Low Voltage Detector

The low voltage detector monitors the supply voltage input to the VCC pin.

This circuit is used to monitor the power supply upstream of the voltage regulators for internal logic and provide advanced warning that the power is about to fail. By providing a few milliseconds of advanced warning, the CPU can save any critical parameters to the flash memory and safely shut down.

Figure 6.3 shows a block diagram of the low voltage detector, and Figures 6.4 and 6.5 show registers associated with the circuit.

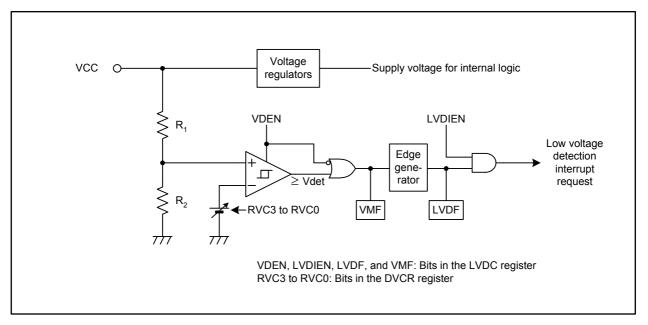


Figure 6.3 Low Voltage Detector Block Diagram

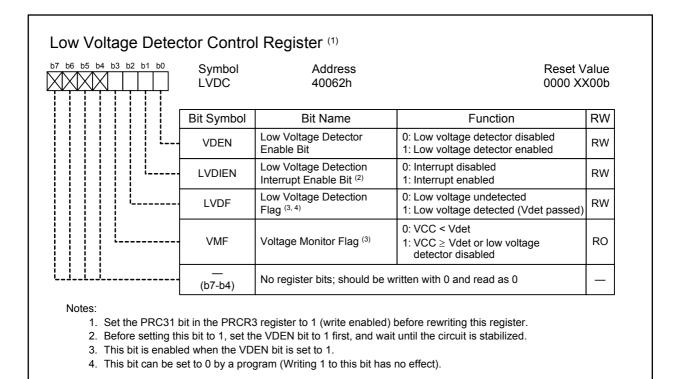
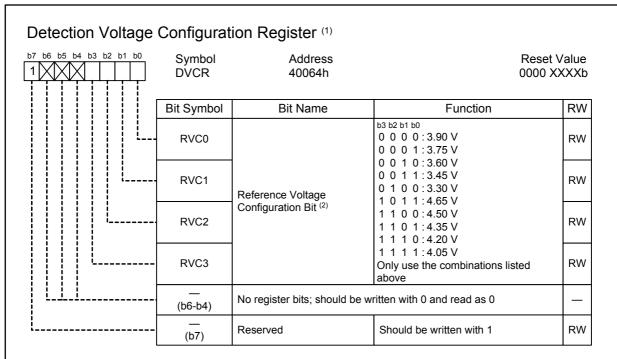



Figure 6.4 LVDC Register

Notes:

- 1. Set the PRC31 bit in the PRCR3 register to 1 (write enabled) before rewriting this register. Rewrite this register when the VDEN bit in the LVDC register is 0 (low voltage detector disabled).
- 2. Refer to the following table for detected voltages Vdet(F) and Vdet(R).

Reference Voltage	Low-detection Voltage Vdet(F)	Rise-detection Voltage Vdet(R)
4.65 V	4.55 V	4.77 V
4.50 V	4.40 V	4.62 V
4.35 V	4.24 V	4.46 V
4.20 V	4.09 V	4.31 V
4.05 V	3.95 V	4.17 V
3.90 V	3.80 V	4.02 V
3.75 V	3.65 V	3.87 V
3.60 V	3.50 V	3.72 V
3.45 V	3.35 V	3.57 V
3.30 V	3.20 V	3.42 V

Figure 6.5 DVCR Register

6.2.1 Operational State of Low Voltage Detector

The low voltage detector starts operating stably after td(E-A) when the VDEN bit in the LVDC register is set to 1 (low voltage detector enabled).

When the input voltage to the VCC pin drops below Vdet(F), the VMF bit becomes 0 (VCC < Vdet) and the LVDF bit becomes 1 (low voltage detected (Vdet passed)). At this point an interrupt request is generated when the LVDIEN bit is 1 (low voltage detection interrupt enabled). Set the LVDF bit to 0 (low voltage undetected) by a program.

When the voltage rises to or above Vdet(R) again, the VMF bit becomes 1 ($VCC \ge Vdet$) and the LVDF bit becomes 1. At this point an interrupt request is generated when the LVDIEN bit is 1.

Figure 6.6 shows the operation of the low voltage detector.

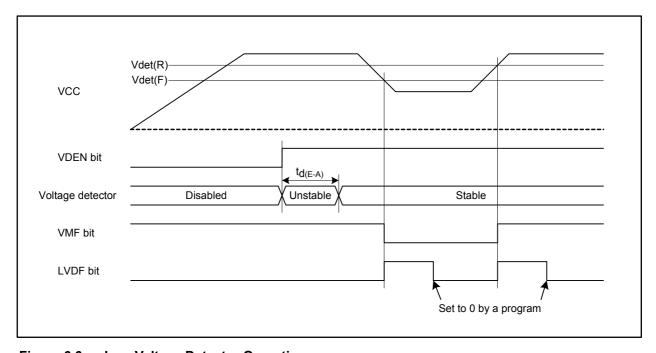


Figure 6.6 Low Voltage Detector Operation

6.2.2 Low Voltage Detection Interrupt

A low voltage detection interrupt request is generated when the input voltage at the VCC pin rises to or above the Vdet(R) level, or falls below the Vdet(F) level while the LVDIEN bit in the LVDC register is 1 (low voltage detection interrupt enabled).

This interrupt shares the interrupt vector with the watchdog timer interrupt and oscillator stop detection interrupt. When using the low voltage detection interrupt with these interrupts at the same time, read the LVDF bit in the LVDC register in the interrupt handler and confirm that the low voltage detection interrupt has been occurred.

The LVDF bit becomes 1 when the input voltage at the VCC pin passes the Vdet(R) level or Vdet(F) level. When the LVDF bit changes from 0 to 1, a low voltage detection interrupt request is generated. Set this bit to 0 (low voltage undetected) by a program.

6.2.3 Application Example of the Low Voltage Detector

Figure 6.7 shows an example of the low voltage detection interrupt.

The supply voltage for internal logic is generated by reducing the input voltage from the VCC pin with the voltage regulators. When the input voltage begins to fall, the internal voltage remains steady. However, as the VCC input voltage continues to fall, the supply voltage for the internal logic also begins to fall, which may affect MCU operation. Consequently, the system can be safely shut down between when the VCC input voltage begins to fall and when the supply voltage for internal logic begins to fall. The low voltage detection interrupt can be applied to detect the falling input voltage.

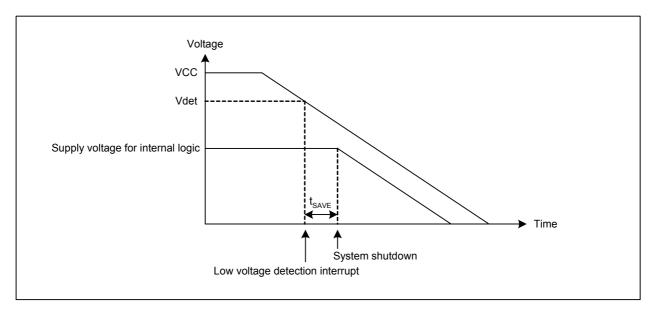


Figure 6.7 Example of the Low Voltage Detection Interrupt

R32C/116A Group 7. Processor Mode

7. Processor Mode

7.1 Types of Processor Modes

The R32C/100 Series supports three types of processor modes: single-chip mode, memory expansion mode, and microprocessor mode. Table 7.1 lists the characteristics of each processor mode.

Table 7.1 Processor Mode Characteristics

Processor Mode	Accessible Space	Pin State as I/O Ports
Single-chip mode		All pins can be assigned to I/O ports or I/O pins for the peripheral functions
		Some pins are assigned to bus control pins ⁽¹⁾
Microprocessor mode	SFRs, internal RAM, external space	Some pins are assigned to bus control pins ⁽¹⁾

Note:

1. Refer to 9. "Bus" for details.

The R32C/116A Group supports two standard processor modes: single-chip mode and memory expansion mode. Microprocessor mode is optional. Contact a Renesas Electronics sales office to use this mode.

7.2 Processor Mode Setting

The processor mode to be used is selected by the CNVSS pin state and setting of bits PM01 and PM00 in the PM0 register. After a hardware reset, the operation starts in single-chip mode or microprocessor mode as shown in Table 7.2.

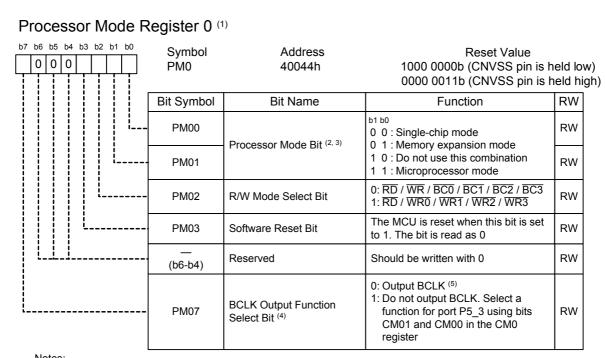
Table 7.2 Processor Mode after Hardware Reset

Input Level into the CNVSS Pin (1)	Processor Mode
Low	Single-chip mode
High	Microprocessor mode

Note:

1. The CNVSS pin should be connected to VCC or VSS via a resistor.

To change to memory expansion mode after starting an operation in single-chip mode, set bits PM01 and PM00 in the PM0 register to 01b (memory expansion mode). Note that the microprocessor mode, selected to start an operation, can be also changed to another mode by setting the bits mentioned above. In this case, however, the internal ROM is inaccessible in every changed mode.


Notes on changing processor mode are as follows:

- 1. When rewriting bits PM01 and PM00 to 01b (memory expansion mode) or 11b (microprocessor mode), do not change bits PM07 to PM02.
- 2. When rewriting bits PM07 to PM02, do not change bits PM01 and PM00.
- 3. Do not change the current mode to microprocessor mode while a program in the internal ROM is being executed.
- 4. Do not change the current mode to single-chip mode while a program in the external space is being executed.
- 5. Do not change microprocessor mode to memory expansion mode while a program in the same address as that assigned to the internal ROM is being executed.

Figure 7.1 shows the PM0 register and Figure 7.2 shows the memory map for each processor mode.

R32C/116A Group 7. Processor Mode

Notes:

- 1. Rewrite this register after setting the PRC1 bit in the PRCR register to 1 (write enabled).
- 2. The processor mode is not changed even when the PM03 bit is set to 1 (software reset).
- 3. Rewrite bits PM01 and PM00 with 01b or 11b after other bit(s) is/are rewritten. They should not be rewritten
- 4. In single-chip mode, the BCLK is not output even when the PM07 bit is set to 0. To stop clock output in memory expansion mode or microprocessor mode, set the PM07 bit to 1 and bits CM01 and CM00 in the CM0 register to 00b (I/O port P5_3). I/O port P5_3 outputs a low signal in this case.
- 5. Set bits CM01 and CM00 to 00b when the PM07 bit is 0.

Figure 7.1 **PM0 Register**

R32C/116A Group 7. Processor Mode

	Single-chip Mode	Memory Expansion Mode	Microprocessor Mod
00000000h	SFRs	SFRs	SFRs
00000400h	Internal RAM	Internal RAM	Internal RAM
	Reserved (internal RAM)	Reserved (internal RAM)	Reserved (internal RAM)
00040000h	SFRs 2	SFRs 2	SFRs 2
00050000h	Reserved	Reserved	Reserved
00060000h	Data ROM	Data ROM	Data ROM
00062000h	Reserved (Internal ROM)	Reserved (Internal ROM)	Reserved (Internal ROM)
00080000h		External space 31.5 MB	External space 31.5 MB
02000000h	Cannot be used (1)	Cannot be used (2)	Cannot be used (2)
FE000000h		External space 30 MB	
FFE00000h	Reserved (Internal ROM)	Reserved (Internal ROM)	External space 32 MB
FFFFFFFh	Internal ROM	Internal ROM	

Notes:

- 1. This space cannot be externally expanded in single-chip mode.
- 2. This space cannot be used in any processor mode.

Figure 7.2 Memory Map of Each Processor Mode

8. Clock Generator

8.1 Clock Generator Types

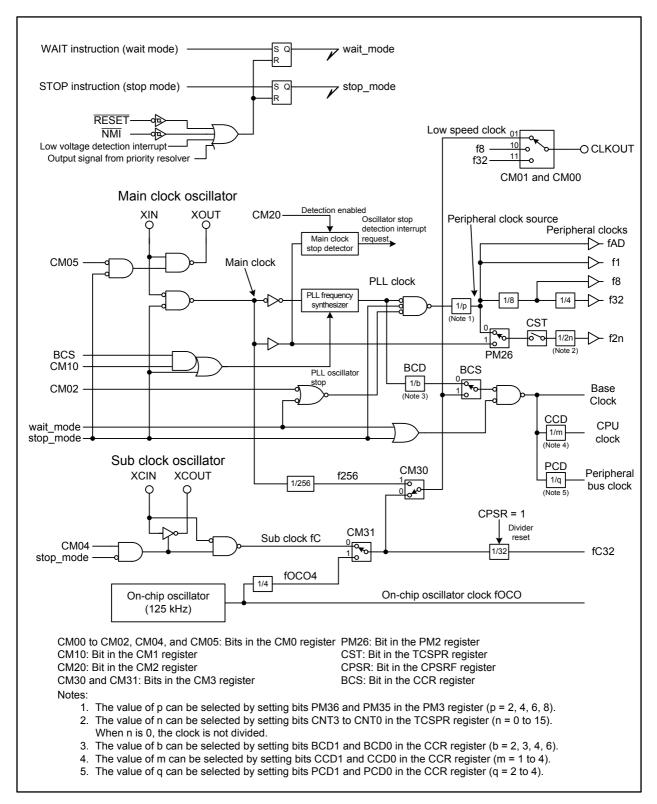
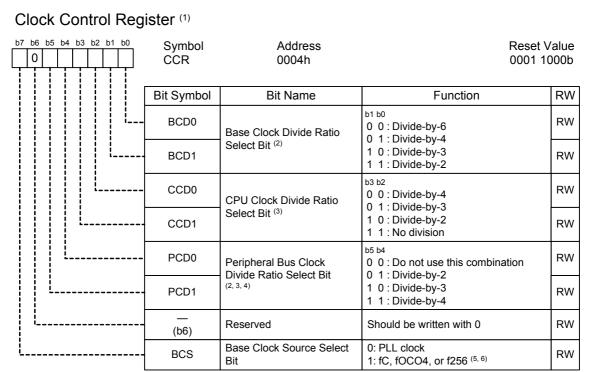
The clock generator consists of four circuits:

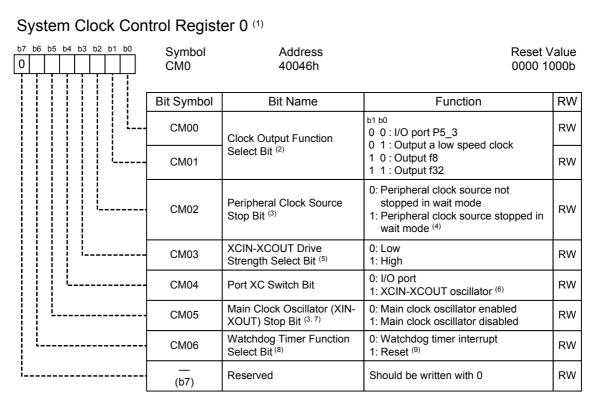
- · Main clock oscillator
- · Sub clock oscillator
- PLL frequency synthesizer
- On-chip oscillator (OCO)

Table 8.1 lists the specifications of the clock generator. Figure 8.1 shows a block diagram of the clock generator, and Figures 8.2 to 8.10 show registers associated with clock control.

Table 8.1 Clock Generator Specifications

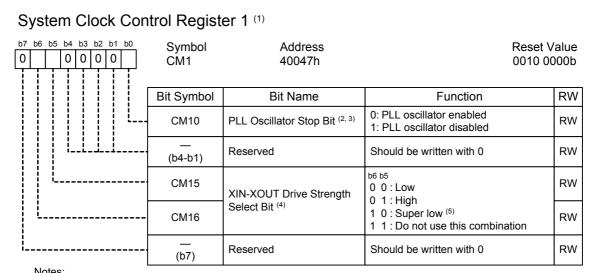
Item	Main Clock Oscillator	Sub Clock Oscillator	PLL Frequency Synthesizer	On-chip Oscillator
Used as	PLL reference clock source Peripheral clock source	CPU clock source Clock source for timers A and B	CPU clock source Peripheral clock source	CPU clock source Clock source for timers A and B
Clock frequency	4 to 16 MHz	32.768 kHz	f _{SO(PLL)} or f _(PLL)	Approx. 125 kHz
Connectable oscillators or additional circuits	Ceramic resonator Crystal oscillator	Crystal oscillator	_	_
Pins for oscillators or additional circuits	XIN, XOUT	XCIN, XCOUT	_	_
Oscillator stop/ restart function	Available	Available	Available	Available
Oscillator state after a reset	Running	Stopped	Running	Stopped
Note	Externally generated clock can be input	Externally generated clock can be input	When the main clock oscillator stops running, the PLL frequency synthesizer oscillates at its own frequency of f _{SO(PLL)}	oscillator starts running by setting the CSPM bit in the OFS area to 0 after a reset


Figure 8.1 Clock Generation Circuitry

Notes:

- 1. Set the PRR register to AAh (write enabled) before rewriting this register.
- 2. The divide ratios of the base clock and peripheral bus clock should not be changed simultaneously. Doing so may cause the peripheral bus clock frequency to go over the maximum operating frequency.
- 3. The divide ratio of the CPU clock should be equal to or lower than that of peripheral bus clock.
- 4. Set this bit only once after a reset and do not change the setting afterwards. Rewrite the PBC register before rewriting this bit.
- 5. To set this bit to 1, a 32-bit write access to addresses 0004h to 0007h should be performed.
- 6. To use these low speed clocks, select one of them by setting bits CM31 and CM30 in the CM3 register and then set the BCS bit to 1.


Figure 8.2 CCR Register

Notes:

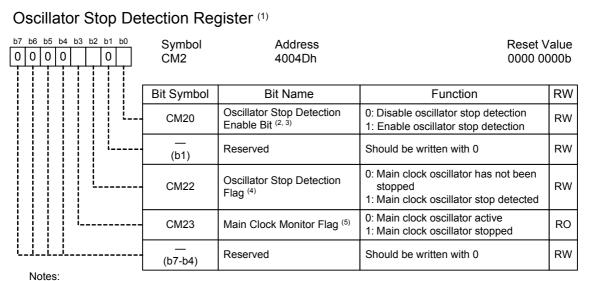

- 1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. When the PM07 bit in the PM0 register is 0 (output BCLK), bits CM01 and CM00 should be set to 00b. In memory expansion mode, when the PM07 bit is 1 (select a function for port P5_3 using bits CM01 and CM00 in the CM0 register) and bits CM01 and CM00 are set to 00b, the P5_3 pin is driven low (this pin does not function as port P5_3).
- 3. When the PM21 bit in the PM2 register is 1 (clock change disabled), bits CM02 bit and CM05 cannot be changed by a write access.
- 4. fC32 and f2n (whose clock source is the main clock) do not stop.
- 5. When entering stop mode, the CM03 bit becomes 1.
- 6. To set the CM04 bit to 1, set bits PD8_7 and PD8_6 in the PD8 register to 0 (input), and the PU25 bit in the PUR2 register to 0 (pull-up resistor disabled).
- 7. This bit stops the main clock when entering low power mode. It cannot detect whether or not the main clock oscillator stops. When this bit is set to 1, the clock applied to the XOUT pin becomes high. Since the on-chip feedback resistor remains connected, the XIN pin is connected to the XOUT pin via the feedback resistor.
- 8. Set this bit before activating the watchdog timer. When rewriting this bit while the watchdog timer is running, set it immediately after writing to the WDTS register.
- 9. Once this bit is set to 1, it cannot be set to 0 by a program.

Figure 8.3 CM0 Register

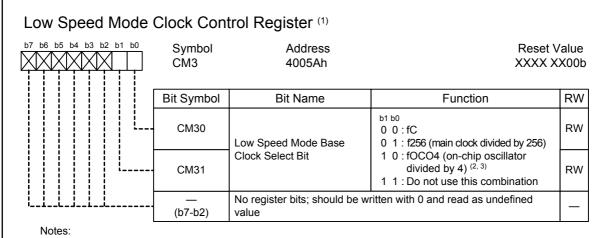

- 1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. When the BCS bit in the CCR register is 0 (PLL clock selected as base clock source), the PLL frequency synthesizer does not stop oscillating even if the CM10 bit is set to 1.
- 3. When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM10 bit cannot be changed by a write access.
- 4. These bits become 01b when the main clock is stopped. When setting to 00b or 10b, rewrite them after the main clock is fully stabilized.
- 5. The oscillator frequency should be 8 MHz or less to select super low mode.

Figure 8.4 CM1 Register

- 1. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. Set this bit to 0 when f256 is selected as the base clock source in low speed mode.
- 3. When the PM21 bit in the PM2 register is 1 (clock change disabled), the CM20 bit cannot be changed by a
- 4. When a main clock oscillator stop is detected, this bit becomes 1. It can be set to 0 by a program, however not to 1. When it is set to 0 while the main clock oscillator is stopped, it does not become 1 until the next main clock oscillator stop is detected.
- 5. After an oscillator stop detection interrupt occurs, read this bit several times to determine the main clock

Figure 8.5 CM2 Register

- 1. Rewrite this register after setting the PRC27 bit in the PRCR2 register to 1 (write enabled) and while the BCS bit in the CCR register is 0 (PLL clock).
- 2. When the PM22 bit in the PM2 register is 1 (count source protected) and the PM23 bit or WDK4 bit in the WDK register is 1 (on-chip oscillator clock), the CM31 bit is not changed by a write access.
- 3. The on-chip oscillator clock starts when the CM31 bit is set to 1.

Figure 8.6 CM3 Register

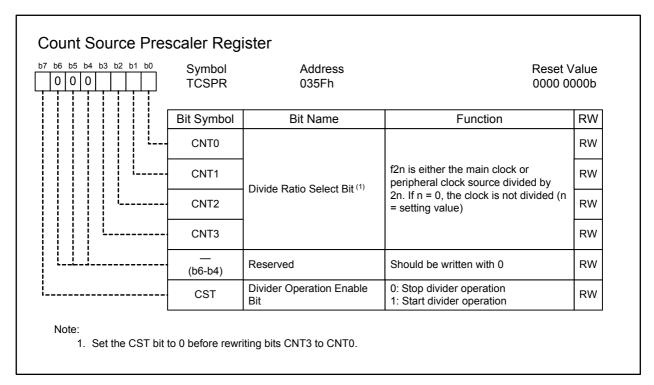


Figure 8.7 TCSPR Register

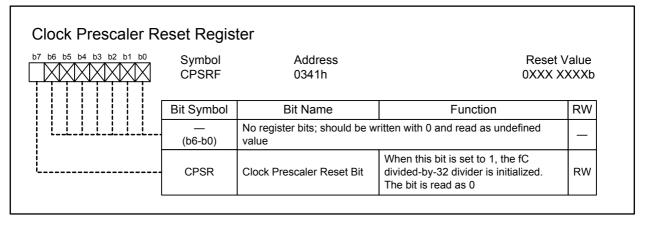
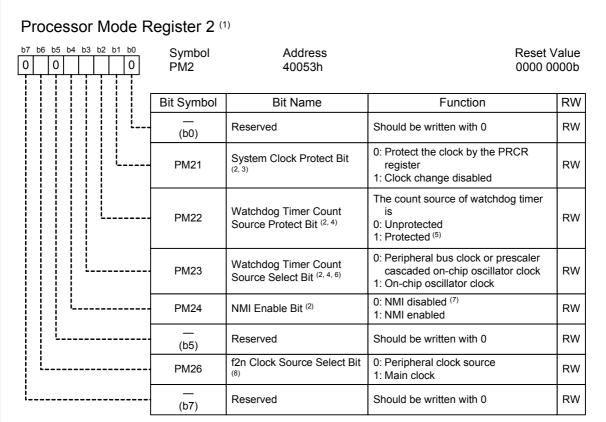



Figure 8.8 CPSRF Register

Notes

- 1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. Once this bit is set to 1, it cannot be set to 0 by a program.
- 3. When the PM21 bit is set to 1, the following bits cannot be changed by a write access:
 - CM02 bit in the CM0 register (the peripheral clock source state in wait mode)
 - CM05 bit in the CM0 register (main clock oscillator enabled/disabled)
 - CM10 bit in the CM1 register (PLL oscillator enabled/disabled)
 - CM20 bit in the CM2 register (oscillator stop detection enabled/disabled)
- 4. This bit should be set before the watchdog timer activates.
- 5. The count source protect mode is enabled only when the PM23 or WDK4 bit in the WDK register is 1 (onchip oscillator clock selected). When this mode is enabled, the CM31 bit in the CM3 register is not changed by a write access.
- 6. When the PM23 bit is set to 1, the on-chip oscillator starts running.
- 7. When the PM24 bit is 0, the forced cutoff of the three-phase motor control timers is also disabled.
- 8. Stop all the peripherals that use f2n before rewriting this bit.

Figure 8.9 PM2 Register

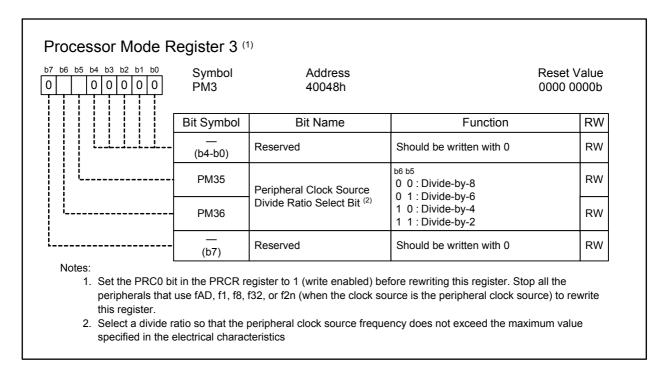


Figure 8.10 PM3 Register

The following sections illustrate clocks generated in clock generators.

8.1.1 Main Clock

The main clock is generated by the main clock oscillator. This clock can be a clock source for the PLL reference clock or peripheral clocks.

The main clock oscillator is configured with two pins, XIN and XOUT, connected by an oscillator or resonator. The circuit has an on-chip feedback resistor which is separated from the oscillator in stop mode to save power consumption. An external clock can be applied to the XIN pin in this circuit. Figure 8.11 shows an example of a main clock circuit connection.

Circuit constants vary depending on the oscillator. Circuit constants should be set as per the oscillator manufacturer's recommendations.

After a reset, the main clock oscillator is still independently active and disconnected from the PLL frequency synthesizer. A PLL frequency synthesizer self-oscillating clock divided by 12 is provided to the CPU.

Setting the CM05 bit in the CM0 register to 1 (main clock oscillator disabled) enables power-saving. In this case, the clock applied to the XOUT pin becomes high. The XIN pin connected to the XOUT pin by an embedded feedback resistor is also driven high. Do not set the CM05 bit to 1 when an external clock is applied to the XIN pin.

All clocks, including the main clock, stop in stop mode. Refer to 8.7 "Power Control" for details.

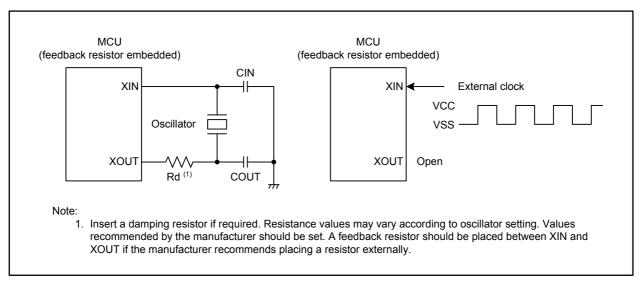


Figure 8.11 Main Clock Circuit Connection

8.1.2 Sub Clock (fC)

The sub clock is generated by the sub clock oscillator. This clock can be a clock source for the CPU clock and a count source for timers A and B. It can be output from the CLKOUT pin.

The sub clock oscillator is configured with pins XCIN and XCOUT connected by a crystal oscillator. The circuit has a on-chip feedback resistor which is separated from the oscillator in stop mode to save power consumption. An external clock can be applied to the XCIN pin. Figure 8.12 shows an example of a sub clock circuit connection. Circuit constants vary depending on the oscillator. Circuit constants should be set as per the oscillator manufacturer's recommendations.

After a reset, the sub clock is stopped and the feedback resistor is separated from the oscillator. In order to start the sub clock oscillation, first set bits PD8_6 and PD8_7 in the PD8 register to 0 (input mode), and the PU25 bit in the PUR2 register to 0 (pull-up resistor disabled). Then, set the CM04 bit in the CM0 register to 1 (XCIN-XCOUT oscillator).

To input an external clock to the XCIN pin, set bits PD8_7 and PU25 to 0 and then the CM04 bit to 1. The clock applied to the XCIN pin becomes a clock source for the sub clock.

When the CM3 register is set to 00h (fC) and the BCS bit in the CCR register is set to 1 (fC, fOCO4, or f256) after the sub clock oscillation has stabilized, the sub clock becomes the base clock of the CPU clock and the peripheral bus clock.

All clocks, including the sub clock, stop in stop mode. Refer to 8.7 "Power Control" for details.

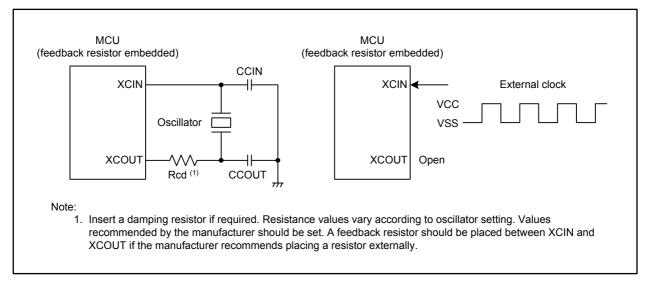


Figure 8.12 Sub Clock Circuit Connection

8.1.3 PLL Clock

The PLL clock is generated by the PLL frequency synthesizer based on the main clock. This clock can be a clock source for any clock including the CPU clock and the peripheral clock.

Figure 8.13 shows a block diagram of the PLL frequency synthesizer. Figures 8.14 and 8.15 show registers PLC0 and PLC1, respectively.

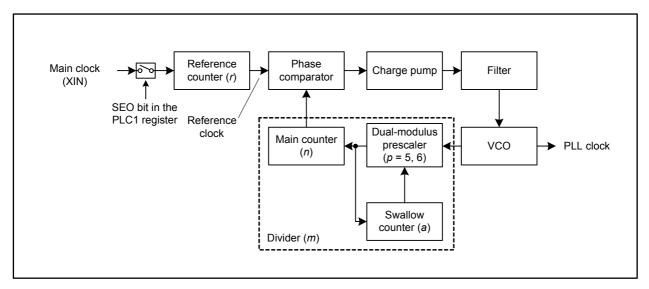


Figure 8.13 PLL Frequency Synthesizer Block Diagram

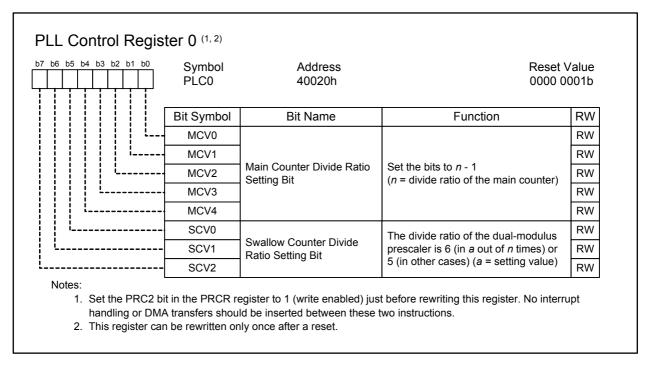


Figure 8.14 PLC0 Register

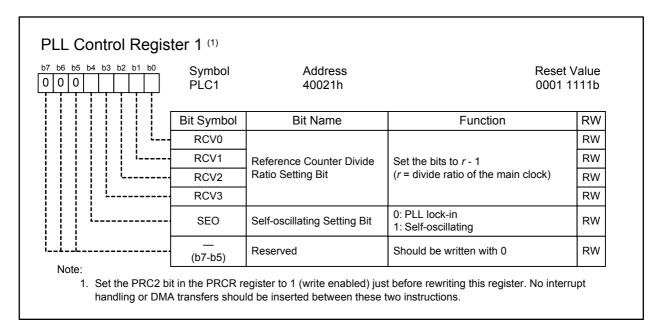


Figure 8.15 PLC1 Register

In the PLL frequency synthesizer, the pulse-swallow operation is implemented. The divide ratio m is simply expressed by $n \times p$. However, with the swallow counter, the divide ratio p is 6 in a out of n, or 5 in other cases, the actual m is therefore given by the formula below:

$$m = n \times p$$

$$= n \times \left(\frac{a}{n} \cdot 6 + \frac{n-a}{n} \cdot 5\right)$$

$$= 5n + a$$

The setting range of *a* is $0 \le a < 5$, $0 \le a \le n$.

As r is the divide ratio of the reference counter, the PLL clock has a m/r times the main clock (XIN) frequency.

PLL clock frequency
$$f(PLL) = \frac{m}{r} \cdot \text{main clock frequency}$$

= $\frac{5n+a}{r} \cdot \text{main clock frequency}$

After a reset, the reference counter is divided by 16, and the PLL frequency synthesizer is multiplied by 10. Since the main clock as a reference clock is disconnected, the PLL frequency synthesizer may self-oscillate at its own frequency of f_{SO(PLL)}.

Each register should be set to meet the following conditions:

- -The reference clock, which is the main clock divided by r, should be between 2 to 4 MHz.
- -The divide ratio m is $25 \le m \le 100$.

For the setting of registers PLC1 and PLC0, Table 8.2 should be applied. While the main clock oscillation is stable, a wait time of $t_{LOCK(PLL)}$ is necessary between rewriting registers PLC1 and PLC0, and the PLL clock becoming stable.

Table 8.2 PLC1 and PLC0 Register Settings (1)

Main Clock	r	Reference Clock	n	а	т	PLC1 Register Setting	PLC0 Register Setting	m/r	PLL Clock
4 MHz	2	2 MHz	9	3	48	01h	68h	24	96 MHz
6 MHz	2	3 MHz	6	2	32	01h	45h	16	96 MHz
8 MHz	3	2.6667 MHz	7	1	36	02h	26h	12	96 MHz
10 MHz	5	2 MHz	9	3	48	04h	68h	9.6	96 MHz
12 MHz	4	3 MHz	6	2	32	03h	45h	8	96 MHz
16 MHz	5	3.2 MHz	6	0	30	04h	05h	6	96 MHz
4 MHz	1	4 MHz	5	0	25	00h	04h	25	100 MHz
6 MHz	3	2 MHz	10	0	50	02h	09h	16.6667	100 MHz
8 MHz	2	4 MHz	5	0	25	01h	04h	12.5	100 MHz
10 MHz	3	3.3333 MHz	6	0	30	02h	05h	10	100 MHz
12 MHz	3	4 MHz	5	0	25	02h	04h	8.3333	100 MHz
16 MHz	4	4 MHz	5	0	25	03h	04h	6.25	100 MHz
4 MHz	1	4 MHz	6	0	30	00h	05h	30	120 MHz
6 MHz	2	3 MHz	8	0	40	01h	07h	20	120 MHz
8 MHz	2	4 MHz	6	0	30	01h	05h	15	120 MHz
10 MHz	3	3.3333 MHz	7	1	36	02h	26h	12	120 MHz
12 MHz	3	4 MHz	6	0	30	02h	05h	10	120 MHz
16 MHz	4	4 MHz	6	0	30	03h	05h	7.5	120 MHz
4 MHz	1	4 MHz	6	2	32	00h	45h	32	128 MHz
6 MHz	3	2 MHz	12	4	64	02h	8Bh	21.3333	128 MHz
8 MHz	2	4 MHz	6	2	32	01h	45h	16	128 MHz
10 MHz	5	2 MHz	12	4	64	04h	8Bh	12.8	128 MHz
12 MHz	3	4 MHz	6	2	32	02h	45h	10.6667	128 MHz
16 MHz	4	4 MHz	6	2	32	03h	45h	8	128 MHz
	_	•							

Note:

1. Registers PLC1 and PLC0 should be set according to the list above.

8.1.4 On-chip Oscillator Clock

The on-chip oscillator clock is generated by the on-chip oscillator (OCO). This clock can be a clock source for the CPU clock and a count source for timers A and B. This clock has a frequency of approximately 125 kHz. The on-chip oscillator clock divided by 4 can be used as the base clock for the CPU clock and peripheral bus clock.

When the WCSS bit in the OFS area is 1 and the WPCS bit is 0, the on-chip oscillator clock is stopped after a reset. It starts running when setting any of the following bits to 1; the CM31 bit in the CM3 register, the PM23 bit in the PM2 register, or the WDK4 bit in the WDK register. It is not necessary to wait for stabilization because the on-chip oscillator instantly starts oscillating.

8.2 Oscillator Stop Detection

This function detects the main clock is stopped when its oscillator stops running due to an external factor. When the CM20 bit in the CM2 register is 1 (enable oscillator stop detection), an oscillator stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the PLL frequency synthesizer starts to self-oscillate at its own frequency. If the PLL frequency synthesizer is the clock source for CPU clock and peripheral clock, these clocks continue running.

When an oscillator stop is detected, the following bits in the CM2 register become 1:

- The CM22 bit: main clock oscillator stop detected
- The CM23 bit: main clock oscillator stopped

8.2.1 How to Use Oscillator Stop Detection

The oscillator stop detection interrupt shares vectors with the watchdog timer interrupt and the low voltage detection interrupt. When using these interrupts simultaneously, read the CM22 bit with an interrupt handler to determine if an oscillator stop detection interrupt request has been generated.

When the main clock oscillator resumes running after an oscillator stop is detected, the PLL clock frequency may temporarily exceed the preset value before the PLL frequency synthesizer oscillation stabilizes. As soon as an oscillator stop is detected, the main clock oscillator should be stopped from resuming (set the CM05 bit in the CM0 register to 1) or the divide ratios of the base clock and peripheral clock source should be increased by a program. They can be set using bits BCD1 and BCD0 in the CCR register and bits PM36 and PM35 in the PM3 register.

In low speed mode, when the main clock oscillator stops running, an oscillator stop detection interrupt request is generated if the CM20 bit is set to 1 (enable oscillator stop detection). The CPU clock remains running with a low speed clock source. Note that if the base clock is f256, which is the main clock divided by 256, oscillator stop detection cannot be used.

The oscillator stop detection is provided to handle main clock stop caused by external factors. To stop the main clock oscillator by a program, i.e., to enter stop mode or to set the CM05 bit to 1 (main clock oscillator disabled), the CM20 bit in the CM2 register should be set to 0 (disable oscillator stop detection). To enter wait mode, this bit should be also set to 0.

The oscillator stop detection functions depending on the voltage of a capacitor which is being changed. In more concrete terms, this function detects that the oscillator is stopped when the main clock goes lower than approximately 500 kHz. Note that if the CM22 bit is set to 0 by a program in an interrupt handler while the frequency is around 500 kHz, a stack overflow may occur due to multiple interrupt requests.

8.3 Base Clock

The base clock is a reference clock for the CPU clock and peripheral bus clock. The base clock after a reset is the PLL clock divided by 6.

The base clock source is selected between the PLL clock and the low speed clocks which contain the sub clock (fC), on-chip oscillator clock divided by 4 (fOCO4), and main clock divided by 256 (f256).

If the PLL clock is selected, it is divided by 2, 3, 4, or 6 to become the base clock. If a low speed clock is selected, the clock itself can be the base clock.

The base clock source is set using the BCS bit in the CCR register and the divide ratio for the PLL clock is set using bits BCD1 and BCD0. Bits CM31 and CM30 in the CM3 register select a low speed clock.

8.4 CPU Clock and Peripheral Bus Clock

The CPU operating clock is referred to as the CPU clock. The CPU clock after a reset is the base clock divided by 2.

The CPU clock source is the base clock, and its divide ratio is selected by setting bits CCD1 and CCD0 in the CCR register. The base clock divided by 2 to 4 becomes the peripheral bus clock. Its divide ratio is selected by setting bits PCD1 and PCD0 in the CCR register. The peripheral bus clock also functions as a count source for the watchdog timer.

In memory expansion mode or microprocessor mode, the peripheral bus clock can be output as BCLK from the BCLK pin. This clock is used as a reference clock for external timing generation. Refer to 8.6 "Clock Output Function" for details.

To prevent the CPU clock, whose clock source is the PLL clock, from stopping when the CPU becomes out of control, set the following while the CM05 bit in the CM0 register is 0 (main clock oscillator enabled) and the BCS bit in the CCR register is 0 (PLL clock selected as base clock source):

- (1) Set the PRC1 bit in the PRCR register to 1 (write enabled to the PM2 register).
- (2) Set the PM21 bit in the PM2 register to 1 (clock change disabled).

8.5 Peripheral Clock

The peripheral clock is an operating clock or a count source for the peripherals excluding the watchdog timer. The source of this clock is generated by a clock, which has the same frequency as the PLL clock, divided by 2, 4, 6, or 8 according to the settings of bits PM36 and PM35 in the PM3 register. The peripheral clock is classified into three types of clock as follows:

(1) f1, f8, f32, f2n

- f1, f8, and f32 are the peripheral clock sources divided by 1, 8, and 32, respectively. The clock source for f2n is selected between the peripheral clock source and the main clock by setting the PM26 bit in the PM2 register. The f2n divide ratio can be set using bits CNT3 to CNT0 in the TCSPR register (n = 1 to 15, not divided when n = 0).
- f1, f8, f32, and f2n, whose clock source is the peripheral clock source, stop in low power mode or when the CM02 bit is set to 1 (peripheral clock source stopped in wait mode) to enter wait mode.
- f1, f8, and f2n are used as a count source for timers A and B or an operating clock for the serial interface. f1 is used as an operating clock for the intelligent I/O as well.

f8 and f32 can be output from the CLKOUT pin. Refer to 8.6 "Clock Output Function" for details.

(2) fAD

fAD, which has the same frequency as peripheral clock source, is an operating clock for the A/D converter.

This clock stops in low power mode or when the CM02 bit is set to 1 (peripheral clock source stopped in wait mode) to enter wait mode.

(3) fC32

fC32, which is a sub clock divided by 32, or on-chip oscillator clock divided by 128, is used as the count source for timers A and B. This clock is available when the sub clock or on-chip oscillator clock is active.

8.6 Clock Output Function

Low speed clocks, f8, and f32 can be output from the CLKOUT pin.

In memory expansion mode or microprocessor mode, the BCLK, that is, the peripheral bus clock which is the base clock divided by 2 to 4 can also be output from the BCLK pin.

Tables 8.3 and 8.4 list the CLKOUT pin functions in single-chip mode and memory expansion mode or microprocessor mode, respectively.

Table 8.3 CLKOUT Pin Functions in Single-chip Mode

PM0 Register (1)	CM0 Register (2)		CLKOUT Pin Function
PM07	CM01	CM00	GENOOT I IIIT UNCLOT
0 or 1	0	0	I/O port P5_3
1	0	1	Output a low speed clock
1	1	0	Output f8
1	1	1	Output f32

Notes:

- 1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.

Table 8.4 CLKOUT Pin Functions in Memory Expansion Mode or Microprocessor Mode

PM0 Register (1)	CM0 Register (2)		CLKOUT Pin Function
PM07	CM01	CM00	CEROOT FIFT Unction
0	0 (3)	0 (3)	Output BCLK
1	0	0	Output low (not function as P5_3)
1	0	1	Output a low speed clock
1	1	0	Output f8
1	1	1	Output f32

Notes:

- 1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 2. Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- 3. When the PM07 bit is set to 0 (output BCLK), set bits CM01 and CM00 to 00b (I/O port P5_3).

8.7 Power Control

Power control has three modes: wait mode, stop mode, and normal operating mode.

The name "normal operating mode" is used restrictively in this chapter, and it indicates all other modes except wait mode and stop mode. Figure 8.16 shows a block diagram of the state transition in normal operating mode, stop mode, and wait mode.

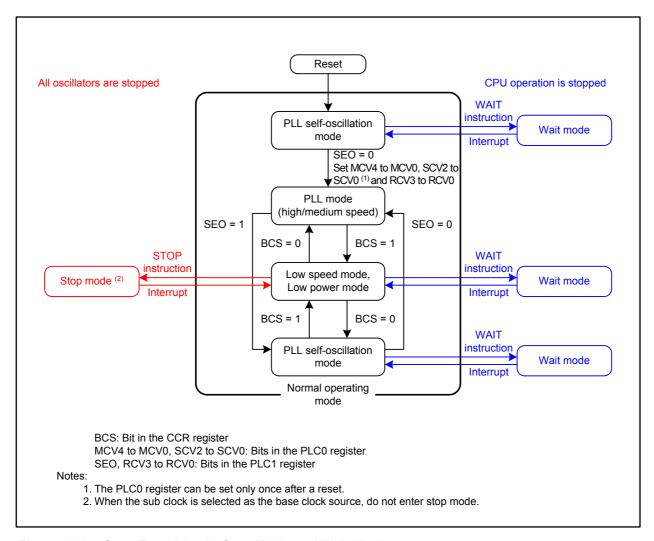


Figure 8.16 State Transition in Stop Mode and Wait Mode

8.7.1 Normal Operating Mode

Normal operating mode is classified into the five modes shown below.

In normal operating mode, the CPU clock and peripheral clock are provided to operate the CPU and peripherals. Power consumption is controlled by the CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the less power consumption is required. Power consumption can be reduced by stopping oscillators that are not being used.

(1) PLL Mode (high speed mode)

In this mode, the PLL clock is selected as the base clock source, and the main clock is provided as the reference clock source for the PLL frequency synthesizer. High speed mode enables the CPU to operate at the maximum operating frequency. The PLL clock divided by 2 becomes the base clock. The base clock frequency should be identical to that of the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

(2) PLL Mode (medium speed mode)

This mode indicates all modes in PLL mode except high speed mode. The PLL clock divided by 2, 3, 4, or 6 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

(3) Low Speed Mode

In this mode, a low speed clock is used as the base clock source. The low speed clock becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

(4) Low Power Mode

This is a state where the main clock oscillator and the PLL frequency synthesizer are stopped after switching to low speed mode. The sub clock or the on-chip oscillator clock divided by 4 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fC32, which is the only peripheral clock available, can be used as the count source for timers A and B. By setting the MRS bit in the VRCR register to 1 (main regulator stopped), this mode consumes even less power than the modes above.

(5) PLL Self-oscillation Mode

In this mode, the PLL clock is selected as the base clock source, and the main clock is not provided as the reference clock source for the PLL frequency synthesizer. The PLL frequency synthesizer self-oscillates at its own frequency. The PLL clock divided by 2, 3, 4, or 6 becomes the base clock and the base clock divided by 1 to 4 becomes the CPU clock. fAD, f1, f8, f32, and f2n can be used as the peripheral clocks. When the sub clock or the on-chip oscillator clock is provided, fC32 can be used as the count source for timers A and B.

The state transition within normal operating mode can be very complicated; therefore only the block diagrams of typical state transitions are shown. Figures 8.17 to 8.19 show block diagrams of the respective state transitions: state when the sub clock is used, state when the main clock divided by 256 is used, and state when the on-chip oscillator clock is used. As for the state transitions other than the above, setting of each register and the usage notes below can be used as references.

- PLL can be switched from PLL oscillating to self-oscillating by setting the SEO bit in the PLC1 register to 1. Set the SEO bit to 1 (self-oscillating) before setting the CM05 bit in the CM0 register to 0 (main clock oscillator disabled) to stop the main clock.
- The divide ratio of the clock should be increased and the frequency should be decreased by using bits BCD1 to BCD0 in the CCR register or bits PM36 to PM35 in the PM3 register before setting the SEO bit to 0 (PLL oscillating) in order to switch back PLL self-oscillation mode to PLL mode. Set back the settings of bits BCD1 to BCD0 and bits PM36 to PM35 once PLL oscillation is stabilized after setting the SEO bit to 0.
- Before switching the CPU clock to another clock, that clock should be stabilized. In particular, the sub clock oscillator may require more time to stabilize (1). Therefore, certain waiting time to switch should be taken by a program immediately after turning the MCU on or exiting stop mode.

Note:

1. Contact the oscillator manufacturer for details on oscillator stabilization time.

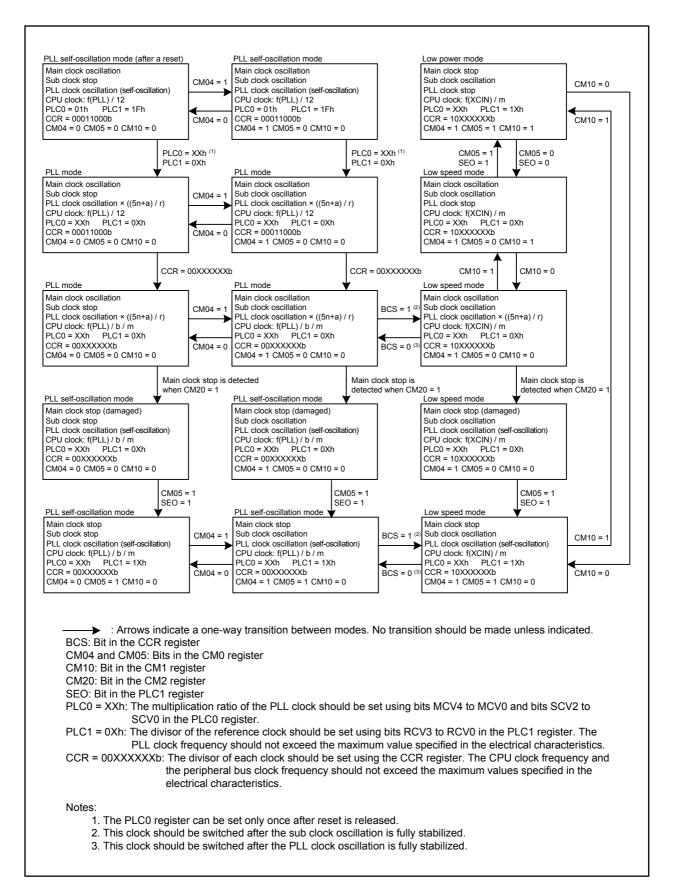


Figure 8.17 State Transition When Using the Sub Clock

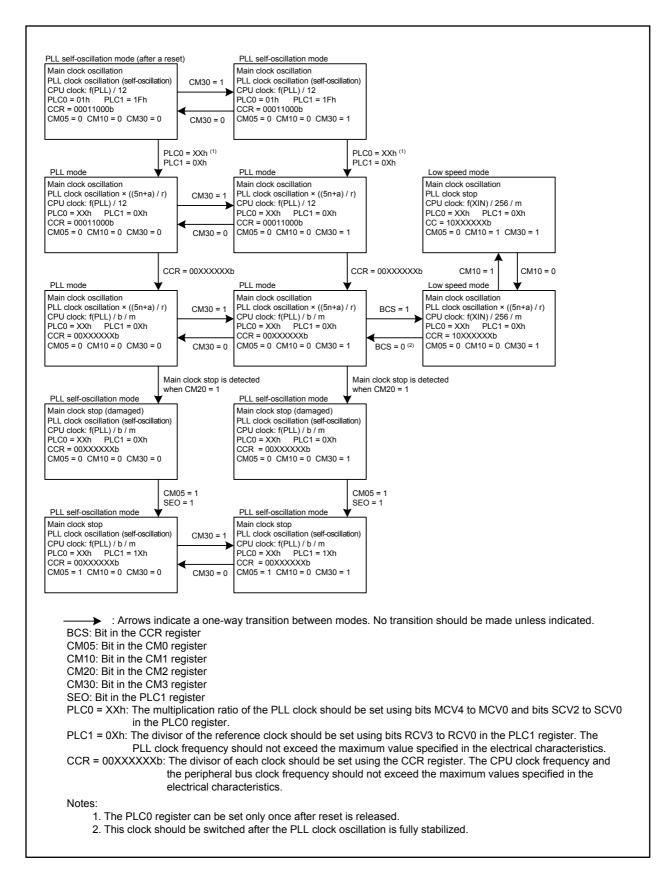


Figure 8.18 State Transition When Using the Main Clock Divided by 256

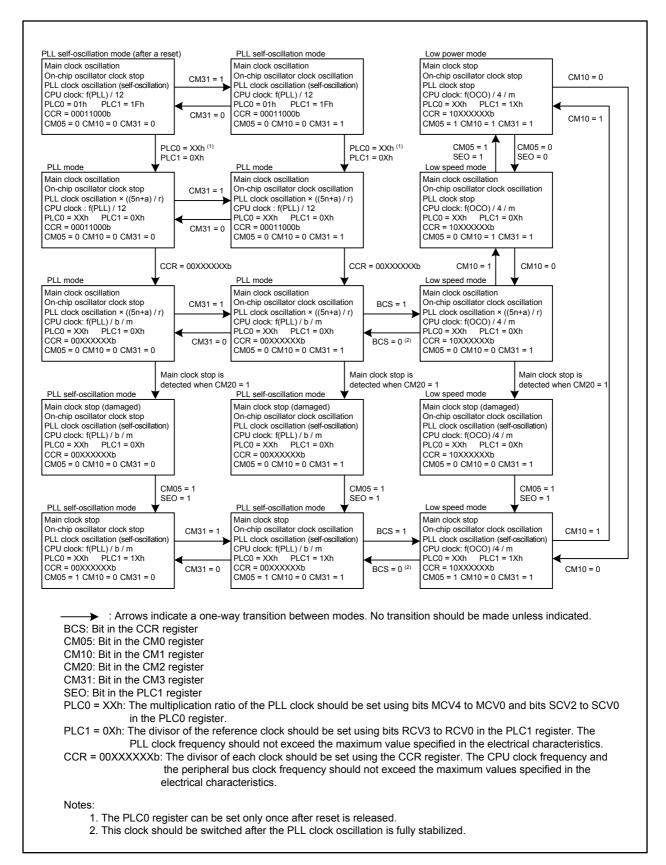


Figure 8.19 State Transition When Using the On-chip Oscillator Clock

8.7.2 Wait Mode

The base clock stops in wait mode so that clocks generated by the base clock, the CPU clock and peripheral bus clock, stop running as well. Thus the CPU and watchdog timer, operated by these two clocks, also stop. However, the watchdog timer continues operating when the PM23 bit in the PM2 register is 1 (on-chip oscillator selected as count source for the watchdog timer) or when the WDK4 bit in the WDK register is 1 (on-chip oscillator selected as count source for the prescaler). Since the main clock, sub clock, PLL clock, and on-chip oscillator clock continue running, the peripherals using these clocks also continue operating.

8.7.2.1 Peripheral Clock Source Stop Function

When the CM02 bit in the CM0 register is 1 (peripheral clock source stopped in wait mode), power consumption is reduced since peripheral clocks f1, f8, f32, f2n (when the clock source is the peripheral clock source), and fAD stop running in wait mode. fC32 and f2n (when the clock source is the main clock) do not stop running.

8.7.2.2 Entering Wait Mode

To enter wait mode, the following procedures should be completed before the WAIT instruction is executed.

Initial setting

Set the wake-up interrupt priority level (bits RLVL2 to RLVL0 in registers RIPL1 and RIPL2) to 7. Then set each interrupt request level.

- · Steps before entering wait mode
- (1) Set the I flag to 0.
- (2) Set the interrupt request level for each interrupt source (interrupt number from 1 to 127) to 0, if its interrupt request level is not 0.
- (3) Perform a dummy read of any of the interrupt control registers.
- (4) Set the processor interrupt priority level (IPL) in the flag register to 0.
- (5) Enable interrupts temporarily by executing the following instructions:

FSET I

NOP

NOP

FCLR I

- (6) Set the interrupt request level for the interrupt to exit wait mode.
 - Do not rewrite the interrupt control register after this step.
- (7) Set the IPL in the flag register.
- (8) Set the interrupt priority level for resuming to the same level as the IPL. Interrupt request level for the interrupt to exit wait mode > IPL = Interrupt priority level for resuming
- (9) Set the CM20 bit in the CM2 register to 0 (disable oscillator stop detection) when the oscillator stop detection is used.
- (10)Enter either PLL self-oscillation mode, low speed mode, or low power mode.
- (11)Set the I flag to 1.
- (12)Execute the WAIT instruction.
- After exiting wait mode

Set the wake-up interrupt priority level to 7 immediately after exiting wait mode.

8.7.2.3 Pin State in Wait Mode

Table 8.5 lists the pin state in wait mode.

Table 8.5 Pin State in Wait Mode

Р	in	Memory Expansion Mode/ Microprocessor Mode	Single-chip Mode			
Address bus, d		The state immediately before entering wait mode is held				
RD, WR, WRO	to WR3	High	_			
HLDA, BCLK		High	_			
ALE		High —				
Ports		The state immediately before entering wait mode is held				
DA0, DA1		The state immediately before entering wait mode is held				
CLKOUT	When a low speed clock is selected	The clock is output				
	When f8 or f32 is selected	The clock is output when the CM02 bit in the CM0 register is 0 (no peripheral clock source stopped in wait mode). The state immediately before entering wait mode is held when the CM02 bit is 1 (peripheral clock source stopped in wait mode)				

8.7.2.4 Exiting Wait Mode

The MCU exits wait mode by a hardware reset, an NMI, or a peripheral interrupt assigned to software interrupt number from 0 to 63.

To exit wait mode using either a hardware reset or NMI, without using peripheral interrupts, set bits ILVL2 to ILVL0 for the peripheral interrupts to 000b (interrupt disabled) before executing the WAIT instruction.

The CM02 bit setting in the CM0 register affects the peripheral interrupts. When the CM02 bit is 0 (peripheral clock source not stopped in wait mode), peripheral interrupts for software interrupt numbers from 0 to 63 can be used to exit wait mode. When this bit is 1 (peripheral clock source stopped in wait mode), peripherals operated using clocks (f1, f8, f32, f2n whose clock source is the peripheral clock source, and fAD) generated by the peripheral clock source stop operating. Therefore, the peripheral interrupts cannot be used to exit wait mode. However, peripherals operated using clocks which are independent from the peripheral clock source (fC32, external clock, and f2n whose clock source is the main clock) do not stop operating. Thus, interrupts generated by these peripherals and assigned to software interrupt numbers from 0 to 63 can be used to exit wait mode.

The CPU clock used when exiting wait mode by a peripheral interrupt or an NMI is the same clock used when the WAIT instruction is executed.

Table 8.6 lists interrupts used to exit wait mode and usage conditions.

 Table 8.6
 Interrupts for Exiting Wait Mode and Usage Conditions

Interrupt	When the CM02 Bit is 0	When the CM02 Bit is 1
NMI	Available	Available
External interrupt (1)	Available	Available
Key input interrupt	Available	Available
Low voltage detection interrupt	Available	Available
Timer A interrupt Timer B interrupt	Available in any mode	Available in event counter mode, or when the count source is fC32 or f2n (when the main clock is selected as the clock source)
Serial interface interrupt (2)	Available when an internal or external clock is used	Available when the external clock or f2n (when the main clock is selected as the clock source) is used
A/D conversion interrupt	Available in single mode or single- sweep mode	Should not be used
Intelligent I/O interrupt	Available	Should not be used
I ² C-bus interface interrupt	Available	Should not be used
I ² C-bus line interrupt	Available	Available

Notes:

- 1. INT6 to INT8 are available in the intelligent I/O interrupt only.
- 2. UART7 to UART10 are excluded.

8.7.3 Stop Mode

In stop mode, all of the clocks, except for those that are protected, stop running. That is, the CPU and peripherals, operated by the CPU clock and peripheral clock, also stop. This mode saves the most power.

8.7.3.1 Entering Stop Mode

To enter stop mode, the following procedures should be done before the STOP instruction is executed.

· Initial setting

Set the wake-up interrupt priority level (bits RLVL2 to RLVL0 in registers RIPL1 and RIPL2) to 7. Then set each interrupt request level.

- Steps before entering stop mode
 - (1) Set the I flag to 0.
- (2) Set the interrupt request level for each interrupt source (interrupt number from 1 to 127) to 0, if the interrupt request level is not 0.
- (3) Perform a dummy read of any of the interrupt control registers.
- (4) Set the processor interrupt priority level (IPL) in the flag register to 0.
- (5) Enable interrupts temporarily by executing the following instructions:

FSET I

NOP

NOP

FCLR I

- (6) Set the interrupt request level for the interrupt to exit stop mode.
 - Do not rewrite the interrupt control register after this step.
- (7) Set the IPL in the flag register.
- (8) Set the interrupt priority level for resuming to the same level as the IPL. Interrupt request level for the interrupt to exit stop mode > IPL = Interrupt priority level for resuming
- (9) Set the CM20 bit in the CM2 register to 0 (oscillator stop detection disabled) when the oscillator stop detection is used.
- (10)Change the base clock to either the main clock divided by 256 (f256) or the on-chip oscillator clock divided by 4 (fOCO4).
- (11)Set the I flag to 1.
- (12)Execute the STOP instruction.
- After exiting stop mode

Set the wake-up interrupt priority level to 7 immediately after exiting stop mode.

8.7.3.2 Pin State in Stop Mode

Table 8.7 lists the pin state in stop mode.

Table 8.7 Pin State in Stop Mode

Pin		Memory Expansion Mode/ Microprocessor Mode	Single-chip Mode			
Address bus, c		The state immediately before enteringstop mode is held				
RD, WR, WR0	to WR3	High	_			
HLDA, BCLK		High	_			
ALE		High	_			
Ports		The state immediately before entering stop mode is held				
DA0, DA1		The state immediately before entering stop mode is held				
CLKOUT	When a low speed clock is selected	High				
	When f8 or f32 is selected	The state immediately before entering stop mode is held				
XIN		High-impedance				
XOUT		High				
XCIN, XCOUT		High-impedance				

8.7.3.3 Exiting Stop Mode

The MCU exits stop mode by a hardware reset, NMI, low voltage detection interrupt, or a peripheral interrupt assigned to software interrupt number from 0 to 63.

To exit stop mode using either a hardware reset or NMI, without using peripheral interrupts, set bits ILVL2 to ILVL0 for the peripheral interrupts to 000b (interrupt disabled) before executing the STOP instruction.

The CPU clock used when exiting stop mode by a peripheral interrupt or NMI is the same clock used when the STOP instruction is executed.

Table 8.8 lists interrupts used to exit stop mode and usage conditions.

Table 8.8 Interrupts for Exiting Stop Mode and Usage Conditions

Interrupt	Usage Condition
NMI	
Low voltage detection interrupt	
External interrupt	INT6 to INT8 are available when intelligent I/O interrupt is used
Key input interrupt	
Timer A interrupt Timer B interrupt	Available when a timer counts an external pulse with a frequency of 100 Hz or less in event counter mode
Serial interface interrupt (1)	Available when an external clock is used
I ² C-bus line interrupt	

Note:

1. UART7 to UART10 are excluded.

8.8 System Clock Protection

The system clock protection disables clock change when the PLL clock is selected as the base clock source. This prevents the CPU clock from stopping due to a runaway program.

When the PM21 bit in the PM2 register is set to 1 (clock change disabled), the following bits cannot be written to:

- Bits CM02 and CM05 in the CM0 register
- The CM10 bit in the CM1 register
- The CM20 bit in the CM2 register
- The PM27 bit in the PM2 register

To use the system clock protection, set the CM05 bit in the CM0 register to 0 (main clock oscillator enabled) and the BCS bit in the CCR register to 0 (PLL clock selected as base clock source) before the following procedure is done:

- (1) Set the PRC1 bit in the PRCR register to 1 (write to the PM2 register enabled).
- (2) Set the PM21 bit in the PM2 register to 1 (clock change disabled).
- (3) Set the PRC1 bit in the PRCR register to 0 (write to the PM2 register disabled).

8.9 Notes on Clock Generator

8.9.1 Sub Clock

8.9.1.1 Oscillator Constant Matching

The constant matching of the sub clock oscillator should be evaluated in both cases when the drive strength is high and low.

Contact the oscillator manufacturer for details on the oscillation circuit constant matching.

8.9.2 Power Control

Do not switch the base clock source until the oscillation of the clock to be used has stabilized. However, this does not apply to the on-chip oscillator since it starts running immediately after the CM31 bit in the CM3 register is set to 1.

To switch the base clock source from the PLL clock to a low speed clock, use the MOV.L or OR.L instruction to set the BCS bit in the CCR register to 1.

Program example in assembly language
 OR.L #80h, 0004h

 Program example in C language asm("OR.L #80h, 0004h");

8.9.2.1 Stop Mode

• To exit stop mode using a reset, apply a low signal to the RESET pin until the main clock oscillation stabilizes.

8.9.2.2 Suggestions for Power Saving

The following are suggestions to reduce power consumption when programming or designing systems.

• I/O pins:

If inputs are floating, both transistors may be conducting. Set unassigned pins to input mode and connect each of them to VSS via a resistor, or set them to output mode and leave them open.

· A/D converter:

When not performing the A/D conversion, set the VCUT bit in the AD0CON1 register to 0 (VREF disconnected). To perform the A/D conversion, set the VCUT bit to 1 (VREF connected) and wait at least 1 µs before starting conversion.

• D/A converter:

When not performing the D/A conversion, set the DAiE bit in the DACON register (i = 0, 1) to 0 (output disabled) and the DAi register to 00h.

Peripheral clock stop:

When entering wait mode, power consumption can be reduced by setting the CM02 bit in the CM0 register to 1 to stop the peripheral clock source. However, this setting does not stop the fC32.

9. Bus

This MCU has an internal bus and an external bus. The internal bus contains a fast bus (CPU bus) and a slow bus (peripheral bus). Figure 9.1 shows a block diagram of the bus.

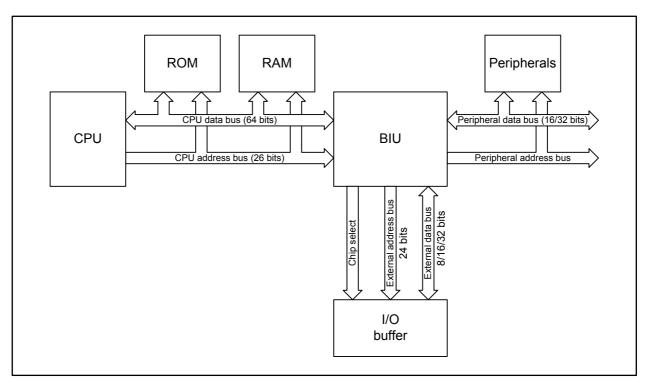


Figure 9.1 Bus Block Diagram

In memory expansion mode or microprocessor mode, some pins function as bus control pin to control the address bus and the data bus. The bus control pins are as follows: A0 to A23, D0 to D31, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{WR0/WR}}$, $\overline{\text{BC0}}$, $\overline{\text{WR1/BC1}}$, $\overline{\text{WR2/BC2}}$, $\overline{\text{WR3/BC3}}$, $\overline{\text{RD}}$, $\overline{\text{BCLK}}$, $\overline{\text{HLDA}}$, $\overline{\text{HOLD}}$, $\overline{\text{ALE}}$, and $\overline{\text{RDY}}$.

9.1 Bus Settings

The bus settings are controlled by the two lowest bits of the reset vector, the PBC register, registers EBC0 to EBC3, and CSOP0 to CSOP2.

Table 9.1 lists bus settings and their sources.

Table 9.1 Bus Settings and Sources

Bus Settings	Sources
Internal SFR bus timing	PBC register
External bus timing	Registers EBC0 to EBC3
External data bus width	PBC register, registers EBC0 to EBC3
External data bus width after reset	Two lowest bits of the reset vector
Separate bus/multiplexed bus selection	PBC register, registers EBC0 to EBC3
Pins outputting chip select signals	Registers CSOP0 to CSOP2

9.2 Peripheral Bus Timing Setting

The 16-/32-bit wide peripheral bus operates at a frequency up to 32 MHz (the theoretical value and the maximum frequency of each product group are as defined by f(BCLK) in 28. "Electrical Characteristics"). The timing adjustment and bus-width conversion with the faster, 64-bit wide CPU bus are controlled in the bus interface unit (BIU).

Figure 9.2 shows the PBC register which determines the peripheral bus timing.

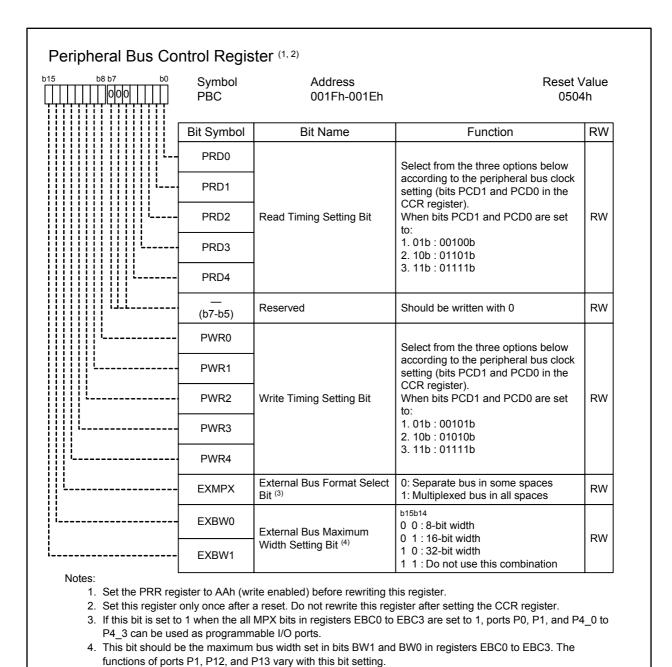


Figure 9.2 PBC Register

9.3 External Bus Setting

The 8-/16-/32-bit wide external bus operates at a frequency up to 32 MHz (the theoretical value and the maximum frequency of each product group are as defined by f(BCLK) in 28. "Electrical Characteristics"). The timing adjustment and bus-width conversion with the faster 64-bit wide CPU bus are controlled in the bus interface unit (BIU).

9.3.1 External Address Space Setting

The internal address bus of the R32C/100 Series MCU consists of 26 address lines (A0 to A25). Since A25 is sign extended to A26 to A31, the MCU has 64 MB of accessible space addresses from 00000000h to 01FFFFFFh and from FE000000h to FFFFFFFh.

Up to 24 address lines from A0 to A23 can be used for external output. Decoded A18 to A25 function as 4 chip select signals ($\overline{\text{CS3}}$ to $\overline{\text{CS0}}$). If a 16 MB space is assigned to each chip select signal, up to 63.5 MB can be used as external address space. When the processor mode is changed from single-chip mode to memory expansion mode, the address bus status is undefined until an external space is accessed.

Chip select signals $\overline{\text{CS3}}$ to $\overline{\text{CS0}}$ share pins with A20 to A23, respectively. Other combinations of signal and output port are also available as follows: signals $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ with ports P11_0 to P11_3, and signals $\overline{\text{CS1}}$ to $\overline{\text{CS3}}$ with ports P5_4, P5_6, and P5_7.

In microprocessor mode, the $\overline{\text{CS0}}$ signal is output from port P4_7 after a reset. The maximum space per chip select signal is 8 MB since A23 is not available. Signals $\overline{\text{CS1}}$ to $\overline{\text{CS3}}$ are output only when being set.

CSi (i = 0 to 3) is held low while accessing an external space i. It becomes high when accessing another external space. Figure 9.3 shows output examples of address bus and chip select signals.

Set registers CSOP0 to CSOP2 to select a chip select signal to be used and its output pin. Set registers CB01, CB12, and CB23 to set the address space for each chip select signal.

Figures 9.4 to 9.6 show registers CSOP0 to CSOP2. Figures 9.7, 9.8, and 9.9 show registers CB01, CB12, and CB23, respectively. Figures 9.10 and 9.11 show the chip select space.

A chip select signal should not be set for more than two output pins in registers CSOP0 to CSOP2. Registers CB01, CB12, and CB23 should be set to meet the conditions below:

• In memory expansion mode

$$0080000\text{h} \leq (CB23 \times 2^{18}) \leq (CB12 \times 2^{18}) \leq (CB01 \times 2^{18}) \leq 3DC0000\text{h}$$

• In microprocessor mode

$$0080000h \leq (CB23 \times 2^{18}) \leq (CB12 \times 2^{18}) \leq (CB01 \times 2^{18}) \leq 3FC0000h$$

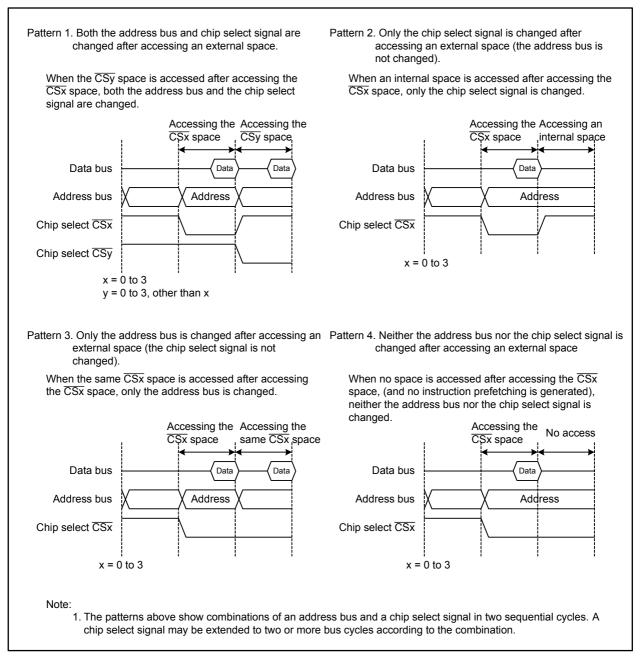


Figure 9.3 Address Bus and Chip Select Signal Output Patterns (in separate bus format)

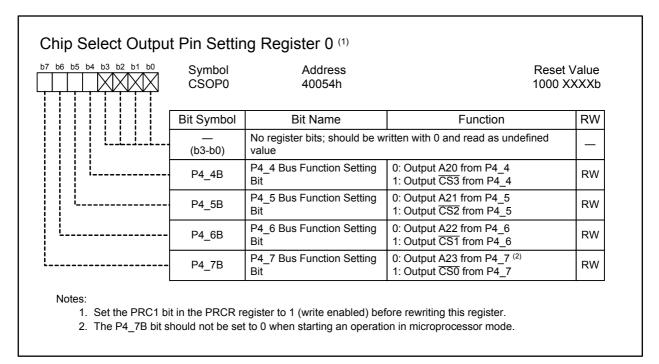


Figure 9.4 CSOP0 Register

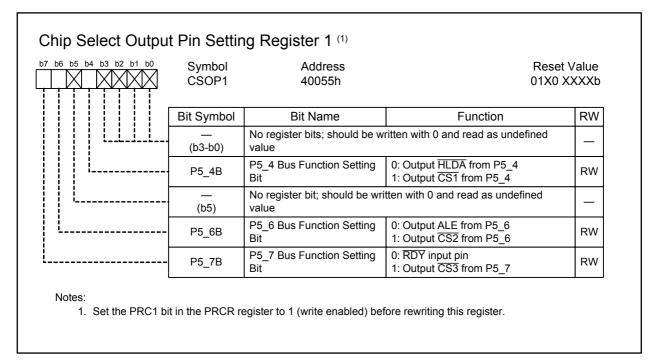
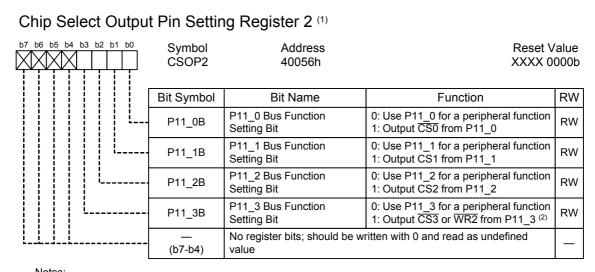



Figure 9.5 CSOP1 Register

Notes:

- 1. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.
- WR2 is output when the PM02 bit in the PM0 register is 1 (RD/WR0/WR1/WR2/WR3) and bits EXBW1 and EXBW0 in the PBC register are 10b (32-bit width as the maximum width of external bus); otherwise, CS3 is output.

Figure 9.6 CSOP2 Register

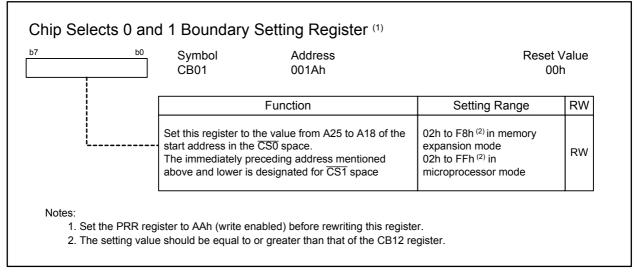


Figure 9.7 CB01 Register

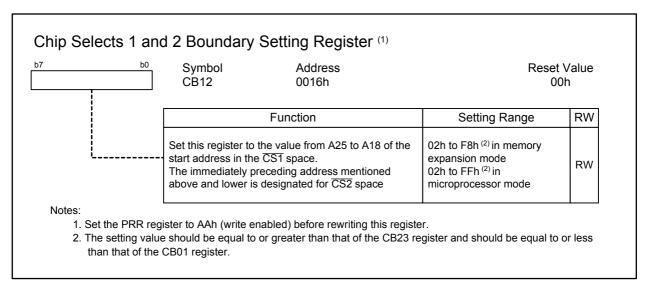


Figure 9.8 CB12 Register

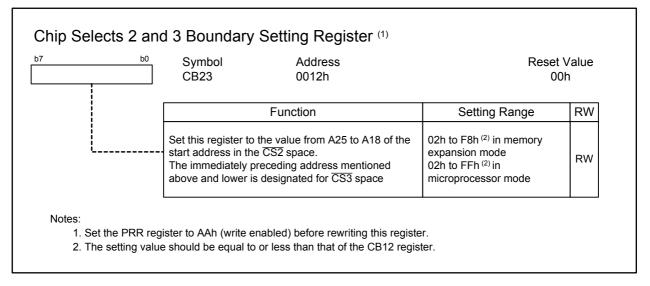


Figure 9.9 CB23 Register

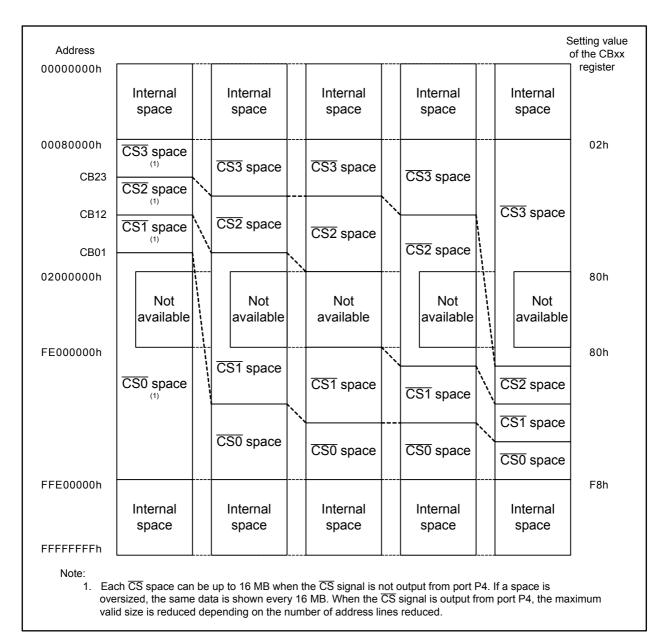


Figure 9.10 Chip Select Spaces in Memory Expansion Mode

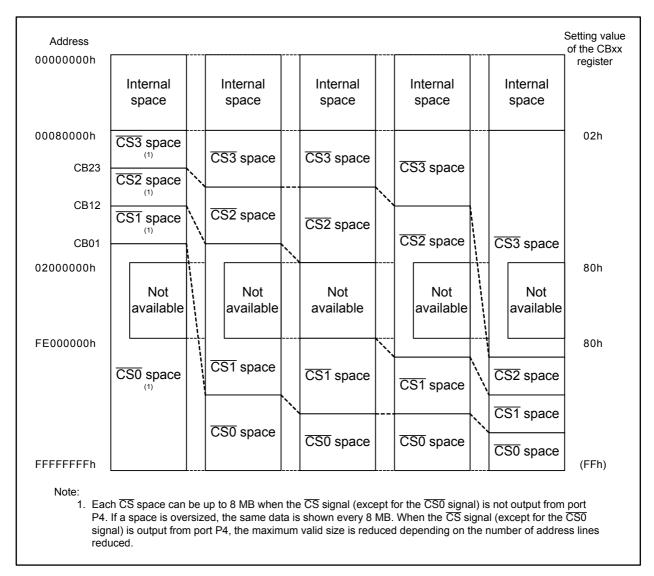


Figure 9.11 Chip Select Spaces in Microprocessor Mode

9.3.2 External Data Bus Width Setting

The external data bus width is selectable among 8 bits, 16 bits, and 32 bits. The bus width of each space is selected by setting bits BW1 and BW0 in registers EBC0 to EBC3. The maximum bus width for all spaces is selected by setting bits EXBW1 and EXBW0 in the PBC register. The bus width specified in bits EXBW1 and EXBW0 should be equal to or greater than the value specified in bits BW1 and BW0.

When an accessed space has a bus width less than that specified in bits EXBW1 and EXBW0, an undefined value is output from the unused data output pins.

Figure 9.12 shows registers EBC0 to EBC3.

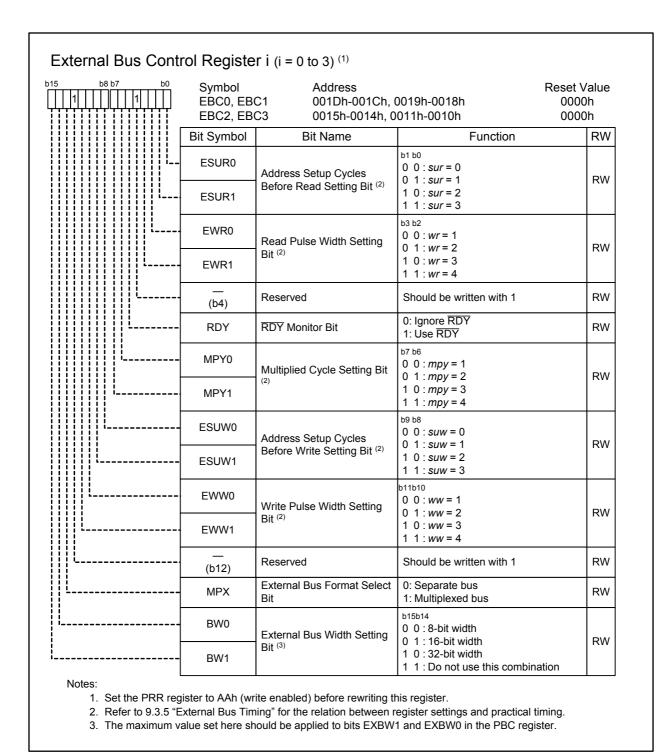


Figure 9.12 Registers EBC0 to EBC3

9.3.3 Separate Bus/Multiplexed Bus Selection

The bus format is selectable between separate bus format and multiplexed bus format. The bus format for each space is selected by setting the MPX bit in registers EBC0 to EBC3. To select the multiplexed bus format for all spaces, the EXPMX bit in the PBC register should be set to 1 (multiplexed bus in all spaces). In this case, ports P0, P1, and P4_0 to P4_3 can be used as programmable I/O ports.

(1) Separate Bus

In this bus format, the data bus and address bus have their own I/O pins.

To select separate bus mode, the MPX bit in registers EBC0 to EBC3 should be set to 0. The data bus width is selectable among 8 bits, 16 bits, and 32 bits by setting bits BW1 and BW0 in registers EBC0 to EBC3.

When bits EXBW1 and EXBW0 in the PBC register are 00b (8-bit width), port P0 is the data bus, and ports P1, P12, and P13 are programmable I/O ports.

When bits EXBW1 and EXBW0 are 01b (16-bit width), ports P0 and P1 are data buses, and Ports P12 and P13 are programmable I/O ports. Note that port P1 (D8 to D15) becomes undefined if the MCU accesses an space where bits BW1 and BW0 are to 00b (8-bit width).

When bits EXBW1 and EXBW0 are 10b (32-bit width), ports P0, P1, P12, and P13 are data lines. Note that ports P1, P12, and P13 (D8 to D31) become undefined if the MCU accesses an space where bits BW1 and BW0 are 00b (8-bit width), and ports P12 and P13 (D16 to D31) become undefined if the MCU accesses an space where bits BW1 and BW0 are 01b (16-bit width).

(2) Multiplexed Bus

In this bus format, the data bus and address bus are time division multiplexed.

To select multiplexed bus mode, the MPX bit in registers EBC0 to EBC3 should be set to 1.

When bits BW1 and BW0 in registers EBC0 to EBC3 are 00b (8-bit width), D0 to D7 are multiplexed with A0 to A7. When bits BW1 and BW0 are 01b (16-bit width) or 10b (32-bit width), D0 to D15 are multiplexed with $\overline{BC0}$, A1/ $\overline{BC2}$, and A2 to A15.

In microprocessor mode, an operation is started in separate bus format after a reset. Therefore the multiplexed bus format can only be used for $\overline{CS1}$ to $\overline{CS3}$ spaces and cannot be used for the $\overline{CS0}$ space.

Table 9.2 lists pin functions for each processor mode and Table 9.3 lists pin functions for each bus format.

Table 9.2 Processor Mode and Pin Functions

Process	Single-	Microprocessor Mode/Memory Expansion Mode Memory Expansion Mode									
or Mode Bus	chip Mode	Separate bus only Separate bus and multiplexed bus							tiplexed bus	s only	
format			(EXMPX =	0)	(mix	ked) (EXMP	, , , , , , , , , , , , , , , , , , ,		(EXMPX =	1)	
Data bus width	_	8 bits only	8/16 bits (mixed)	8/16/32 bits (mixed)	8 bits only	8/16 bits (mixed)	8/16/32 bits (mixed)	8 bits only	8/16 bits (mixed)	8/16/32 bits (mixed)	
P0_0 to P0_7	I/O ports			D0 t	o D7				I/O ports		
P1_0 to P1_7	I/O ports	I/O ports	D8 t	o D15	I/O ports	D8 t	to D15		I/O ports		
P2_0	I/O port	A0	A0 c	or BC0	A0 or A0/D0		00, BC0 , or 0 0/D0	A0/D0	A0/D0 d	or BC0/D0	
P2_1	I/O port	A1	A1 c	or BC2	A1 or	A1/D1	A1,A1/ D1,BC2, or BC2/D1	A1/	/D1	A1/D1 or BC2/D1	
P2_2 to P2_7	I/O ports		A2 to A7		A2 to A	\7 or A2/D2	to A7/D7	A	2/D2 to A7/	D7	
P3_0 to P3_7	I/O ports		A8 to A15		A8 to A15		A15 or A15/D15	A8 to A15	A8/D8 to	A15/D15	
P4_0 to P4_3	I/O ports		A16 to A19 I/O ports								
P4_4	I/O port					A20 or CS	3	l.			
P4_5	I/O port					A21 or CS	2				
P4_6	I/O port					A22 or CS	1				
P4_7	I/O port					A23 or CS	0				
P5_0	I/O port					WR or WR	0				
P5_1	I/O port	Undefined (1)	BC1	or WR1	Undefined (1)	BC1	or WR1	Undefined (1)	BC1	or WR1	
P5_2	I/O port					RD					
P5_3	I/O port					BCLK					
P5_4	I/O port					HLDA or C	S1				
P5_5	I/O port					HOLD					
P5_6	I/O port		ALE or CS	2			Set to	ALE			
P5_7	I/O port					RDY or CS	3				
P11_0 to P11_2	I/O ports				CS0	to CS2 or I/	O ports				
P11_3	I/O port	CS3 or I/O port CS3 or WR2			CS3 or	I/O port	CS3 to WR2	CS3 or	I/O port	CS3 or WR2	
P11_4	I/O port	I/O port BC3 or WR3			I/O	port	BC3 to WR3	I/O	port	BC3 or WR3	
P12_0 to P12_7	I/O ports	I/O ports D16 to D23			I/O _I	oorts	D16 to D23	I/O p	oorts	D16 to D23	
P13_0 to P13_7	I/O ports	I/O p	oorts	D24 to D31	1/0	oorts	D24 to D31	I/O p	oorts	D24 to D31	

Note:

1. An undefined value is output.

Table 9.3 Bus Format and Pin Functions (in Microprocessor Mode/Memory Expansion Mode)

			•			-	
Bus Format		Separate Bus		N	Multiplexed Bu	S	
MPX bit		0			1		
Bus width	8 bits	16 bits	32 bits	8 bits	16 bits	32 bits	
Bits BW1 to BW0	00b	01b	10b	00b	01b	10b	
P0_0 to P0_7		D0 to D7			I/O ports		
P1_0 to P1_7	I/O ports	D8 to	D15		I/O ports		
P2_0	A0	В	<u>C0</u>	A0/D0	BC	0/D0	
P2_1	A	1	BC2	A1/	'D1	BC2/D1	
P2_2 to P2_7		A2 to A7		,	A2/D2 to A7/D7	7	
P3_0 to P3_7		A8 to A15		A	8/D8 to A15/D	15	
P4_0 to P4_3		A16 to A19		A16	to A19 or I/O	ports	
P4_4			A20 o	r CS3			
P4_5			A21 o	r CS2			
P4_6			A22 o	r CS1			
P4_7		A23 or C	S0 (CS0 fixed i	n microprocess	or mode)		
P5_0			WR or	WR0			
P5_1	Undefined (1)	BC1 o	or WR1	Undefined (1)	BC1 c	or WR1	
P5_2			R	D			
P5_3			ВС	LK			
P5_4			HLDA	or CS1			
P5_5			HO	LD			
P5_6		ALE or CS2			Set to ALE		
P5_7			RDY o	or CS3			
P11_0 to P11_2			CS0 to CS2	or I/O ports			
P11_3	CS3 or I/O port CS3 or WR2 CS3 or I/O port CS3 or WR2						
P11_4	1/0	•	BC3 or WR3	I/O	•	BC3 or WR3	
P12_0 to P12_7	I/O p		D16 to D23	I/O p	•	D16 to D23	
P13_0 to P13_7	I/O p	oorts	D24 to D31	I/O p	oorts	D24 to D31	

Note:

1. An undefined value is output.

9.3.4 Read and Write Signals

When the data bus is 16 or 32 bits, set the PM02 bit in the PM0 register to select a combination of \overline{RD} , \overline{WR} , $\overline{BC0}$, $\overline{BC1}$, $\overline{BC2}$, and $\overline{BC3}$, or \overline{RD} , $\overline{WR0}$, $\overline{WR1}$, $\overline{WR2}$, and $\overline{WR3}$ as read or write signals.

When bits EXBW1 and EXBW0 in the PBC register are 00b (8-bit width), the PM02 bit should be set to 0 ($\overline{RD}/\overline{WR}/\overline{BC0}/\overline{BC1}/\overline{BC2}/\overline{BC3}$). When accessing an 8-bit space while bits EXBW1 and EXBW0 are 01b (16-bit width) or 10b (32-bit width), the combination of \overline{RD} , \overline{WR} , $\overline{BC0}$, $\overline{BC1}$, $\overline{BC2}$, and $\overline{BC3}$ is selected irrespective of the PM02 bit setting.

Tables 9.4 and 9.5 list the operation of each signal.

The read and write signals after a reset are in the following combination: \overline{RD} , \overline{WR} , $\overline{BC0}$, $\overline{BC1}$, $\overline{BC2}$, and $\overline{BC3}$. To change to the combination of \overline{RD} , $\overline{WR0}$, $\overline{WR1}$, $\overline{WR2}$, and $\overline{WR3}$, set the PM02 bit before writing data to external memory.

Table 9.4 RD, WR0, WR1, WR2, and WR3 Signals

Data Bus Width	RD	WR0	WR1	WR2	WR3	External Data Bus Status
	L	Н	Н	Н	Н	Read 4-byte data
	Н	L	Н	Н	Н	Write 1-byte data to address 4n+0
	Н	Н	L	Н	Н	Write 1-byte data to address 4n+1
	Н	Н	Н	L	Н	Write 1-byte data to address 4n+2
	Н	Н	Н	Н	L	Write 1-byte data to address 4n+3
32 bits	Н	L	L	Н	Н	Write 2-byte data to addresses 4n+0 to 4n+1
	Н	Н	L	L	Н	Write 2-byte data to addresses 4n+1 to 4n+2
	Н	Н	Н	L	L	Write 2-byte data to addresses 4n+2 to 4n+3
	Н	L	L	L	Н	Write 3-byte data to addresses 4n+0 to 4n+2
	Н	Н	L	L	L	Write 3-byte data to addresses 4n+1 to 4n+3
	Н	L	L	L	L	Write 4-byte data to addresses 4n+0 to 4n+3
	L	Н	Н	H/L (A1)		Read 2-byte data
16 bits	Н	L	Н	H/L (A1)		Write 1-byte data to even address
10 0113	Н	Н	L	H/L (A1)	_	Write 1-byte data to odd address
	Н	L	L	H/L (A1)	_	Write 2-byte data to both even and odd addresses
8 bits	L	H (WR)	_	H/L (A1)		Read 1-byte data
o bits	Н	L (WR)	_	H/L (A1)	_	Write 1-byte data

Table 9.5 \overline{RD} , \overline{WR} , $\overline{BC0}$, $\overline{BC1}$, $\overline{BC2}$, and $\overline{BC3}$ Signals

Data Bus		WD		DO4		DO0	Estamal Data Dua Otatus		
Width	RD	WR	BC0	BC1	BC2	BC3	External Data Bus Status		
	L	Н	L	L	L	L	Read 4-byte data		
	Н	L	L	Н	Н	Н	Write 1-byte data to address 4n+0		
	Н	L	Н	L	Н	Η	Write 1-byte data to address 4n+1		
	Н	L	Н	Н	L	Η	Write 1-byte data to address 4n+2		
	Н	L	Н	Н	Н	L	Write 1-byte data to address 4n+3		
32 bits	Н	L	L	L	Н	Η	Write 2-byte data to addresses 4n+0 to 4n+1		
	Н	Ш	Н	L	L	Ι	Write 2-byte data to addresses 4n+1 to 4n+2		
	Н	Ш	Н	Н	L	Ш	Write 2-byte data to addresses 4n+2 to 4n+3		
	Н	Ш	L	L	L	Ι	Write 3-byte data to addresses 4n+0 to 4n+2		
	Н	Ш	Н	L	L	Ш	Write 3-byte data to addresses 4n+1 to 4n+3		
	Н	Ш	L	L	L	Ш	Write 4-byte data to addresses 4n+0 to 4n+3		
	L	Ι	L	L	H/L (A1)	1	Read 2-byte data		
16 bits	Н	Ш	L	Н	H/L (A1)	1	Write 1-byte data to even address		
10 010	Н	Ш	Н	L	H/L (A1)	1	Write 1-byte data to odd address		
	Н	L	L	L	H/L (A1)	_	Write 2-byte data to both even and odd addresses		
8 bits	L	Ι	H/L (A0)	_	H/L (A1)	_	Read 1-byte data		
O DILO	Н	L	H/L (A0)	_	H/L (A1)		Write 1-byte data		

9.3.5 External Bus Timing

The external bus timing is configured by setting registers EBC0 to EBC3. The reference clock is the base clock selected by setting bits BCD1 and BCD0 in the CCR register.

Table 9.6 lists the bit setting of MPY1, MPY0, ESUR1, and ESUR0 and the Tsu(A-R) (address setup cycles before read), Table 9.7 lists the bit setting of MPY1, MPY0, EWR1, and EWR0 and the Tw(R) (read pulse width), Table 9.8 lists the bit setting of MPY1, MPY0, ESUW1, and ESUW0 and the Tsu(A-W) (address setup cycles before write), Table 9.9 lists the bit setting of MPY1, MPY0, EWW1, and EWW0 and the Tw(W) (write pulse width).

Table 9.6 Tsu(A-R) and Bit Settings: MPY1, MPY0, ESUR1, and ESUR0 (unit: cycles)

			Separa	ite Bus		Multiplexed Bus			
	R1 and JR0	MP	1 and MP	Y0 bit sett	ings	MP)	/1 and MP	Y0 bit sett	ings
	ettings	00b	01b	10b	11b	00b	01b	10b	11b
	95	mpy = 1	mpy = 2	mpy = 3	mpy = 4	mpy = 1	mpy = 2	mpy = 3	mpy = 4
00b	sur = 0	0.5	0.5	0.5	0.5	1	1	1	1
01b	sur = 1	1.5	2.5	3.5	4.5	2	3	4	5
10b	sur = 2	2.5	4.5	6.5	8.5	3	5	7	9
11b	sur = 3	3.5	6.5	9.5	12.5	4	7	10	13
Formula $Tsu(A-R) = sur \times mpy + 0.5$ $Tsu(A-R)$			su(A-R) = s	ur × mpy +	1				

Table 9.7 Tw(R) and Bit Settings: MPY1, MPY0, EWR1, and EWR0 (unit: cycles)

			Separa	ite Bus		Multiplexed Bus			
EWR1 ar	nd EWR0	MP'	Y1 and MF	PY0 bit set	ting	MPY1 and MPY0 bit setting			
Bit Se	ettings	00b	01b	10b	11b	00b	01b	10b	11b
		mpy = 1	mpy = 2	mpy = 3	mpy = 4	mpy = 1	mpy = 2	mpy = 3	mpy = 4
00b	wr = 1	1.5	2.5	3.5	4.5	0.5 (1)	1.5	2.5	3.5
01b	wr = 2	2.5	4.5	6.5	8.5	1.5	3.5	5.5	7.5
10b	wr = 3	3.5	6.5	9.5	12.5	2.5	5.5	8.5	11.5
11b	wr = 4	4.5	4.5 8.5 12.5 16.5				7.5	11.5	15.5
Formula Tw(R)			w(R) = wr	$\times mpy + 0.$	5	$Tw(R) = wr \times mpy - 0.5$			

Note:

1. Do not set this value.

Table 9.8 Tsu(A-W) and the Bit Settings: MPY1, MPY0, ESUW1, and ESUW0 (unit: cycles)

ESUV	/1 and	MPY	MPY1 and MPY0 Bit Settings						
	JW0	00b	01b	10b	11b				
Bit Se	ettings	mpy = 1	mpy = 1 $mpy = 2$ $mpy =$		mpy = 4				
00b	suw = 0	1	1	1	1				
01b	suw = 1	2	3	4	5				
10b	suw = 2	3	5	7	9				
11b	suw = 3	4	7	10	13				
Formula		Tsı	$Tsu(A-W) = suw \times mpy + 1$						

Table 9.9 Tw(W) and the Bit Settings: MPY1, MPY0, EWW1, and EWW0 (unit: cycles)

EWW1 and		MPY1 and MPY0 Bit Settings			
EWW0		00b	01b	10b	11b
Bit Settings		mpy = 1	mpy = 2	mpy = 3	mpy = 4
00b	ww = I	0.5 (1)	1.5	2.5	3.5
01b	ww = 2	1.5	3.5	5.5	7.5
10b	ww = 3	2.5	5.5	8.5	11.5
11b	ww = 4	3.5	7.5	11.5	15.5
Formula		$Tw(W) = ww \times mpy - 0.5$			

Note:

1. Do not set this value.

Figure 9.13 and 9.14 show examples of external bus timing in separate bus format (the MPX bit is set to 0) and in multiplexed bus format (the MPX bit is set to 1), respectively.

Note that the actual bus cycles are adjusted to be the integral multiple of peripheral bus clock as follows:

- Peripheral bus clock divided by 2: If the calculation result is odd, an idle cycle is inserted so that the bus cycles becomes even.
- Peripheral bus clock divided by 3: If the calculation result is not a multiple of three, (an) idle cycle(s) is/are inserted so that the bus cycles becomes a multiple of three.
- Peripheral bus clock divided by 4: If the calculation result is not a multiple of four, (an) idle cycle(s) is/are inserted so that the bus cycles becomes a multiple of four.

Figure 9.13 External Bus Timing in Separate Bus Format (i = 0 to 3)

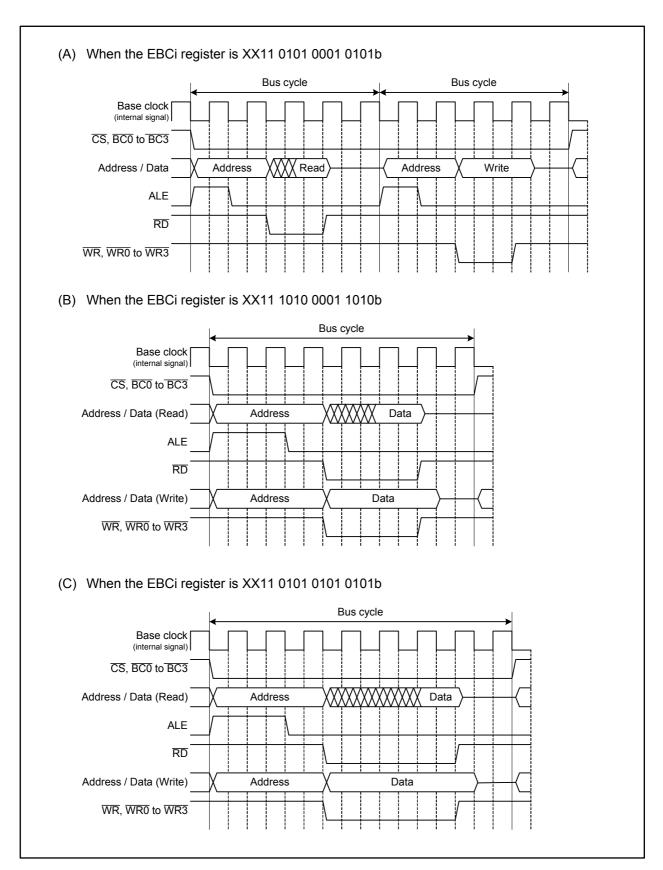


Figure 9.14 External Bus Timing in Multiplexed Bus Format (i = 0 to 3)

9.3.6 ALE Signal

The ALE signal latches an address of the multiplexed bus. The address should be latched on the falling edge of the ALE signal. This signal is output to internal space or external space.

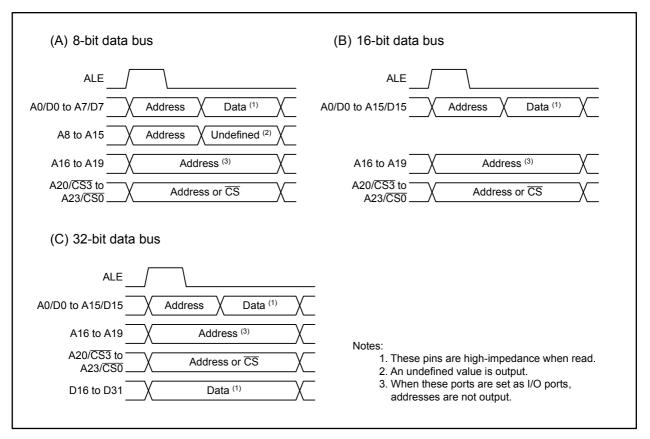


Figure 9.15 ALE Signal and Address Bus/Data Bus

The ALE signal becomes high when a bus cycle is started and changes to low at 1/2 base clock before (when Tsu(A-R) is 1 and Tsu(A-W) is 1) or 1 base clock before (when Tsu(A-R) is greater than 1 and Tsu(A-W) is greater than 1) \overline{RD} or \overline{WR} becomes low.

9.3.7 RDY Signal

The \overline{RDY} signal facilitates access to external devices requiring longer access time. It is used when accessing an external device with a lower access rate than the timing set in registers EBC0 to EBC3, or when accessing multiple devices with different access timing in a \overline{CS} space.

When the RDY bit in registers EBC0 to EBC3 is set to 1 (use $\overline{\text{RDY}}$), the $\overline{\text{RDY}}$ pin is sampled on the every mpyth falling edge of the base clock. If the $\overline{\text{RDY}}$ pin is held low when sampled, wait states are inserted into the bus cycle. The sampling continues until the $\overline{\text{RDY}}$ pin is held high so that the bus cycle starts running again.

Since the base clock is not output to external pins, drive the \overline{RDY} signal low when the \overline{RD} , \overline{WR} , and $\overline{WR0}$ to $\overline{WR3}$ signals are held in a low level, and drive the \overline{RDY} signal high synchronizing the rise of the BCLK signal.

Figure 9.16 shows an example of \overline{RDY} signal generator and Table 9.10 lists setting conditions of registers EBC0 to EBC3 to use this circuit. Figure 9.17 shows examples of bus cycle that is extended by the \overline{RDY} signal.

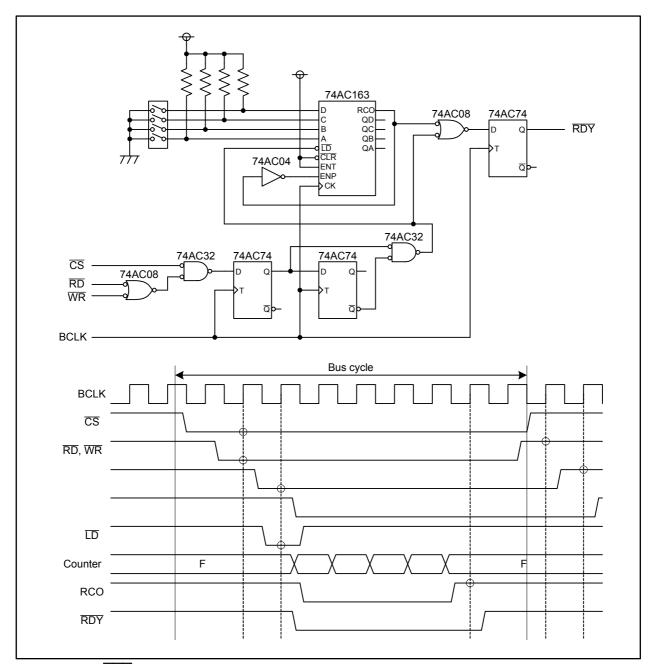


Figure 9.16 RDY Signal Generation Circuitry

Table 9.10 EBCi Register Setting Conditions when Using the Circuit in Figure 9.16 (i = 0 to 3)

Peripheral Bus Clock Frequency	Setting Condition	Setting Example
BCLK = 1/2 base clock	$mpy = 3$ In separate bus format \overline{RD} pulse width ≥ 9.5	In separate bus format EBCi = XX01 1101 1011 1001b
	WR pulse width ≥ 11.5 RD/WR high level width ≥ 2.5	etc.
	In multiplexed bus format RD pulse width ≥ 11.5 WR pulse width ≥ 11.5	In multiplexed bus format EBCi = XX11 1101 1011 1101b etc.
BCLK = 1/3 base clock	mpy = 3 In separate bus format \overline{RD} pulse width ≥ 12.5 \overline{WR} pulse width ≥ 11.5 $\overline{RD/WR}$ high level width ≥ 3.5 In multiplexed bus format \overline{RD} pulse width ≥ 11.5 \overline{WR} pulse width ≥ 11.5	In separate bus format EBCi = XX01 1101 1011 1101b etc. In multiplexed bus format EBCi = XX11 1101 1011 1101b etc.
BCLK = 1/4 base clock	mpy = 4 In separate bus format \overline{RD} pulse width ≥ 20.5 \overline{WR} pulse width ≥ 19.5 $\overline{RD/WR}$ high level width ≥ 4.5 In multiplexed bus format \overline{RD} pulse width ≥ 19.5 \overline{WR} pulse width ≥ 19.5	In separate bus format Not available In multiplexed bus format Not available

X: Given value

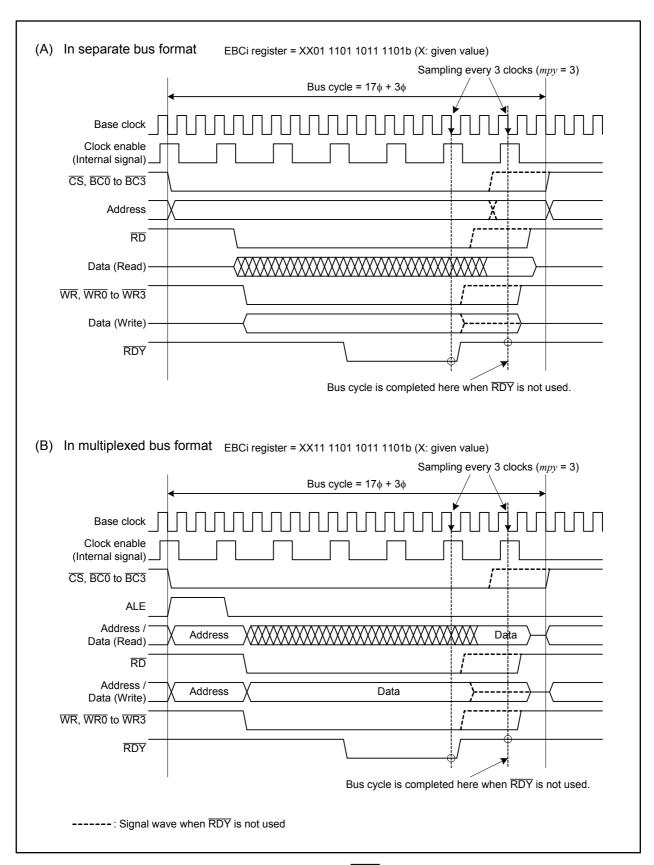


Figure 9.17 An Example of Bus Cycle Extended by RDY Signal (f(BCLK) = 1/2 f(Base)) (i = 0 to 3)

9.3.8 HOLD Signal

The $\overline{\text{HOLD}}$ signal is used when an external bus master requests the external bus from the CPU. When the external bus master drives the $\overline{\text{HOLD}}$ pin low, the CPU outputs a low signal from the $\overline{\text{HLDA}}$ pin after the ongoing bus access is completed. Then the CPU grants the external bus to the external bus master. While the $\overline{\text{HOLD}}$ pin is held low, the CPU does not start the next bus cycle.

To hand over the external bus to the CPU, the external bus master should verify the $\overline{\text{HLDA}}$ pin is held low, and then drive the $\overline{\text{HOLD}}$ pin high.

Table 9.11 lists the MCU state in a hold state.

The bus is used in the following priority order: External bus master, DMAC, and CPU.

Table 9.11 MCU State in Hold State

Item	State
Oscillation	On
Address bus, data bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{BC0}}$ to $\overline{\text{BC3}}$	High-impedance
RD, WR, WR0 to WR3	High-impedance
Programmable I/O port	The state when HOLD was received is held
HLDA pin	Low is output
Internal peripheral circuit	On (excluding the watchdog timer)
ALE pin	Low is output

9.3.9 BCLK Output

The BCLK, which has the same frequency as peripheral bus clock, is a divided clock derived from the PLL clock. In memory expansion mode or microprocessor mode, BCLK is output from port P5_3 when the PM07 bit in the PM0 register is set to 0 (output BCLK) and bits CM01 and CM00 in the CM0 register are set to 00b (I/O port P5_3). In single-chip mode, BCLK cannot be output. Refer to 8. "Clock Generator" for details.

9.4 External Bus State when Accessing Internal Space

Table 9.12 lists the external bus state when accessing an internal space.

Table 9.12 External Bus State when Accessing Internal Space

Pin		Pin State when Accessing SFR	Pin State when Accessing Internal Memory	
Address bus		Address is output	The address of an SFR or external space last accessed is held	
Data bus	Read cycle	High-impedance	High-impedance	
	Write cycle	Data is output	Undefined	
CS0 to CS3		High is output	High is output	
BC0 to BC3		BC0 to BC3 are output	The address of SFR or external space last accessed is held	
RD, WR, WR0 to WR3		RD, WR, WR0 to WR3 are output	High is output	
ALE		The ALE signal is output	The ALE signal is output	

9.5 Notes on Bus

9.5.1 Notes on Register Settings

9.5.1.1 Chip Select Boundary Select Registers

When not using memory expansion mode, do not change values after a reset for registers CB01, CB12, and CB23.

When using memory expansion mode, set all of these registers to a value within the specified range whether or not each chip select space is used.

R32C/116A Group 10. Protection

10. Protection

This function protects important registers from being easily overwritten when a program goes out of control. Registers used to protect other registers from being rewritten are as follows: PRCR, PRCR2 to PRCR4, and PRR.

10.1 Protect Register (PRCR Register)

Figure 10.1 shows the PRCR register. Registers protected by bits in the PRCR register are listed in Table 10.1.

Table 10.1 Registers Protected by the PRCR Register

Bit	Protected Registers
PRC0	CM0, CM1, CM2, and PM3
PRC1	PM0, PM2, CSOP0, CSOP1, CSOP2, INVC0, INVC1, IOBC, and I2CMR
PRC2	PLC0, PLC1, PD9, and P9_iS (i = 0 to 7)

The PRC2 bit becomes 0 (write disabled) when a write operation is performed in any other address after this bit is set to 1 (write enabled). Set the PRC2 bit to 1 just before rewriting registers PD9, P9_iS, PLC0, and PLC1 (i = 0 to 7). No interrupt handling or DMA transfers should be inserted between these two instructions. Bits PRC1 and PRC0 do not become 0 even if a write operation is performed in any other address. These bits should be set to 0 by a program.

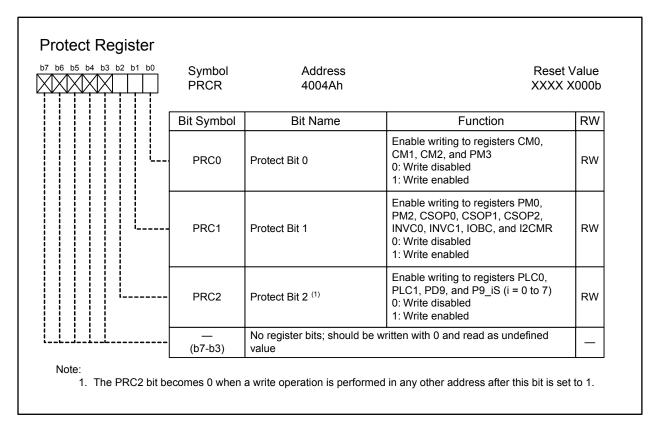


Figure 10.1 PRCR Register

R32C/116A Group 10. Protection

10.2 Protect Register 2 (PRCR2 Register)

Figure 10.2 shows the PRCR2 register which protects the CM3 register only.

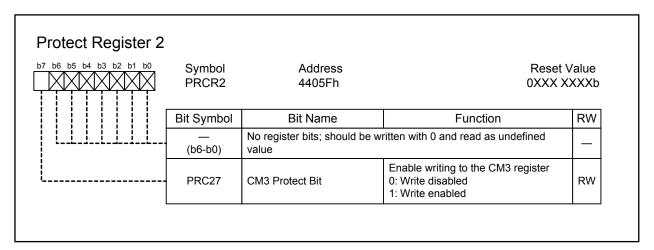


Figure 10.2 PRCR2 Register

10.3 Protect Register 3 (PRCR3 Register)

Figure 10.3 shows the PRCR3 register. Registers protected by the bits in the PRCR3 register are listed in Table 10.2.

Table 10.2 Registers Protected by the PRCR3 Register

Bit	Protected Registers
PRC31	VRCR, LVDC, and DVCR

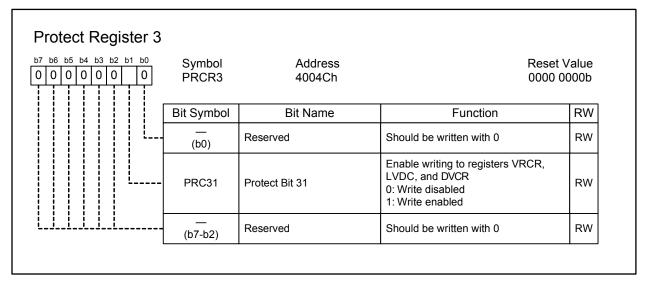


Figure 10.3 PRCR3 Register

R32C/116A Group 10. Protection

10.4 Protect Register 4 (PRCR4 Register)

Figure 10.4 shows the PRCR4 register. Registers protected by the bits in the PRCR4 register are listed in Table 10.3.

Table 10.3 Registers Protected by the PRCR4 Register

Bit	Protected Registers
PRC40	WDTS

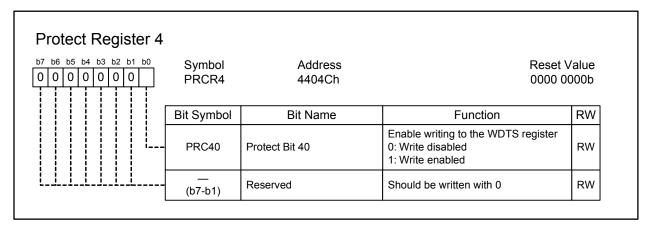


Figure 10.4 PRCR4 Register

R32C/116A Group 10. Protection

10.5 Protect Release Register (PRR Register)

Figure 10.5 shows the PRR register. Registers protected by the PRR register are as follows: CCR, FMCR, PBC, FEBC, EBC0 to EBC3, CB01, CB12, and CB23.

To write to the registers above, the PRR register should be set to AAh (write enabled). Otherwise, the PRR register should be set to any value other than AAh to protect the above registers from unexpected write accesses.

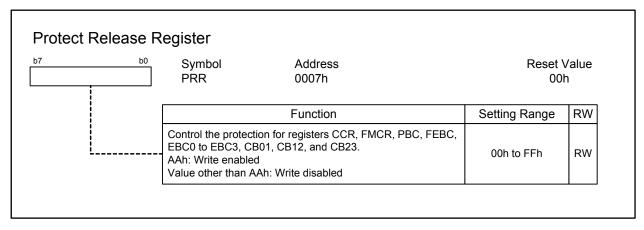


Figure 10.5 PRR Register

11. Interrupts

11.1 Interrupt Types

Figure 11.1 shows the types of interrupts.

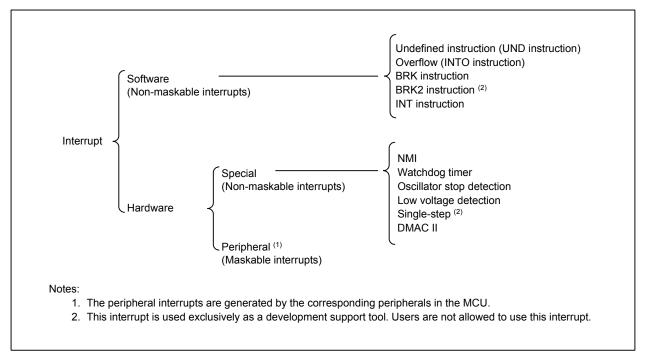


Figure 11.1 Interrupts

Interrupts are also classified into maskable/non-maskable.

(1) Maskable Interrupts

Maskable interrupts <u>can be disabled</u> by the interrupt enable flag (I flag). The priority can be configured by assigning an interrupt request level.

(2) Non-maskable Interrupts

Maskable interrupts <u>cannot be disabled</u> by the interrupt enable flag (I flag). The interrupt priority cannot be configured.

11.2 Software Interrupts

Software interrupts are non-maskable. A software interrupt occurs by executing an instruction. There are five types of software interrupts shown below.

(1) Undefined Instruction Interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow Interrupt

This interrupt occurs when the INTO instruction is executed while the O flag is 1. The following instructions may change the O flag to 1, depending on the operation result:

ABS, ADC, ADCF, ADD, ADDF, ADSF, CMP, CMPF, CNVIF, DIV, DIVF, DIVU, DIVX, EDIV, EDIVU, EDIVX, MUL, MULF, MULU, MULX, NEG, RMPA, ROUND, SBB, SCMPU, SHA, SUB, SUBF, SUNTIL, and SWHILE

(3) BRK Instruction Interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 Instruction Interrupt

This interrupt occurs when the BRK2 instruction is executed.

This interrupt is only meant for use as a development support tool and users are not allowed to use it.

(5) INT Instruction Interrupt

This interrupt occurs when the INT instruction is executed with a selected software interrupt number from 0 to 255. Software interrupt numbers 0 to 127 are designated for peripheral interrupts. That is, the INT instruction with a software interrupt number from 0 to 127 has the same interrupt handler as that for peripheral interrupts.

The stack pointer (SP) used for this interrupt differs depending on the software interrupt numbers. For software interrupt numbers 0 to 127, when an interrupt request is accepted, the U flag is saved and set to 0 to select the interrupt stack pointer (ISP) during the interrupt sequence. The saved data of the U flag is restored upon returning from the interrupt handler. For software interrupt numbers 128 to 255, the stack pointer does not change during the interrupt sequence.

11.3 Hardware Interrupts

There are two kinds of hardware interrupts: special interrupts and peripheral interrupts. In peripheral interrupts, only one interrupt with the highest priority can be specified as a fast interrupt.

11.3.1 Special Interrupts

Special interrupts are non-maskable. There are five special interrupts shown below.

(1) NMI (Non Maskable Interrupt)

This interrupt occurs when an input signal at the $\overline{\text{NMI}}$ pin switches from high to low. Refer to 11.11 "NMI" for details.

(2) Watchdog Timer Interrupt

The watchdog timer generates this interrupt. Refer to 12. "Watchdog Timer" for details.

(3) Oscillator Stop Detection Interrupt

This interrupt occurs when the MCU detects a main clock oscillator stop. Refer to 8.2 "Oscillator Stop Detection" for details.

(4) Low Voltage Detection Interrupt

This interrupt occurs when a low voltage input to VCC is detected by the voltage detector. Refer to 6.2 "Low Voltage Detector" for details.

(5) Single-step Interrupt

This interrupt is only meant for use as a development support tool and users are not allowed to use it.

11.3.2 Peripheral Interrupts

Peripheral interrupts occur when an interrupt request from a peripheral in the MCU is accepted. They share the interrupt vector with software interrupt numbers 0 to 127 for the INT instruction. Peripheral interrupts are maskable.

Refer to Tables 11.2 to 11.5 for details on the interrupt sources. Refer to the relevant descriptions for details on each function.

11.4 Fast Interrupt

A fast interrupt enables the CPU to accelerate interrupt response. In peripheral interrupts, only one interrupt with the highest priority can be specified as the fast interrupt.

Use the following procedure to enable a fast interrupt:

- (1) Set the both FSIT bit in registers RIPL1 and RIPL2 to 1 (interrupt request level 7 available for fast interrupt).
- (2) Set the both DMAII bit in registers RIPL1 and RIPL2 to 0 (interrupt request level 7 available for interrupts).
- (3) Set the start address of the fast interrupt handler to the VCT register.

Under the conditions above, bits ILVL2 to ILVL0 in the interrupt control register should be set to 111b (level 7) to enable the fast interrupt. No other interrupts should be set to interrupt request level 7.

When the fast interrupt is accepted, the flag register (FLG) and program counter (PC) are saved to the save flag register (SVF) and save PC register (SVP), respectively. The program is executed from the address indicated by the VCT register.

To return from the fast interrupt handler, the FREIT instruction should be executed. The values saved into registers SVF and SVP are restored to the FLG register and PC, respectively.

11.5 Interrupt Vectors

Each interrupt vector has a 4-byte memory space, in which the start address of the associated interrupt handler is stored. When an interrupt request is accepted, a jump to the address set in the interrupt vector takes place. Figure 11.2 shows an interrupt vector.

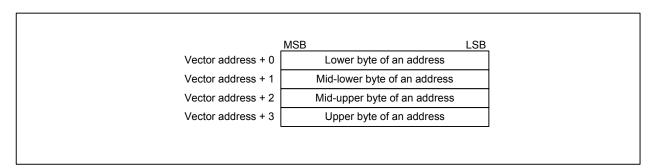


Figure 11.2 Interrupt Vector

11.5.1 Fixed Vector Table

The fixed vector table is allocated in addresses FFFFFDCh to FFFFFFFh. Table 11.1 lists the fixed vector table.

Table 11.1 Fixed Vector Table

Interrupt Source	Vector Addresses (Address (L) to Address (H))	Remarks	Reference
Undefined instruction	FFFFFDCh to FFFFFDFh	Interrupt by the UND instruction	R32C/100 Series Software Manual
Overflow	FFFFFE0h to FFFFFE3h	Interrupt by the INTO instruction	
BRK instruction	FFFFFFE4h to FFFFFE7h	If address FFFFFE7h is FFh, a jump to the interrupt vector of software interrupt number 0 in the relocatable vector table takes place	
_	FFFFFE8h to FFFFFEBh	Reserved	
_	FFFFFECh to FFFFFEFh	Reserved	
Watchdog timer Oscillator stop detection Low voltage detection	FFFFFFF0h to FFFFFFF3h	These addresses are shared by the watchdog timer interrupt, oscillator stop detection interrupt, and low voltage detection interrupt	12. "Watchdog Timer"8. "Clock Generator"6.2 "Low Voltage Detector"
_	FFFFFFF4h to FFFFFF7h	Reserved	
NMI	FFFFFFF8h to FFFFFFBh	External interrupt by the NMI pin	
Reset	FFFFFFFCh to FFFFFFFh		5. "Resets"

11.5.2 Relocatable Vector Table

The relocatable vector table occupies a 1024-byte memory space from the start address set in the INTB register. Tables 11.2 to 11.5 list the relocatable vector table entries.

An address in a multiple of 4 should be set in the INTB register for a faster interrupt sequence.

Table 11.2 Relocatable Vector Table (1/4)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) (1)	Software Interrupt Number	Reference
BRK instruction (2)	+0 to +3 (0000h to 0003h)	0	R32C/100 Series Software Manual
Reserved	+4 to +7 (0004h to 0007h)	1	
UART5 transmission, NACK (3)	+8 to +11 (0008h to 000Bh)	2	18. "Serial
UART5 reception, ACK (3)	+12 to +15 (000Ch to 000Fh)	3	Interface"
UART6 transmission, NACK (3)	+16 to +19 (0010h to 0013h)	4	
UART6 reception, ACK (3)	+20 to +23 (0014h to 0017h)	5	_
Bus collision detection, start condition detection, or stop condition detection (UART5 or UART6) (3, 4)	+24 to +27 (0018h to 001Bh)	6	_
Reserved	+28 to +31 (001Ch to 001Fh)	7	
DMA0 transfer complete	+32 to +35 (0020h to 0023h)	8	13. "DMAC"
DMA1 transfer complete	+36 to +39 (0024h to 0027h)	9	
DMA2 transfer complete	+40 to +43 (0028h to 002Bh)	10	
DMA3 transfer complete	+44 to +47 (002Ch to 002Fh)	11	
Timer A0	+48 to +51 (0030h to 0033h)	12	16.1 "Timer A"
Timer A1	+52 to +55 (0034h to 0037h)	13	
Timer A2	+56 to +59 (0038h to 003Bh)	14	
Timer A3	+60 to +63 (003Ch to 003Fh)	15	
Timer A4	+64 to +67 (0040h to 0043h)	16	
UART0 transmission, NACK (3)	+68 to +71 (0044h to 0047h)	17	18. "Serial
UART0 reception, ACK (3)	+72 to +75 (0048h to 004Bh)	18	Interface"
UART1 transmission, NACK (3)	+76 to +79 (004Ch to 004Fh)	19	
UART1 reception, ACK (3)	+80 to +83 (0050h to 0053h)	20	
Timer B0	+84 to +87 (0054h to 0057h)	21	16.2 "Timer B"
Timer B1	+88 to +91 (0058h to 005Bh)	22	
Timer B2	+92 to +95 (005Ch to 005Fh)	23	
Timer B3	+96 to +99 (0060h to 0063h)	24	
Timer B4	+100 to +103 (0064h to 0067h)	25	
INT5	+104 to +107 (0068h to 006Bh)	26	11.10 "External
INT4	+108 to +111 (006Ch to 006Fh)	27	Interrupt"
INT3	+112 to +115 (0070h to 0073h)	28	1
INT2	+116 to +119 (0074h to 0077h)	29	
INT1	+120 to +123 (0078h to 007Bh)	30	
INT0	+124 to +127 (007Ch to 007Fh)	31	
Timer B5	+128 to +131 (0080h to 0083h)	32	16.2 "Timer B"

- 1. Each entry is relative to the base address in the INTB register.
- 2. Interrupts from this source cannot be disabled by the I flag.
- 3. In I²C mode, interrupts are generated by NACK, ACK, or detection of a start condition/stop condition.
- 4. The IFSR16 bit in the IFSR1 register selects either the interrupt source in UART5 or UART6.

Table 11.3 Relocatable Vector Table (2/4)

Interrupt Source	Vector Table Relative Addresses (Address (L) to Address (H)) (1)	Software Interrupt Number	Reference
UART2 transmission, NACK (2)/I2C-	+132 to +135 (0084h to 0087h)	33	18. "Serial
bus interface (3)			Interface"/24. "Multi-
UART2 reception, ACK (2)/I2C-bus line	+136 to +139 (0088h to 008Bh)	34	master I ² C-bus
(3)			Interface"
UART3 transmission, NACK (2)	+140 to +143 (008Ch to 008Fh)	35	
UART3 reception, ACK (2)	+144 to +147 (0090h to 0093h)	36	
UART4 transmission, NACK (2)	+148 to +151 (0094h to 0097h)	37	
UART4 reception, ACK (2)	+152 to +155 (0098h to 009Bh)	38	
Bus collision detection, start condition	+156 to +159 (009Ch to 009Fh)	39	
detection or stop condition detection			
(UART2) ⁽²⁾			
Bus collision detection, start condition	+160 to +163 (00A0h to 00A3h)	40	
detection or stop condition detection			
(UART3 or UART0) (2, 4)			
Bus collision detection, start condition	+164 to +167 (00A4h to 00A7h)	41	
detection or stop condition detection			
(UART4 or UART1) (2, 4)			
A/D0	+168 to +171 (00A8h to 00ABh)	42	19. "A/D Converter"
Key input	+172 to +175 (00ACh to 00AFh)	43	11.12 "Key Input
			Interrupt"
Intelligent I/O interrupt 0	+176 to +179 (00B0h to 00B3h)	44	11.13 "Intelligent I/O
Intelligent I/O interrupt 1	+180 to +183 (00B4h to 00B7h)	45	Interrupt",
Intelligent I/O interrupt 2	+184 to +187 (00B8h to 00BBh)	46	23. "Intelligent I/O"
Intelligent I/O interrupt 3	+188 to +191 (00BCh to 00BFh)	47	
Intelligent I/O interrupt 4	+192 to +195 (00C0h to 00C3h)	48	
Intelligent I/O interrupt 5	+196 to +199 (00C4h to 00C7h)	49	
Intelligent I/O interrupt 6	+200 to +203 (00C8h to 00CBh)	50	
Intelligent I/O interrupt 7	+204 to +207 (00CCh to 00CFh)	51	
Intelligent I/O interrupt 8	+208 to +211 (00D0h to 00D3h)	52	
Intelligent I/O interrupt 9	+212 to +215 (00D4h to 00D7h)	53	
Intelligent I/O interrupt 10	+216 to +219 (00D8h to 00DBh)	54	_
Intelligent I/O interrupt 11	+220 to +223 (00DCh to 00DFh)	55	
Reserved	+224 to +227 (00E0h to 00E3h)	56	_
Reserved	+228 to +231 (00E4h to 00E7h)	57	
Reserved	+232 to +235 (00E8h to 00EBh)	58	_
Reserved	+236 to +239 (00ECh to 00EFh)	59	_
Reserved	+240 to +243 (00F0h to 00F3h)	60	_
Reserved	+244 to +247 (00F4h to 00F7h) +248 to +251 (00F8h to 00FBh)	61 62	
Reserved	+248 to +251 (00F8h to 00FBh)		-
Reserved	+232 (U +233 (UUFCII (U UUFFII)	63	

- 1. Each entry is relative to the base address in the INTB register.
- 2. In I²C mode, interrupts are generated by NACK, ACK, or detection of a start condition/stop condition.
- 3. Select an interrupt source either of UART2 or I²C-bus interface by setting the I2CEN bit in the I2CMR register.
- 4. The IFSR06 bit in the IFSR0 register selects either the interrupt source in UART0 or UART3. The IFSR07 bit selects either the interrupt source in UART1 or that in UART4.

Table 11.4 Relocatable Vector Table (3/4) (1)

Interrupt Source	Interrupt Source Vector Table Relative Addresses (Address (L) to Address (H)) (2)			
Reserved	+256 to +259 (0100h to 0103h)	64		
Reserved	+260 to +263 (0104h to 0107h)	65		
Reserved	+264 to +267 (0108h to 010Bh)	66		
Reserved	+268 to +271 (010Ch to 010Fh)	67		
Reserved	+272 to +275 (0110h to 0113h)	68		
Reserved	+276 to +279 (0114h to 0117h)	69		
Reserved	+280 to +283 (0118h to 011Bh)	70		
Reserved	+284 to +287 (011Ch to 011Fh)	71		
Reserved	+288 to +291 (0120h to 0123h)	72		
Reserved	+292 to +295 (0124h to 0127h)	73		
Reserved	+296 to +299 (0128h to 012Bh)	74		
Reserved	+300 to +303 (012Ch to 012Fh)	75		
Reserved	+304 to +307 (0130h to 0133h)	76		
Reserved	+308 to +311 (0134h to 0137h)	77		
Reserved	+312 to +315 (0138h to 013Bh)	78		
Reserved	+316 to +319 (013Ch to 013Fh)	79		
Reserved	+320 to +323 (0140h to 0143h)	80		
Reserved	+324 to +327 (0144h to 0147h)	81		
Reserved	+328 to +331 (0148h to 014Bh)	82		
Reserved	+332 to +335 (014Ch to 014Fh)	83		
Reserved	+336 to +339 (0150h to 0153h)	84		
Reserved	+340 to +343 (0154h to 0157h)	85	_	
Reserved	+344 to +347 (0158h to 015Bh)	86		
Reserved	+348 to +351 (015Ch to 015Fh)	87	_	
Reserved	+352 to +355 (0160h to 0163h)	88		
Reserved	+356 to +359 (0164h to 0167h)	89		
Reserved	+360 to +363 (0168h to 016Bh)	90		
Reserved	+364 to +367 (016Ch to 016Fh)	91		
Reserved	+368 to +371 (0170h to 0173h)	92		
INT8	+372 to +375 (0174h to 0177h)	93	11.10 "External	
INT7	+376 to +379 (0178h to 017Bh)	94	Interrupt"	
INT6	+380 to +383 (017Ch to 017Fh)	95		

- 1. Entries in this table cannot be used to exit wait mode or stop mode.
- 2. Each entry is relative to the base address in the INTB register.

Table 11.5 Relocatable Vector Table (4/4) (1)

Interrupt Source	l Interrun	
Reserved	ess (H)) (4)	
Reserved	Number	ſ
Reserved	•	
Reserved	,	
Reserved +400 to +403 (0190h to Reserved +404 to +407 (0194h to Reserved +408 to +411 (0198h to Reserved +412 to +415 (019Ch to Reserved +416 to +419 (01A0h to Reserved +420 to +423 (01A4h to Reserved +424 to +427 (01A8h to Reserved +428 to +431 (01ACh to Reserved +435 (01B0h to Reserved +436 to +439 (01B4h to Reserved +444 to +447 (01BCh to Reserved +444 to +447 (01BCh to Reserved +448 to +451 (01C0h to Reserved +455 to +455 (01C4h to Reserved +466 to +463 (01CCh to Reserved +464 to +467 (01D0h to Reserved +468 to +471 (01D4h to Reserved +472 to +475 (01D8h to UART9 transmission +484 to +487 (01E4h to UART9 reception +484 to +497 (01E6h to UART10 transmission +488 to +491 (01E8h to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	,	
Reserved	*	
Reserved +408 to +411 (0198h to Reserved +412 to +415 (019Ch to Reserved +416 to +419 (01A0h to Reserved +420 to +423 (01A4h to Reserved +424 to +427 (01A8h to Reserved +428 to +431 (01ACh to Reserved +432 to +435 (01B0h to Reserved +432 to +435 (01B0h to Reserved +436 to +439 (01B4h to Reserved +440 to +443 (01B8h to Reserved +4440 to +443 (01B8h to Reserved +4440 to +444 (01BCh to Reserved +448 to +451 (01C0h to Reserved +452 to +455 (01C4h to Reserved +456 to +459 (01C8h to Reserved +460 to +463 (01CCh to Reserved +464 to +467 (01D0h to Reserved +464 to +467 (01D0h to Reserved +468 to +471 (01D4h to Reserved +472 to +475 (01D8h to Reserved +476 to +479 (01DCh to Reserved +476 to +479 (01DCh to Reserved +476 to +479 (01DCh to VART9 transmission +488 to +491 (01E8h to VART10 transmission +488 to +491 (01E8h to VART10 reception +492 to +495 (01ECh to VART7 transmission +496 to +499 (01F0h to VART7 transmission +496 to +499 (01F0h to VART7 reception +500 to +503 (01F4h to VART7 r	,	
Reserved	,	
Reserved	019Bh) 102	
Reserved	019Fh) 103	
Reserved +424 to +427 (01A8h to Reserved Reserved +428 to +431 (01ACh to Reserved Reserved +436 to +439 (01B4h to Reserved Reserved +440 to +443 (01B8h to Reserved Reserved +444 to +447 (01BCh to Reserved Reserved +448 to +451 (01C0h to Reserved Reserved +456 to +459 (01C8h to Reserved Reserved +460 to +463 (01CCh to Reserved Reserved +464 to +467 (01D0h to Reserved Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to Reserved UART9 transmission +480 to +483 (01E0h to Reserved UART9 reception +484 to +487 (01E4h to Reserved UART10 transmission +488 to +491 (01E8h to Reserved UART10 reception +492 to +495 (01ECh to Reserved UART7 transmission +496 to +499 (01F0h to Reserved UART7 transmission +496 to +499 (01F0h to Reserved UART7 reception +500 to +503 (01F4h to Reserved	01A3h) 104	
Reserved +428 to +431 (01ACh to Reserved Reserved +432 to +435 (01B0h to Reserved Reserved +446 to +439 (01B4h to Reserved Reserved +444 to +447 (01BCh to Reserved Reserved +448 to +451 (01C0h to Reserved Reserved +452 to +455 (01C4h to Reserved Reserved +460 to +463 (01CCh to Reserved Reserved +464 to +467 (01D0h to Reserved Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to Reserved UART9 transmission +480 to +483 (01E0h to Reserved UART9 reception +484 to +487 (01E4h to Reserved UART10 transmission +488 to +491 (01E8h to Reserved UART10 reception +492 to +495 (01ECh to Reserved UART7 transmission +496 to +499 (01F0h to Reserved UART7 transmission +496 to +499 (01F0h to Reserved)	01A7h) 105	
Reserved +432 to +435 (01B0h to Reserved Reserved +436 to +439 (01B4h to H430 (01B8h to H440 to H443 (01B8h to H440 to H447 (01BCh to H444 to H447 (01BCh to H448 to H451 (01C0h to H452 to H455 (01C4h to H452 to H455 (01C4h to H452 to H456 to H459 (01C8h to H456 to H459 (01C6h to H464 to H467 (01D0h to H464 to H467 (01D0h to H464 to H467 (01D4h to H468 to H471 (01D4h to H468 to H471 (01D4h to H472 to H475 (01D8h to H472 to H475 (01D8h to H476 to H479 (01DCh to H476 to H479 (01DCh to H487 to H487 (01E4h to H487 to H487 (01E4h to H487 to H487 (01E8h to H487 to H488 to H491 (01E8h to H487 to H496 to H499 (01F0h to H4877 transmission UART7 transmission H486 to H499 (01F0h to H4877 transmission UART7 transmission H496 to H499 (01F0h to H4877 to H4977	01ABh) 106	
Reserved +436 to +439 (01B4h to +443 (01B8h to +440 to +443 (01B8h to +444 to +447 (01BCh to +444 to +447 (01BCh to +448 to +451 (01C0h to Reserved Reserved +448 to +451 (01C0h to +452 to +455 (01C4h to +452 to +455 (01C4h to +456 to +459 (01C8h to +456 to +459 (01C8h to +460 to +463 (01CCh to Reserved Reserved +464 to +467 (01D0h to +468 to +471 (01D4h to +468 to +471 (01D4h to +472 to +475 (01D8h to +472 to +475 (01D8h to +476 to +479 (01DCh to +476 to +479 (01DCh to +484 to +487 (01E4h to +487 (01E4h to +487 (01E4h to +487 (01E4h to +487 (01E8h to +491 (01E8h to +491 (01E8h to +492 to +495 (01ECh to +492 to +495 (01ECh to +496 to +499 (01F0h to +496 to +499 (01F0h to +496 to +499 (01F4h to +496 to +496 to +499 (01F4h to +496 to +496 to +499 (01F4h to +496	01AFh) 107	
Reserved +440 to +443 (01B8h to Reserved Reserved +444 to +447 (01BCh to Reserved Reserved +448 to +451 (01C0h to Reserved Reserved +452 to +455 (01C4h to Reserved Reserved +460 to +463 (01CCh to Reserved Reserved +464 to +467 (01D0h to Reserved Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to Reserved UART9 transmission +480 to +483 (01E0h to Reserved) UART9 reception +484 to +487 (01E4h to Reserved) UART10 transmission +484 to +491 (01E8h to Reserved) UART10 transmission +488 to +491 (01E8h to Reserved) UART10 reception +492 to +495 (01ECh to Reserved) UART7 transmission +496 to +499 (01F0h to Reserved) UART7 reception +500 to +503 (01F4h to Reserved)	01B3h) 108	
Reserved +444 to +447 (01BCh to Reserved +448 to +451 (01C0h to Reserved +452 to +455 (01C4h to Reserved +456 to +459 (01C8h to Reserved +460 to +463 (01CCh to Reserved +464 to +467 (01D0h to Reserved +468 to +471 (01D4h to Reserved +472 to +475 (01D8h to Reserved +476 to +479 (01DCh to UART9 transmission +480 to +483 (01E0h to UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	01B7h) 109	
Reserved +448 to +451 (01C0h to Reserved +452 to +455 (01C4h to Heserved +456 to +459 (01C8h to Heserved +460 to +463 (01CCh to Reserved +464 to +467 (01D0h to Reserved +468 to +471 (01D4h to Reserved +472 to +475 (01D8h to Heserved +472 to +475 (01D8h to Heserved +476 to +479 (01DCh to Heserved Heserved +476 to +479 (01DCh to Heserved Heserve	01BBh) 110	
Reserved +452 to +455 (01C4h to Reserved +456 to +459 (01C8h to Reserved +460 to +463 (01CCh to Reserved +464 to +467 (01D0h to Reserved +468 to +471 (01D4h to Reserved +472 to +475 (01D8h to Reserved +476 to +479 (01DCh to UART9 transmission +480 to +483 (01E0h to UART9 reception +484 to +487 (01E4h to UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	o 01BFh) 111	
Reserved +456 to +459 (01C8h to reserved) Reserved +460 to +463 (01CCh to reserved) Reserved +464 to +467 (01D0h to reserved) Reserved +472 to +475 (01D8h to reserved) Reserved +476 to +479 (01DCh to reserved) UART9 transmission +480 to +483 (01E0h to reserved) UART9 reception +484 to +487 (01E4h to reserved) UART10 transmission +488 to +491 (01E8h to reserved) UART10 reception +492 to +495 (01ECh to reserved) UART7 transmission +496 to +499 (01F0h to reserved) UART7 reception +500 to +503 (01F4h to reserved)	01C3h) 112	
Reserved +460 to +463 (01CCh to Reserved Reserved +464 to +467 (01D0h to Reserved Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to Reserved) UART9 transmission +480 to +483 (01E0h to Reserved) UART9 reception +484 to +487 (01E4h to Reserved) UART10 transmission +488 to +491 (01E8h to Reserved) UART10 transmission +492 to +495 (01ECh to Reserved) UART7 transmission +496 to +499 (01F0h to Reserved) UART7 reception +500 to +503 (01F4h to Reserved)	01C7h) 113	
Reserved +464 to +467 (01D0h to Reserved Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to H476 to +479 (01DCh to H476 to +479 (01DCh to H480 to +483 (01E0h to H480 to +483 (01E0h to H480 to +487 (01E4h to H480 to +487 (01E4h to H480 to H491 (01E8h to H480 to H491 (01E8h to H491 to H492 to +495 (01ECh to H492 to H495 (01ECh to H492 to H496 to H499 (01F0h to H496 to H499 (01F0h to H497 to H496 to H499 (01F4h to H497 to H496 to H499 (01F4h to H497 to H496 to H499 (01F4h to H497 to H496 to H499 to H496 to H499 to H496 to H499 (01F4h to H497 to H496 to H499 to H496 to H496 to H499 to H496 to H499 to H496 to H499 to H496 to H496 to H496 to H496 to H499 to H496 to H496 to H499 to H496	01CBh) 114	
Reserved +468 to +471 (01D4h to Reserved Reserved +472 to +475 (01D8h to H476 to +479 (01DCh to H476 to +479 (01DCh to H480 to +483 (01E0h to H480 to +483 (01E0h to H480 to +487 (01E4h to H480 to +487 (01E4h to H480 to +491 (01E8h to H480 to +491 (01E8h to H480 to +491 (01E8h to H490 to +495 (01ECh to H490 to +496 to +499 (01F0h to H480 to +499 (01F0h to H480 to +500 to +503 (01F4h to H480 to +471 (01D4h to H480 to +471 (01D4h to H480 to +472 to +475 (01E4h to +475	o 01CFh) 115	
Reserved +472 to +475 (01D8h to H275 (01D8h to H276 to H	01D3h) 116	
Reserved +476 to +479 (01DCh to UART9 transmission +480 to +483 (01E0h to UART9 reception +484 to +487 (01E4h to UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	01D7h) 117	
UART9 transmission +480 to +483 (01E0h to UART9 reception +484 to +487 (01E4h to UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	01DBh) 118	
UART9 reception +484 to +487 (01E4h to UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	o 01DFh) 119	
UART10 transmission +488 to +491 (01E8h to UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	,	18. "Serial Interface"
UART10 reception +492 to +495 (01ECh to UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	01E7h) 121	
UART7 transmission +496 to +499 (01F0h to UART7 reception +500 to +503 (01F4h to	*	
UART7 reception +500 to +503 (01F4h to	01EFh) 123	
	01F3h) 124	
	01F7h) 125	
UART8 transmission +504 to +507 (01F8h to	,	
UART8 reception +508 to +511 (01FCh to	01FFh) 127	
INT instruction (3) +0 to +3 (0000h to 0003 +1020 to +1023 (03FCh		11.2 "Software Interrupts"

- 1. Entries in this table cannot be used to exit wait mode or stop mode.
- 2. Each entry is relative to the base address in the INTB register.
- 3. Interrupts from this source cannot be disabled by the I flag.

11.6 Interrupt Request Acceptance

Software interrupts and special interrupts are accepted whenever their interrupt request is generated. Peripheral interrupts, however, are only accepted if the conditions below are met:

- I flag is 1
- IR bit is 1
- Bits ILVL2 to ILVL0 > IPL

The I flag, IPL, IR bit, and bits ILVL2 to ILVL0 do not affect each other. The I flag and IPL are in the FLG register. The IR bit and bits ILVL2 to ILVL0 are in the interrupt control register.

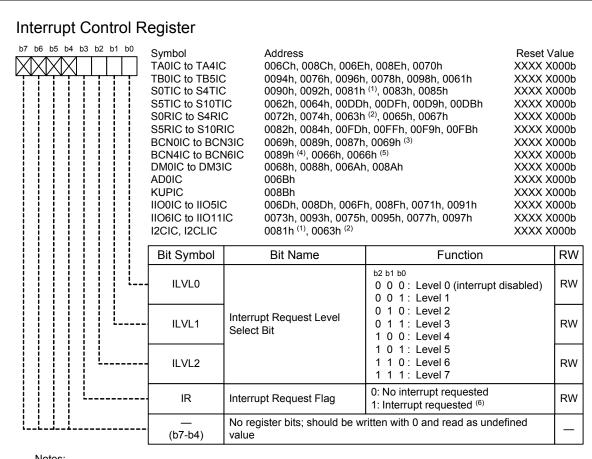
The following section describes these flag and bits.

11.6.1 I Flag and IPL

The I flag (interrupt enable flag) enables or disables maskable interrupts. When the I flag is set to 1 (enabled), all maskable interrupts are enabled; when it is set to 0 (disabled), they are disabled. The I flag becomes 0 after a reset.

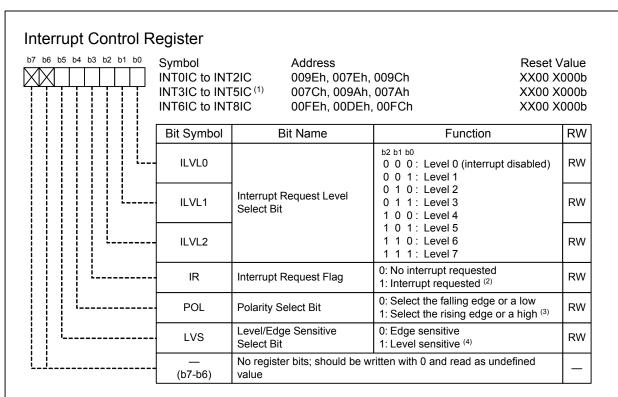
The IPL (processor interrupt priority level) consists of 3 bits and indicates eight interrupt priority levels from 0 to 7. An interrupt becomes acceptable when its interrupt request level is higher than the specified IPL (bits ILVL2 to ILVL0 > IPL).

Table 11.6 lists interrupt request levels classified by the IPL.


Table 11.6 Acceptable Interrupt Request Levels and IPL

	<u> </u>	•	-
	IPL		Acceptable Interrupt Request Levels
IPL2	IPL1	IPL0	Acceptable interrupt Nequest Levels
1	1	1	All maskable interrupts are disabled
1	1	0	Level 7 only
1	0	1	Level 6 and above
1	0	0	Level 5 and above
0	1	1	Level 4 and above
0	1	0	Level 3 and above
0	0	1	Level 2 and above
0	0	0	Level 1 and above

11.6.2 **Interrupt Control Registers**


Each peripheral interrupt is controlled by an interrupt control register.

11.4 show the interrupt control registers.

- 1. The S2TIC register shares an address with the I2CIC register.
- 2. The S2RIC register shares an address with the I2CLIC register.
- 3. The BCN0IC register shares an address with the BCN3IC register.
- 4. The BCN1IC register shares an address with the BCN4IC register.
- 5. The BCN5IC register shares an address with the BCN6IC register.
- 6. This bit can only be set to 0 (do not set it to 1).

Figure 11.3 Interrupt Control Register (1/2)

Notes:

- 1. When the 16- or 32-bit data bus is used in microprocessor mode or memory expansion mode, pins INT3 to INT5 function as data bus. In this case, set bits ILVL2 to ILVL0 in registers INT3IC to INT5IC to 000b.
- 2. This bit can only be set to 0 (do not set it to 1).
- 3. Set this bit to 0 (the falling edge) to set the corresponding bit in registers IFSR0 and IFSR1 to 1 (both edges)
- 4. Set the corresponding bit in registers IFSR0 and IFSR1 to 0 (one edge) to select the level sensitive.

Figure 11.4 Interrupt Control Register (2/2)

Bits ILVL2 to ILVL0

The interrupt request level is selected by setting bits ILVL2 to ILVL0. The higher the level is, the higher interrupt priority is.

When an interrupt request is generated, its request level is compared to the IPL. The interrupt is accepted only when the interrupt request level is higher than the IPL. When bits ILVL2 to ILVL0 are set to 000b, the interrupt is disabled.

IR bit

The IR bit becomes 1 (interrupt requested) when an interrupt request is generated; this bit setting is retained until the interrupt request is accepted. When the request is accepted and a jump to the corresponding interrupt vector takes place, the IR bit becomes 0 (no interrupt requested).

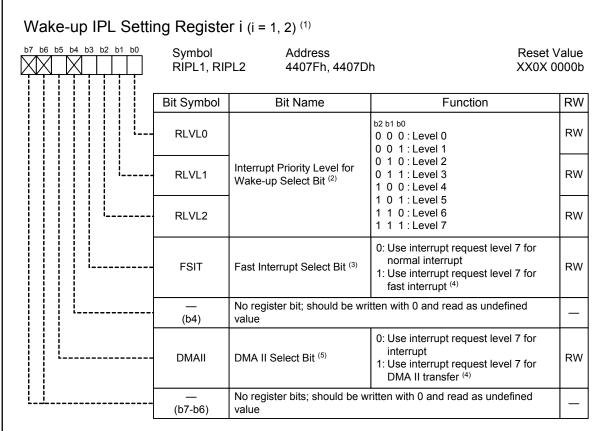
The IR bit can be set to 0 by a program. This bit should not be set to 1.

When rewriting the interrupt control register, no corresponding interrupt request should be generated. If there is a possibility that an interrupt request may be generated, disable the interrupt request before rewriting the register.

When enabling an interrupt immediately after changing the interrupt control register, insert NOPs between two instructions or perform a dummy read of the interrupt control register so that the interrupt enable flag (I flag) cannot become 1 (interrupt enabled) before writing to the interrupt control register is completed.

If an interrupt request is generated for the register being rewritten, the IR bit may not become 1 depending on the instruction being used. If it matters, use one of the following instructions to rewrite the register:

- AND
- OR
- BCLR
- BSET


If the AND or BCLR instruction is used to set the IR bit to 0, the IR bit may not become 0 as these instructions cause the interrupt request to be retained during the rewrite. To prevent this from happening, rewrite the register using the MOV instruction. To set just the IR bit to 0, first temporarily store the read value to memory or a CPU internal register, then execute either the AND or BCLR instruction in the stored area. After that, write the value back to the register using the MOV instruction.

11.6.3 Wake-up IPL Setting Register

Set the wake-up IPL setting registers (registers RIPL1 and RIPL2) when using an interrupt to exit wait or stop mode, or using the fast interrupt.

Refer to 8.7.2 "Wait Mode", 8.7.3 "Stop Mode", or 11.4 "Fast Interrupt" for details.

Figure 11.5 shows registers RIPL1 and RIPL2.

- 1. Registers RIPL1 and RIPL2 should be set with the same values.
- 2. The MCU exits wait mode or stop mode when the request level of the requested interrupt is higher than the level selected using bits RLVL2 to RLVL0. Set these bits to the same value as the IPL in the FLG register.
- 3. When the FSIT bit is 1, an interrupt with interrupt request level 7 becomes the fast interrupt. In this case, set the interrupt request level to level 7 with only one interrupt.
- 4. Set either the FSIT or DMAII bit to 1. The fast interrupt and DMAC II cannot be used simultaneously.
- 5. Set bits ILVL2 to ILVL0 in the interrupt control register after the DMAII bit is set. DMA II transfer is not affected by the I flag or IPL.

Figure 11.5 Registers RIPL1 and RIPL2

11.6.4 Interrupt Sequence

An interrupt sequence is performed from when an interrupt request has been accepted until the interrupt handler starts.

When an interrupt request is generated while an instruction is being executed, the requested interrupt is evaluated in the priority resolver after the current instruction is completed, and the interrupt sequence starts from the next cycle.

However, for instructions RMPA, SCMPU, SIN, SMOVB, SMOVF, SMOVU, SOUT, SSTR, SUNTIL, and SWHILE, when an interrupt request is generated while an instruction is being executed, the current instruction is suspended, and the interrupt sequence starts.

The interrupt sequence is as follows:

- (1) The CPU acknowledges the interrupt request to obtain the interrupt information (the interrupt number, and the interrupt request level) from the interrupt controller. Then the corresponding IR bit becomes 0 (no interrupt requested).
- (2) The FLG register value before the interrupt sequence is stored to a temporary register in the CPU. The temporary register is inaccessible to users.
- (3) The following bits in the FLG register become 0:
 - The I flag (interrupt enable flag): interrupt disabled
 - The D flag (debug flag): single-step interrupt disabled
 - The U flag (stack pointer select flag): ISP selected
- (4) The temporary register value in the CPU is saved to the stack, or to the SVF register in case of the fast interrupt.
- (5) The PC value is saved to the stack, or to the SVP register in case of the fast interrupt.
- (6) The interrupt request level for the accepted interrupt is set in the IPL (processor interrupt priority level).
- (7) The corresponding interrupt vector is read from the interrupt vector table.
- (8) This interrupt vector is stored into the PC.

After the interrupt sequence is completed, an instruction is executed from the start address of the interrupt handler.

11.6.5 Interrupt Response Time

The interrupt response time, as shown in Figure 11.6, consists of two non-overlapping time segments: (a) the period from when an interrupt request is generated until the instruction being executed is completed; and (b) the period required for the interrupt sequence.

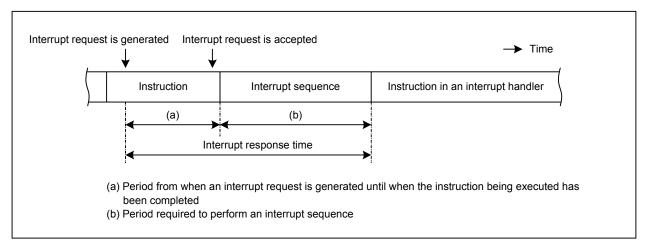


Figure 11.6 Interrupt Response Time

Period (a) varies depending on the instruction being executed. Instructions, such as LDCTX and STCTX in which registers are sequentially saved into or restored from the stack, require the longest time. For example, the STCTX instruction requires at least 30 cycles for 10 registers to be saved. It requires more time if the WAIT instruction is in the stack.

Period (b) is listed in Table 11.7.

Table 11.7 Interrupt Sequence Execution Time (1)

Interrupt	Execution Time in Terms of CPU Clock
Peripherals	13 + α cycles ⁽²⁾
INT instruction	11 cycles
NMI	10 cycles
Watchdog timer Oscillator stop detection Low voltage detection	11 cycles
Undefined instruction	12 cycles
Overflow	12 cycles
BRK instruction (relocatable vector table)	16 cycles
BRK instruction (fixed vector table)	19 cycles
BRK2 instruction	19 cycles
Fast interrupt	11 cycles

- 1. These are the values when the interrupt vectors are aligned to the addresses in multiples of 4 in the internal ROM. However, the condition does not apply to the fast interrupt.
- 2. α is the number of waits to access SFRs minus 2.

11.6.6 IPL after Accepting an Interrupt Request

When a peripheral interrupt request is accepted, the interrupt request level is set in the IPL (processor interrupt priority level).

Software interrupts and special interrupts have no interrupt request level. When these interrupt requests are accepted, the value listed in Table 11.8 is set in the IPL as the interrupt request level.

Table 11.8 Interrupts without Interrupt Request Level and IPL

Interrupt Sources without Interrupt Request Level	IPL Value to be Set
NMI, watchdog timer, oscillator stop detection, low voltage detection	7
Reset	0
Software	Unchanged

11.6.7 Register Saving

In the interrupt sequence, the FLG register and PC values are saved to the stack, in that order. Figure 11.7 shows the stack status before and after an interrupt request is accepted.

In the fast interrupt sequence, the FLG register and PC values are saved to registers SVF and SVP, respectively.

If there are any other registers to be saved to the stack, save them at the beginning of the interrupt handler. A single PUSHM instruction saves all registers except the frame base register (FB) and stack pointer (SP).

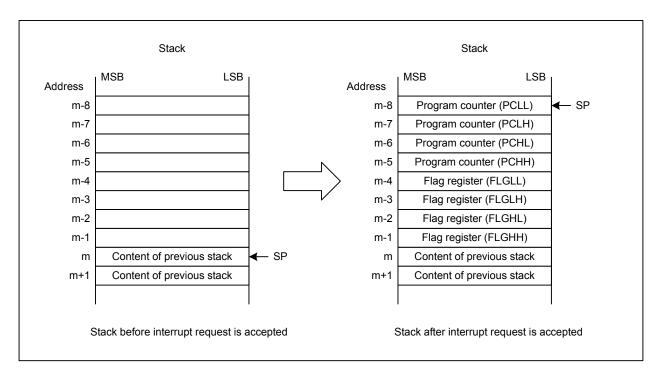


Figure 11.7 Stack Before and After an Interrupt Request is Accepted

11.7 Register Restoring from Interrupt Handler

When the REIT instruction is executed at the end of the interrupt handler, the FLG register and PC values, which are saved in the stack, are restored, and the program resumes the operation that was interrupted. In the fast interrupt, execute the FREIT instruction to restore them from the save registers, instead.

To restore the register values which are saved by software in the interrupt handler, use an instruction such as POPM before the REIT or FREIT instruction.

If the register bank is switched in the interrupt handler, the bank is automatically switched back to the original register bank by the REIT or FREIT instruction.

11.8 Interrupt Priority

If two or more interrupt requests are detected at an interrupt request sampling point, the interrupt request with higher priority is accepted.

For maskable interrupts (peripheral interrupts), the interrupt request level select bits (bits ILVL2 to ILVL0) select a request level. If two or more interrupt requests have the same request level, the interrupt with higher priority, predetermined by hardware, is accepted.

The priorities of the reset and special interrupts, such as the watchdog timer interrupt, are determined by the hardware. Note that the reset has the highest priority. The following is the priority order determined by the hardware:

 $Watchdog\ timer$ $Reset > Oscillator\ stop\ detection > NMI > Peripherals$ $Low\ voltage\ detection$

Software interrupts are not governed by priority. A jump to the interrupt handler takes place whenever the relevant instruction is executed.

11.9 Priority Resolver

The priority resolver selects an interrupt that has the highest priority among requested interrupts detected at the same sampling point.

Figure 11.8 shows the priority resolver.

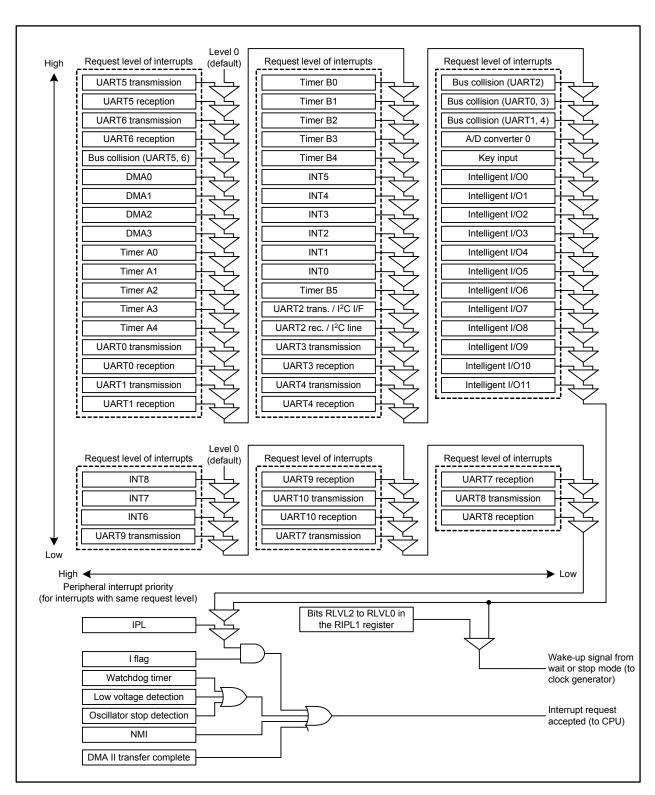


Figure 11.8 Priority Resolver

11.10 External Interrupt

An external interrupt occurs by an external input applied to the INTi pin (i = 0 to 8). Set the LVS bit in the INTiIC register to select whether an interrupt is triggered by the effective edge(s) (edge sensitive), or by the effective level (level sensitive) of the input signal. The polarity of the input signal is selected by setting the POL bit in the same register.

When using edge-triggered interrupts, setting the IFSR0j bit in the IFSR0 register to 1 (both edges) causes interrupt requests to be generated on both rising and falling edges of the external input applied to the $\overline{\text{INTj}}$ pin (j = 0 to 5). This also applies to setting the IFSR1n bit (n = m - 6) in the IFSR1 register to 1 (both edges) for the $\overline{\text{INTm}}$ pin (m = 6 to 8). Set the POL bit in the corresponding register to 0 (falling edge) to set the IFSR0j bit or the IFSR1n bit to 1.

When using level-triggered interrupts, set the IFSR0j or IFSR1n bit to 0 (one edge). When an effective level, which is selected by the POL bit, is detected on the $\overline{\text{INTi}}$ pin, the IR bit in the INTiIC register becomes 1. The IR bit does not become 0 even if the signal level at the $\overline{\text{INTi}}$ pin changes. This bit is set to 0 when the INTi interrupt is accepted or it is set to 0 by a program.

Figures 11.9 and 11.10 show registers IFSR0 and IFSR1, respectively.

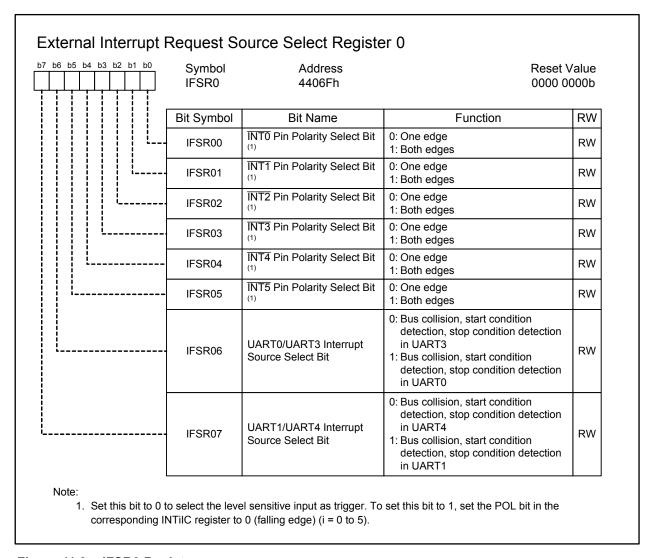


Figure 11.9 IFSR0 Register

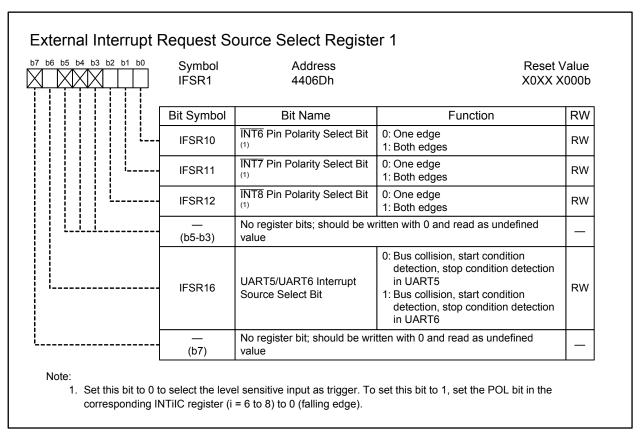


Figure 11.10 IFSR1 Register

11.11 NMI

The NMI (non maskable interrupt) occurs when an input signal at the $\overline{\text{NMI}}$ pin switches from high to low. This non maskable interrupt is disabled after a reset. To enable this interrupt, set the PM24 bit in the PM2 register to 1 after setting the interrupt stack pointer (ISP) at the beginning of the program. The $\overline{\text{NMI}}$ pin shares a pin with port P8_5, which enables the P8_5 bit in the P8 register to indicate the input level at the $\overline{\text{NMI}}$ pin.

Note:

1. When not using the NMI, do not change the reset value of the PM24 bit in the PM2 register.

11.12 Key Input Interrupt

The key input interrupt is enabled by setting ports P10_4 to P10_7 as input ports.

The interrupt request is generated if any of the signals applied to ports P10_4 to P10_7 switch from high to low. This interrupt also functions as key wake-up to exit wait or stop mode. Figure 11.11 shows a block diagram of the key input interrupt. If any of the ports are held low, signals applied to other ports are not detected as interrupt request signals.

To use the key input interrupt, every register from P10_4S to P10_7S should be set to 00h (I/O port) and bits PD10_4 to PD10_7 should be set to 0 (input). This is the only setting available for the key input interrupt.

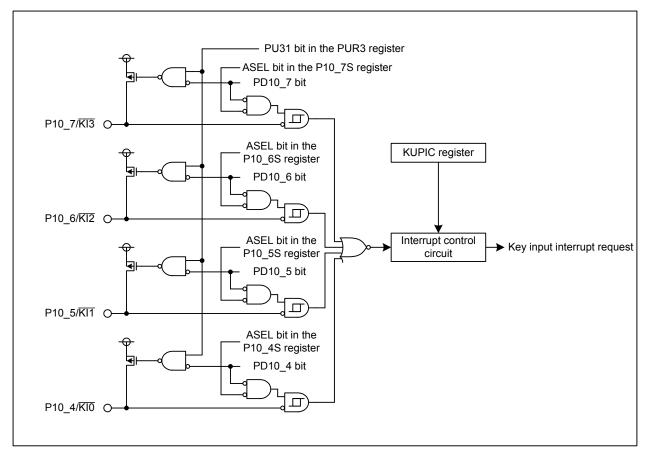


Figure 11.11 Key Input Interrupt Block Diagram

11.13 Intelligent I/O Interrupt

The intelligent I/O interrupt is assigned to software interrupt numbers 44 to 55.

Figure 11.12 shows a block diagram of the intelligent I/O interrupt. Figures 11.13 and 11.14 show registers IIOiIR and IIOiIE, respectively (i = 0 to 11).

To use the intelligent I/O interrupt, set the IRLT bit in the IIOiIE register to 1 (interrupt requests used for interrupt).

The intelligent I/O interrupt has multiple request sources. When an interrupt request is generated with an intelligent I/O function, the corresponding bit in the IIOiIR register becomes 1 (interrupt requested). If the corresponding bit in the IIOiIE register is 1 (interrupt enabled), the IR bit in the corresponding IIOiIC register changes to 1 (interrupt requested).

After the IR bit setting changes from 0 to 1, it remains unchanged if a bit in the IIOiIR register becomes 1 by another interrupt request source and the corresponding bit in the IIOiIE register is 1.

Bits in the IIOiIR register do not become 0 even if an interrupt is accepted. They should be set to 0 by either the AND or BCLR instruction. Note that every generated interrupt request is ignored until these bits are set to 0.

To use the intelligent I/O interrupt as a DMAC II trigger, set the IRLT bit in the IIOiIE register to 0 (interrupt requests used for DMA or DMA II) and the bit used for the interrupt source to 1 (interrupt enabled) in the IIOiIE register.

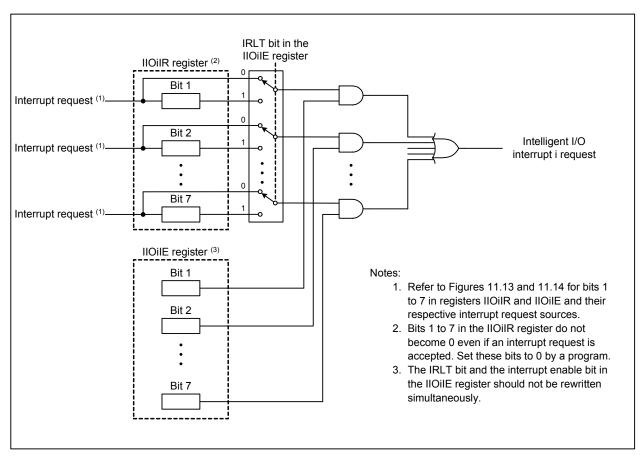


Figure 11.12 Intelligent I/O Interrupt Block Diagram (i = 0 to 11)

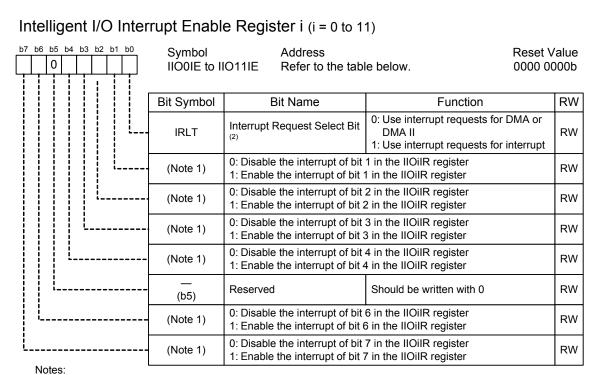
Intelligent I/O Interrupt Request Register i (i = 0 to 11) Symbol Reset Value 0 IIO0IR to IIO11IR Refer to the table below ??0? ???1b (1) Bit Symbol Bit Name Function RW No register bit; this bit is read as 1 (b0) 0: No interrupt requested (Note 2) RW 1: Interrupt requested (3) 0: No interrupt requested (Note 2) RW 1: Interrupt requested (3) 0: No interrupt requested (Note 2) RW 1: Interrupt requested (3) 0: No interrupt requested RW(Note 2) 1: Interrupt requested (3) Should be written with 0 RW Reserved (b5)0: No interrupt requested (Note 2) RW 1: Interrupt requested (3) 0: No interrupt requested (Note 2) RW 1: Interrupt requested (3)

Notes:

- 1. When the register has any function-assigned bit, the reset value is X (undefined); otherwise, the reset value is 0.
- 2. Refer to the table below for bit symbols.
- 3. When this bit is function-assigned, it can only be set to 0. It should not be set to 1. To set it to 0, either the AND or BCLR instruction should be used; when the bit is not function-assigned (reserved), it should be set to 0.

Bit Symbols for the Intelligent I/O Interrupt Request Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IR	00A0h		_	_	_	_	TM13R/PO13R	TM02R/PO02R	_
IIO1IR	00A1h		_	_	_	_	TM14R/PO14R	TM00R/PO00R	_
IIO2IR	00A2h		-	-	_	1	TM12R/PO12R	_	_
IIO3IR	00A3h		_	_	_	PO27R	TM10R/PO10R	TM03R/PO03R	_
IIO4IR	00A4h		_	_	BT1R		TM17R/PO17R	TM04R/PO04R	_
IIO5IR	00A5h		1	-	SIO2RR	1	PO21R	TM05R/PO05R	_
IIO6IR	00A6h	1	I	ı	SIO2TR	I	PO20R	TM06R/PO06R	_
IIO7IR	00A7h	IE0R			BT0R		PO22R	TM07R/PO07R	_
IIO8IR	00A8h	IE1R	IE2R	_	BT2R		PO23R	TM11R/PO11R	_
IIO9IR	00A9h		INT6R	_	_	_	PO24R	TM15R/PO15R	_
IIO10IR	00AAh		INT7R	-	_	1	PO25R	TM16R/PO16R	_
IIO11IR	00ABh	_	INT8R	_	_	_	PO26R	TM01R/PO01R	_


BTxR: Intelligent I/O group x base timer interrupt request (x = 0 to 2)

TMxyR: Intelligent I/O group x time measurement channel y interrupt request (x = 0, 1; y = 0 to 7) POxyR: Intelligent I/O group x waveform generation channel y interrupt request (x = 0 to 2; y = 0 to 7)

IEzR: Intelligent I/O group 2 IEBus interrupt request (z = 0 to 2) SIO2RR: Intelligent I/O group 2 receive interrupt request SIO2TR: Intelligent I/O group 2 transmit interrupt request

INTmR: INTm interrupt request (m = 6 to 8)

Figure 11.13 Registers IIO0IR to IIO11IR

1. Refer to the table below for bit symbols.

2. To use interrupt requests for interrupt, the IRLT bit should be set to 1, then bits 1 to 4, 6, and 7 should be set to 1.

Bit Symbols for the Intelligent I/O Interrupt Enable Register

Symbol	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IIO0IE	00B0h		_	_	_	_	TM13E/PO13E	TM02E/PO02E	IRLT
IIO1IE	00B1h	_	_	_	_	_	TM14E/PO14E	TM00E/PO00E	IRLT
IIO2IE	00B2h	_	_	_	_		TM12E/PO12E	_	IRLT
IIO3IE	00B3h		_	_		PO27E	TM10E/PO10E	TM03E/PO03E	IRLT
IIO4IE	00B4h		_	_	BT1E	_	TM17E/PO17E	TM04E/PO04E	IRLT
IIO5IE	00B5h	_	_	_	SIO2RE	_	PO21E	TM05E/PO05E	IRLT
IIO6IE	00B6h	_	_	_	SIO2TE		PO20E	TM06E/PO06E	IRLT
IIO7IE	00B7h	IE0E	_	_	BT0E		PO22E	TM07E/PO07E	IRLT
IIO8IE	00B8h	IE1E	IE2E	_	BT2E	_	PO23E	TM11E/PO11E	IRLT
IIO9IE	00B9h	_	INT6E	_	_	_	PO24E	TM15E/PO15E	IRLT
IIO10IE	00BAh	_	INT7E	_	_	_	PO25E	TM16E/PO16E	IRLT
IIO11IE	00BBh	_	INT8E	_	_	_	PO26E	TM01E/PO01E	IRLT

BTxE: Intelligent I/O group x base timer interrupt enabled (x = 0 to 2)

TMxyE: Intelligent I/O group x time measurement channel y interrupt enabled (x = 0, 1; y = 0 to 7) POxyE: Intelligent I/O group x waveform generation channel y interrupt enabled (x = 0 to 2; y = 0 to 7)

IEzE: Intelligent I/O group 2 IEBus interrupt enabled (z = 0 to 2) SIO2RE: Intelligent I/O group 2 receive interrupt enabled SIO2TE: Intelligent I/O group 2 transmit interrupt enabled

INTmE: INTm interrupt enabled (m = 6 to 8)

Figure 11.14 Registers IIO0IE to IIO11IE

11.14 Notes on Interrupts

11.14.1 ISP Setting

The interrupt stack pointer (ISP) is initialized to 00000000h after a reset. Set a value to the ISP before an interrupt is accepted, otherwise the program may go out of control. A multiple of 4 should be set to the ISP, which enables faster interrupt sequence due to less memory access.

When using NMI, in particular, since this interrupt cannot be disabled, set the PM24 bit in the PM2 register to 1 (NMI enabled) after setting the ISP at the beginning of the program.

11.14.2 NMI

- NMI cannot be disabled once the PM24 bit in the PM2 register is set to 1 (NMI enabled). This bit setting should be done only when using NMI.
- When the PM24 bit in the PM2 register is 1 (NMI enabled), the P8_5 bit in the P8 register is enabled just for monitoring the NMI pin state. It is not enabled as a general port.

11.14.3 External Interrupts

- The input signal to the INTi pin requires the pulse width specified in the electrical characteristics (i = 0 to 8). If the pulse width is narrower than the specification, an external interrupt may not be accepted.
- When the effective level or edge of the INTi pin (i = 0 to 8) is changed by the following bits: bits POL, LVS in the INTilC register, the IFSR0i bit (i = 0 to 5) in the IFSR0 register, and the IFSR1j bit (j = i 6; i = 6 to 8) in the IFSR1 register, the corresponding IR bit may become 1 (interrupt requested). When setting the above mentioned bits, preset bits ILVL2 to ILVL0 in the INTilC register to 000b (interrupt disabled). After setting the above mentioned bits, set the corresponding IR bit to 0 (no interrupt requested), then rewrite bits ILVL2 to ILVL0.
- The interrupt input signals to pins INT6 to INT8 are also connected to bits INT6R to INT8R in registers IIO9IR to IIO11IR. Therefore, these input signals, when assigned to the intelligent I/O, can be used as a source for exiting wait mode or stop mode. Note that these signals are enabled only on the falling edge and not affected by the following bit settings: bits POL and LVS in the INTIIC register (i = 0 to 8), IFSR0i bit (i = 0 to 5) in the IFSR0 register, and the IFSR1j bit (j = i 6; i = 6 to 8) in the IFSR1 register.

12. Watchdog Timer

The watchdog timer is used to detect program runaway. The 15-bit watchdog counter decrements with the cycle which is the peripheral bus clock frequency or on-chip oscillator clock frequency divided by the prescaler.

Select either an interrupt request or a reset with the CM06 bit in the CM0 register for when the watchdog timer underflows. Once the CM06 bit is set to 1 (reset), it cannot be changed to 0 (watchdog timer interrupt) by a program. It can be set to 0 only by a reset. When the CM06 bit is 0, after the watchdog timer underflows, it can reload value to resume counting or stop the operation by setting the WDK5 bit in the WDK register.

The watchdog timer has two prescalers. One is the on-chip oscillator clock divided by 1, 2, 4 or 8; the other is the peripheral bus clock divided by 16 or 128. To select the divide ratio for the former, set bits WDK3 and WDK2 in the WDK register. To select the divide ratio for the latter, set bits WDK4 and WDC7 in the WDC register.

The count source for the watchdog timer is set by the combination of the 23 bit in the PM2 register and the WDK4 bit in the WDK register. When the peripheral bus clock is selected as the count source, the watchdog timer is stopped in wait mode, stop mode, or when the HOLD signal is driven low. It resumes counting from the value held when exiting the mode or state. When the on-chip oscillator clock is selected, and the count source protect mode is enabled, the watchdog timer does not stop. The count source protect mode is selected by setting the PM22 bit in the PM2 register.

The general formula to calculate a watchdog timer period is:

```
Watchdog timer period = \frac{Prescaler divisor (16 or 128) \times 32768}{Peripheral bus clock frequency} or Watchdog timer period = \frac{Prescaler divider factor ((1, 2, 4, or 8) \times (1, 16, or 128)) \times 2048}{On-chip oscillator clock frequency}
```

For example, when the peripheral bus clock is selected as the count source and it is 1/2 of 64 MHz CPU clock and the prescaler has a divide-by-16 operation, the watchdog timer period is approximately 16.4 ms. When the on-chip oscillator clock whose frequency is 125 kHz is selected and it is divided by 8×128, the watchdog timer period is approximately 16.8 s. Depending on the timing of when a value is written to the WDTS register, a marginal error of one prescaler output cycle (maximum) may occur in the watchdog timer period.

The watchdog timer is initialized when a write operation to the WDTS register is performed or when a watchdog timer interrupt request is generated. The prescaler is initialized only when the MCU is reset. After a reset, the watchdog timer starts counting automatically if the OFS area of the flash memory are preset. When the WDTON bit in the OFS area is 1, both the watchdog timer and the prescaler are stopped. They start counting when a write operation to the WDTS register is performed. When the WDTON bit is 0, both the watchdog timer and the prescaler automatically start counting after a reset.

Figure 12.1 shows a block diagram of the watchdog timer. Figures 12.2 to 12.5 show registers associated with the watchdog timer.

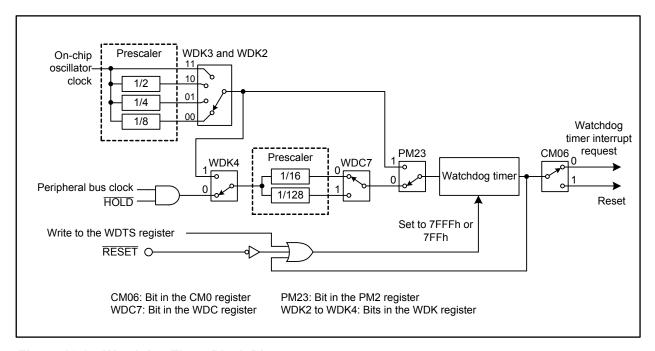


Figure 12.1 Watchdog Timer Block Diagram

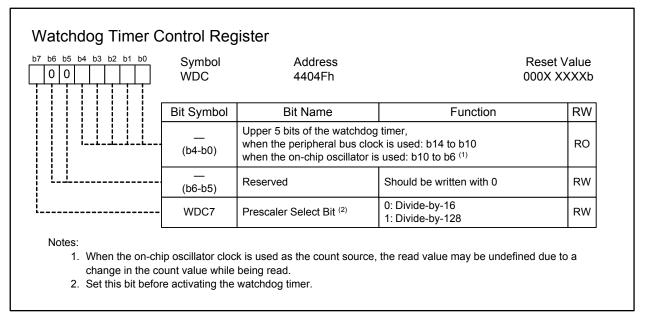
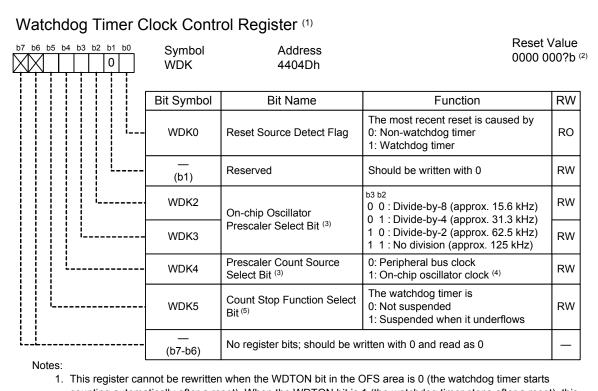



Figure 12.2 WDC Register

- 1. This register cannot be rewritten when the WDTON bit in the OFS area is 0 (the watchdog timer starts counting automatically after a reset). When the WDTON bit is 1 (the watchdog timer stops after a reset), this register can be rewritten only once after a reset. When the count source protect mode is enabled, this register should be set at the very beginning of the program.
- 2. The WDK0 bit becomes 1 when the most recent reset is caused by the watchdog timer. Otherwise, it becomes 0
- 3. Set these bits before activating the watchdog timer.
- 4. The on-chip oscillator starts running by setting the WDK4 bit to 1.
- 5. This bit setting is enabled when the CM06 bit in the CM0 register is 0 (watchdog timer interrupt).

Figure 12.3 WDK Register

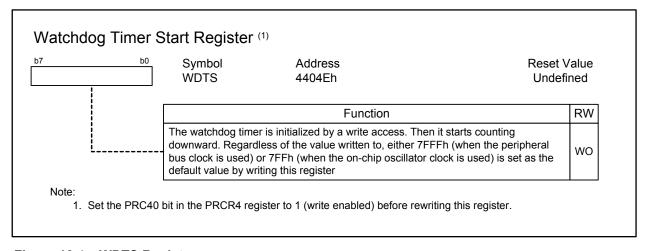


Figure 12.4 WDTS Register

- 1. Rewrite this area by the flash programmer. It cannot be rewritten by a program.
- 2. To enable the count source protect mode, set bits WDTON and CSPM to 0. Set also either the WPCS bit to 1 or WCSS bit to 0. Once the watchdog timer starts, the PM22 bit in the PM2 register and the WDK register cannot be rewritten.
- 3. These bit settings are disabled when the WDTON bit is 1. The values set to these bits are reflected to registers WDK and PM2 when the WDTON bit is 0.

Figure 12.5 OFS Area

13. DMAC

Direct memory access (DMA) is a system that can control data transfer without using a CPU instruction. The R32C/100 Series' four channel DMA controller (DMAC) transmits 8-bit (byte), 16-bit (word), or 32-bit (long word) data in cycle-steal mode from a source address to a destination address each time a transfer request is generated.

The DMAC, which shares a data bus with the CPU, has a higher bus access priority than the CPU. This allows the DMAC to perform fast data transfer when a transfer request is generated.

Figure 13.1 shows a map of the CPU-internal registers associated with DMAC. Table 13.1 lists DMAC specifications. Figures 13.2 to 13.10 show registers associated with DMAC. Since the registers shown in Figure 13.1 are allocated in the CPU, the LDC or STC instruction should be used to write to the registers.

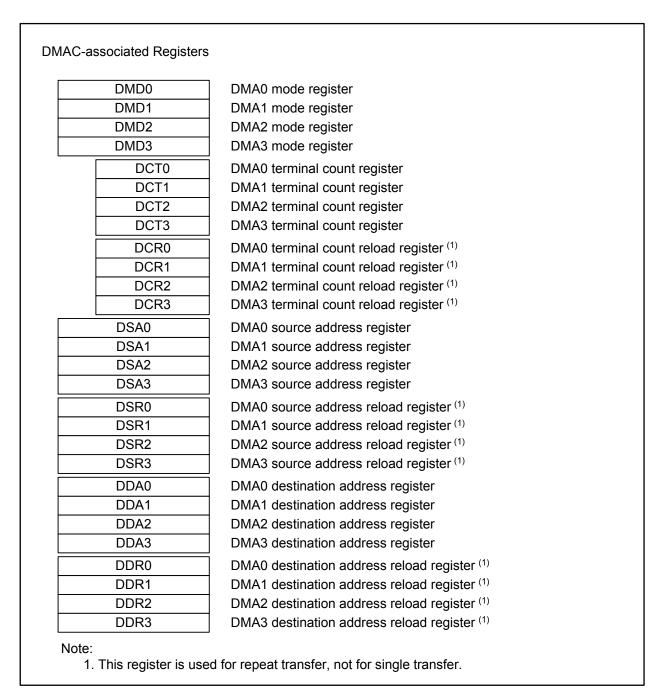


Figure 13.1 CPU-internal Registers for DMAC

Table 13.1 DMAC Specifications (i = 0 to 3)

Item		Specification		
Channels		4		
Bus request mode		Cycle-steal mode		
Transfer memory	spaces	From a given address in a 64-Mbyte space (00000000h to		
		01FFFFFFh and FE000000h to FFFFFFFFh) to another given		
		address in the same space		
Maximum transfe	r bytes	64-Mbytes (when 32-bit data is transferred), 32-Mbytes (when 16-bit		
		data is transferred), 16-Mbytes (when 8-bit data is transferred)		
DMA request sou	ırces ⁽¹⁾	Falling edge or both edges of signals applied to pins INT0 to INT3 or		
		pins INT6 to INT8		
		Interrupt requests from timers A0 to A4		
		Interrupt requests from timers B0 to B5		
		Transmit/receive interrupt requests from UART0 to UART10		
		A/D conversion interrupt requests		
		Intelligent I/O interrupt requests		
		Multi-master I ² C-bus interrupt requests		
		Software trigger		
Channel priority		DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has the highest priority)		
Transfer sizes		8 bits, 16 bits, or 32 bits		
Addressing mode		Incrementing addressing or non-incrementing addressing		
Transfer modes	Single transfer	Transfer is completed when the DCTi register becomes 00000000h		
	Repeat transfer	When the DCTi register becomes 00000000h, the value of the DCRi		
		register is reloaded into the DCTi register to continue the DMA		
		transfer		
DMA transfer con	•	When the DCTi register changes from 00000001h to 00000000h		
request generation	_			
DMA transfer	Single transfer	When a DMA transfer request is generated after the DCTi register is		
start-up		set to a value other than 00000000h and bits MDi1 and MDi0 in the		
		DMDi register are set to 01b (single transfer)		
	Repeat transfer	When a DMA transfer request is generated after the DCTi register is		
		set to a value other than 00000000h and bits MDi1 and MDi0 are set		
		to 11b (repeat transfer)		
DMA transfer	Single transfer	When bits MDi1 and MDi0 are set to 00b (DMA transfer disabled)		
stop Repeat transfer		When bits MDi1 and MDi0 are set to 00b (DMA transfer disabled)		
Reload timing to DCTi, DSAi, or		When the DCTi register changes from 00000001h to 00000000h in		
DDAi register		repeat transfer mode		
Minimum DMA tra	ansfer cycles	3		

Note:

1. DMA transfer does not affect any interrupts.

The DMA transfer request is available by two different sources: software and hardware. More concretely, they are a write access to the DSR bit in the DMiSL2 register and an interrupt request output from a function specified in bits DSEL4 to DSEL0 in the DMiSL register, and in bits DSEL24 to DSEL20 in the DMiSL2 register (i = 0 to 3). Unlike interrupt requests, the DMA transfer request is not affected by the I flag or the interrupt control register. Therefore this request can be accepted even when interrupts are disabled. Since the DMA transfer does not affect any interrupts, either, the IR bit in the interrupt control register is not changed by the DMA transfer.

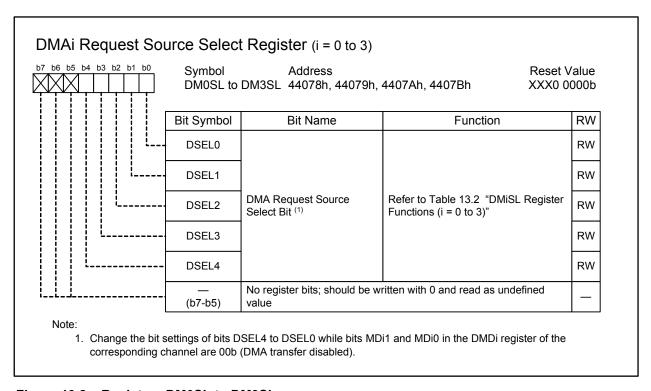


Figure 13.2 Registers DM0SL to DM3SL

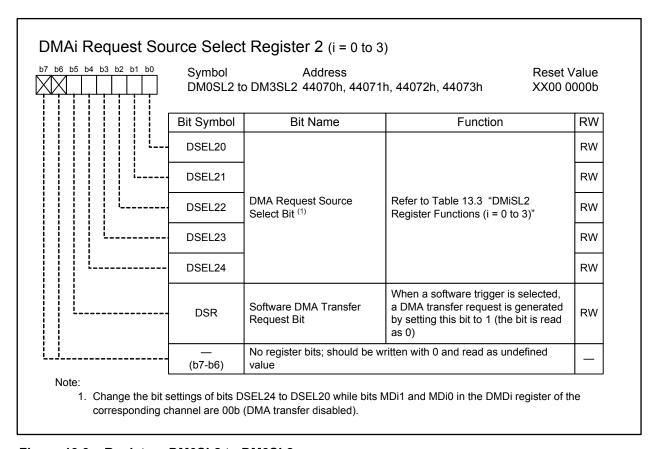


Figure 13.3 Registers DM0SL2 to DM3SL2

Table 13.2 DMiSL Register Functions (i = 0 to 3)

Setting Value	DMA Request Source						
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3			
0 0 0 0 0	Select from DMiSL2 register						
0 0 0 0 1	Falling edge of INTO (1) Falling edge of INT1 (1)		Falling edge of INT2 (1)	Falling edge of INT3 (1, 2)			
0 0 0 1 0	Both edges of INTO (1)	Both edges of INT1 (1)	Both edges of INT2 (1)	Both edges of INT3 (1, 2)			
0 0 0 1 1	Timer A0 interrupt reques	st	-				
0 0 1 0 0	Timer A1 interrupt reques	st					
0 0 1 0 1	Timer A2 interrupt reques	st					
0 0 1 1 0	Timer A3 interrupt reques	st					
0 0 1 1 1	Timer A4 interrupt reques	st					
0 1 0 0 0	Timer B0 interrupt reques	st .					
0 1 0 0 1	Timer B1 interrupt reques	st .					
0 1 0 1 0	Timer B2 interrupt reques	st .					
0 1 0 1 1	Timer B3 interrupt reques	st					
0 1 1 0 0	Timer B4 interrupt reques	st					
0 1 1 0 1	Timer B5 interrupt reques						
0 1 1 1 0	UART0 transmit interrupt	request					
0 1 1 1 1	UART0 receive interrupt r	request or ACK interrupt	request (3)				
1 0 0 0 0	UART1 transmit interrupt	request					
1 0 0 0 1	UART1 receive interrupt r	request or ACK interrupt	request (3)				
1 0 0 1 0	UART2 transmit interrupt request or I ² C-bus interface interrupt request ⁽⁴⁾						
1 0 0 1 1	UART2 receive interrupt request, ACK interrupt request ⁽³⁾ , or I ² C-bus line interrupt request ⁽⁴⁾						
1 0 1 0 0	UART3 transmit interrupt request						
1 0 1 0 1	UART3 receive interrupt request or ACK interrupt UART5 receive interrupt request or ACK interrupt						
1 0 1 0 1	request (3)						
1 0 1 1 0	UART4 transmit interrupt	request	UART6 transmit interrup	t request			
1 0 1 1 1		equest or ACK interrupt	UART6 receive interrupt request or ACK interrupt				
	request (3)			request (3)			
1 1 0 0 0	A/D0 interrupt request						
1 1 0 0 1		Intelligent I/O	Intelligent I/O	Intelligent I/O			
1 1 0 0 1		interrupt 7 request	interrupt 2 request	interrupt 9 request			
1 1 0 1 0		Intelligent I/O	Intelligent I/O	Intelligent I/O			
		interrupt 8 request	interrupt 3 request	interrupt 10 request			
1 1 0 1 1		Intelligent I/O	Intelligent I/O	Intelligent I/O			
		interrupt 9 request	interrupt 4 request	interrupt 11 request			
1 1 1 0 0		Intelligent I/O interrupt 10 request	Intelligent I/O	Intelligent I/O interrupt 0 request			
			interrupt 5 request				
1 1 1 0 1		Intelligent I/O interrupt 11 request	Intelligent I/O interrupt 6 request	Intelligent I/O interrupt 1 request			
		Intelligent I/O	Intelligent I/O	Intelligent I/O			
1 1 1 1 0	1 -	interrupt 0 request	interrupt 7 request	interrupt 2 request			
		Intelligent I/O	Intelligent I/O	Intelligent I/O			
1 1 1 1 1		interrupt 1 request	interrupt 8 request	interrupt 3 request			
			1				

Notes:

- 1. The falling edge and both edges of signals applied to the INTi pin become the DMA request sources (i = 0 to 3). These request sources are not affected by external interrupts (the IFSR0 register and bits POL and LVS in the INTilC register), and vice versa.
- 2. When the INT3 pin is used as data bus in memory expansion mode or microprocessor mode, it cannot be used as a signal input of the DMA3 request source.
- 3. Registers UiSMR and UiSMR2 are used to switch between the UARTi receive interrupt and ACK interrupt (i = 0 to 6).
- 4. Set the I2CEN bit in the I2CMR register to select an interrupt source from either UART2 or I2C-bus.

Table 13.3 DMiSL2 Register Functions (i = 0 to 3)

Setting Value	DMA Request Source					
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3		
0 0 0 0 0	Software trigger					
0 0 0 0 1	Falling edge of INT6 (1) Fa	alling edge of INT7 (1)	Falling edge of INT8 (1)	Reserved		
0 0 0 1 0	Both edges of INT6 (1) Both	oth edges of INT7 (1)	Both edges of INT8 (1)	Reserved		
0 0 0 1 1	Reserved					
0 0 1 0 0	Reserved					
0 0 1 0 1	Reserved					
0 0 1 1 0	Reserved					
0 0 1 1 1	Reserved					
0 1 0 0 0	Reserved					
0 1 0 0 1	Reserved					
0 1 0 1 0	Reserved					
0 1 0 1 1	Reserved					
0 1 1 0 0	Reserved					
0 1 1 0 1	Reserved					
0 1 1 1 0	Reserved	Reserved				
0 1 1 1 1	Reserved	Reserved				
1 0 0 0 0	Reserved					
1 0 0 0 1	Reserved					
1 0 0 1 0	Reserved	Reserved				
1 0 0 1 1	Reserved					
1 0 1 0 0	Reserved					
1 0 1 0 1	Reserved					
1 0 1 1 0	Reserved					
1 0 1 1 1	Reserved					
1 1 0 0 0	UART7 transmit interrupt re	equest				
1 1 0 0 1	UART7 receive interrupt request					
1 1 0 1 0	UART8 transmit interrupt request					
1 1 0 1 1	UART8 receive interrupt request					
1 1 1 0 0	UART9 transmit interrupt request					
1 1 1 0 1	UART9 receive interrupt request					
1 1 1 1 0	UART10 transmit interrupt request					
1 1 1 1 1	UART10 receive interrupt r	request				
	•					

Note:

1. The falling edge and both edges of signals applied to the INTi pin become the DMA request sources (i = 6 to 8). These request sources are not affected by external interrupts (the IFSR1 register and bits POL and LVS in the INTiIC register), and vice versa.

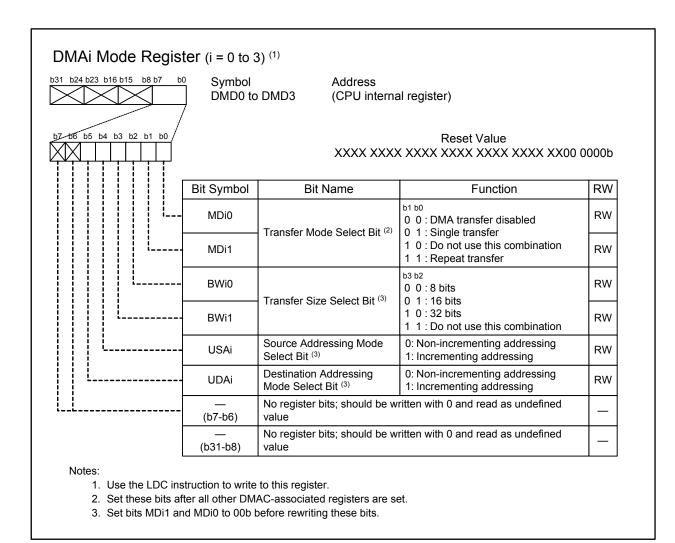


Figure 13.4 Registers DMD0 to DMD3

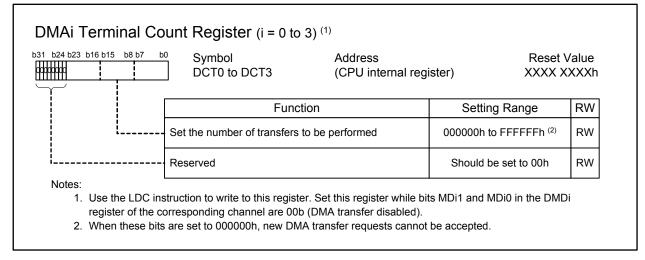


Figure 13.5 Registers DCT0 to DCT3

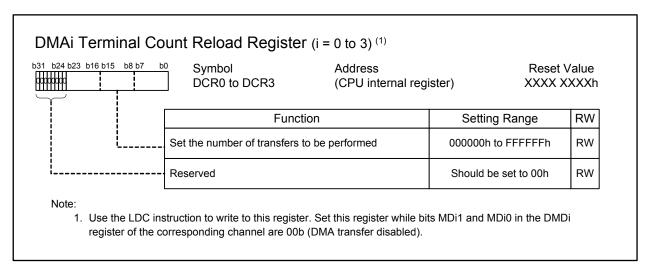


Figure 13.6 Registers DCR0 to DCR3

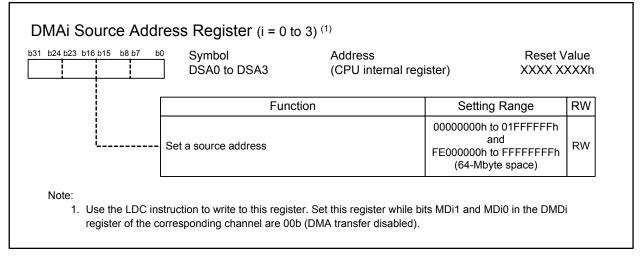


Figure 13.7 Registers DSA0 to DSA3

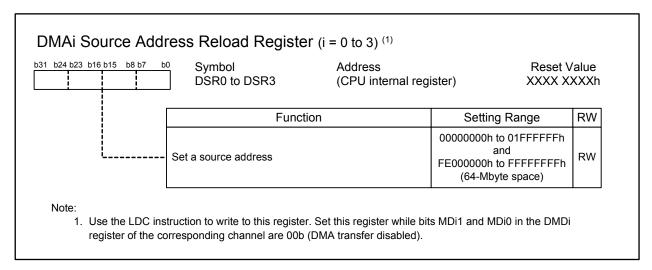


Figure 13.8 Registers DSR0 to DSR3

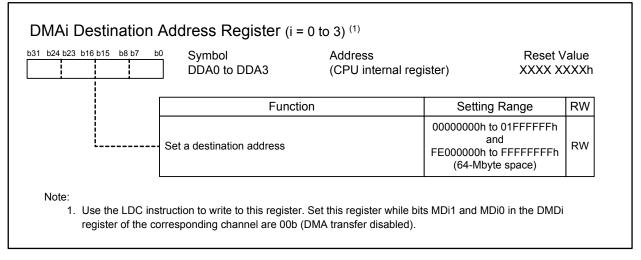


Figure 13.9 Registers DDA0 to DDA3

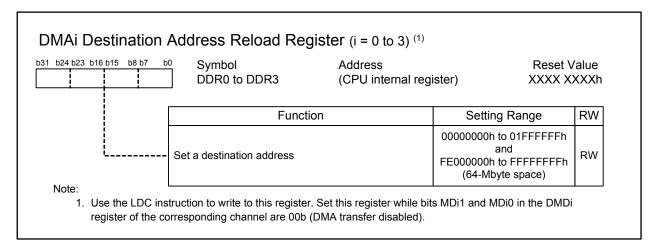


Figure 13.10 Registers DDR0 to DDR3

13.1 Transfer Cycle

The transfer cycle is composed of bus cycles to read data from (source read) or to write data to (destination write) memory or an SFR.

The read and write bus cycles vary with the setting of registers DSAi and DDAi, the width and timing of the data bus connected to the relevant device (i = 0 to 3).

13.1.1 Effect of Transfer Address and Data Bus Width

Table 13.4 lists the incremental bus cycles caused by transfer address alignment or data bus width.

Table 13.4 Incremental Bus Cycles Caused by Transfer Address and Data Bus Width

Transfer Data	Data Bus	Transfer	Bus Cycles to be	Bus Cycles Generated
Unit	Width	Address	Incremented	Bus Cycles Cenerated
8-bit transfer	8 to 64 bits	n	0	[n]
	8 bits	n	+1	[n] - [n + 1]
	16 bits	2n	0	[2n]
	10 013	2n + 1	+1	[2n + 1] - [2n + 2]
		4n	0	[4n]
	32 bits	4n + 1	0	[4n + 1]
	32 DIIS	4n + 2	0	[4n + 2]
		4n + 3	+1	[4n + 3] - [4n + 4]
16-bit transfer		8n	0	[8n]
		8n + 1	0	[8n + 1]
		8n + 2	0	[8n + 2]
	64 hita	8n + 3	0	[8n + 3]
	64 bits	8n + 4	0	[8n + 4]
		8n + 5	0	[8n + 5]
		8n + 6	0	[8n + 6]
		8n + 7	+1	[8n + 7] - [8n + 8]
	8 bits	n	+3	[n] - [n + 1] - [n + 2] - [n + 3]
	16 bits	4n	+1	[4n] - [4n + 2]
		4n + 1	+2	[4n + 1] - [4n + 2] - [4n + 4]
		4n + 2	+1	[4n + 2] - [4n + 4]
		4n + 3	+2	[4n + 3] - [4n + 4] - [4n + 6]
	32 bits	4n	0	[4n]
		4n + 1	+1	[4n + 1] - [4n + 4]
		4n + 2	+1	[4n + 2] - [4n + 4]
32-bit transfer		4n + 3	+1	[4n + 3] - [4n + 4]
	64 bits	8n	0	[8n]
		8n + 1	0	[8n + 1]
		8n + 2	0	[8n + 2]
		8n + 3	0	[8n + 3]
		8n + 4	0	[8n + 4]
		8n + 5	+1	[8n + 5] - [8n + 8]
		8n + 6	+1	[8n + 6] - [8n + 8]
		8n + 7	+1	[8n + 7] - [8n + 8]

13.1.2 Effect of Bus Timing

In the R32C/100 Series, a separate bus is connected to each device. The bus width and bus timing vary with each device. Table 13.5 lists the bus width and access cycles for each device.

Table 13.5 Bus Width and Bus Cycles

Device	Addresses (1)	Bus Width	Access Cycles (2)	Reference Clock
Flash memory	FFE00000h to FFFFFFFh	64-bit	2 or 3 ⁽³⁾	CPU clock
Data flash	00060000h to 00061FFFh	64-bit	5	CPU clock
RAM	00000400h to 0003FFFFh	64-bit	1 or 2 ⁽⁴⁾	CPU clock
SFR space	00000000h to 0000001Fh	16-bit	3 (5)	Peripheral bus clock
	00000020h to 000003FFh	16-bit	2 (5)	Peripheral bus clock
SFR2 space	00040000h to 00041FFFh	16-bit	2 (5)	Peripheral bus clock
	00042000h to 00043FFFh	32-bit	2 (5)	Peripheral bus clock
	00044000h to 000440DFh	16-bit	2 (5, 6)	Peripheral bus clock
	000440E0h to 000443FFh	16-bit	3 (5, 6)	Peripheral bus clock
	00044400h to 00045FFFh	16-bit	2 (5, 6)	Peripheral bus clock
	00046000h to 000467FFh	32-bit	3 (5, 6)	Peripheral bus clock
	00046800h to 00047FFFh	32-bit	2 (5, 6)	Peripheral bus clock
	00048000h to 0004FFFFh	64-bit	2	CPU clock
External bus	00080000h to 01FFFFFh FE000000h to FFDFFFFh	8-/16-/32-bit	Specified by the EBCn register (n = 0 to 3) (5)	Peripheral bus clock

Notes:

- 1. Reserved spaces are included.
- 2. Access cycles are based on each bus clock.
- 3. An access to the same page as the previous time requires two cycles. Otherwise, three cycles are required.
- 4. If write cycles are generated sequentially, each write cycle except the initial one has two access cycles. A read cycle just after a write cycle has also two access cycles.
- 5. If SFRs are sequentially accessed, each access except the initial one has one additional base clock cycle.
- 6. Up to one access cycle may be added depending on the phase of peripheral bus clock.

Figure 13.11 shows an example of source-read bus cycles in a transfer cycle. In this figure, the number of source-read bus cycles is shown under different conditions, provided that the destination address is in an internal RAM with one bus cycle of destination-write. In a real operation, the transfer cycles change according to conditions for destination-write bus cycles as well as for source-read bus cycles. To calculate a transfer cycle, respective conditions should be applied to both destination-write bus cycle and source-read bus cycle. In (B) of Figure 13.11, for example, if two bus cycles are generated, bus cycles required for the destination-write is two as well as for the source-read.

13.1.3 Effect of RDY Signal

In memory expansion mode or microprocessor mode, the \overline{RDY} signal affects a bus cycle in an external space. Refer to 9.3.7 " \overline{RDY} Signal" for details.

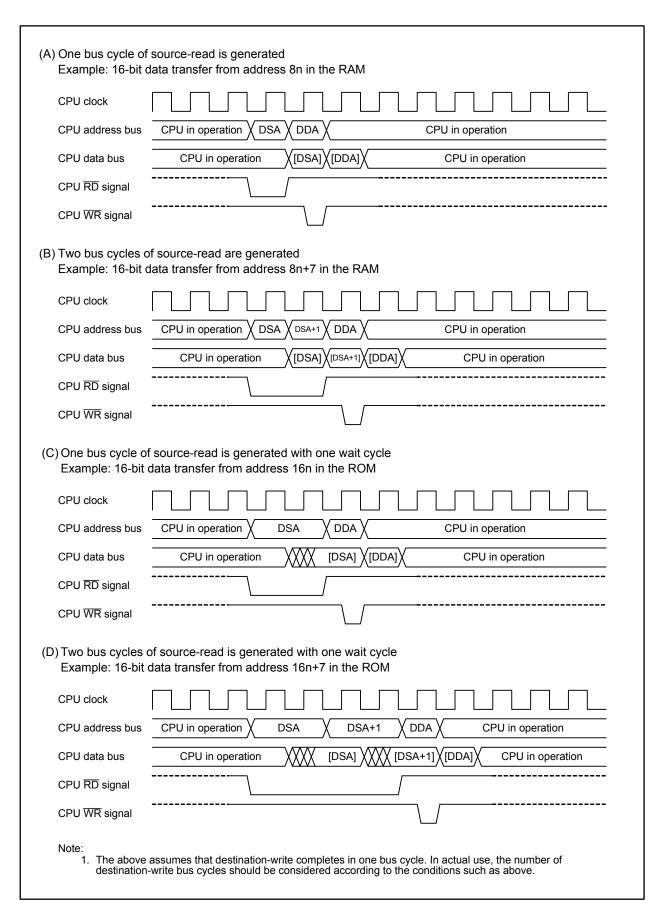


Figure 13.11 Source-read Bus Cycles in a Transfer Cycle

13.2 DMA Transfer Cycle

The DMA transfer cycles are calculated as follows:

Number of transfer cycles = Source-read bus cycles \times j + Destination-write bus cycles \times k + 1 where:

j = access cycles for read

k = access cycles for write (refer to Table 13.5)

Each bus cycle, source-read and destination-write, requires at least one cycle. In addition, more cycles may be required depending on the transfer address. Refer to Table 13.4 for details on the required bus cycles.

"+1" in the formula above means a cycle required to decrement the value of DCTi register (i = 0 to 3).

The following are calculation examples:

To transfer 32-bit data from address 400h in the RAM to address 800h in the RAM,

Number of the transfer cycles =
$$1 \times 1 + 1 \times 1 + 1$$

= 3

Thus, there are three cycles.

To transfer 16-bit data from the AD00 register at address 380h to registers P1 and P0 at addresses 3C1h and 3C0h, respectively, when the peripheral bus clock frequency is half the CPU clock,

Number of the transfer cycles =
$$1 \times 2 \times 2 + 1 \times 2 \times 2 + 1$$

= 9

Thus, there are nine cycles.

13.3 Channel Priority and DMA Transfer Timing

When multiple DMA transfer requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, these requests are simultaneously input into the DMAC. Channel priority in this case is: DMA0 > DMA1 > DMA2 > DMA3.

Figure 13.12 shows an example of the DMA transfer by external source, specifically when DMA0 and DMA1 requests are simultaneously generated. The DMA0, whose request priority is higher than that of DMA1, is received first to start the transfer and then hands over the bus to the CPU after completing one DMA0 transfer. Once the CPU completes one bus access, the DMA1 transfer starts. The CPU takes the bus back from the DMA1 after one DMA1 transfer is completed.

DMA transfer requests cannot be counted. Only a single transfer is performed even when an INTi interrupt occurs more than once before the bus is granted, as shown by DMA1 in Figure 13.12.

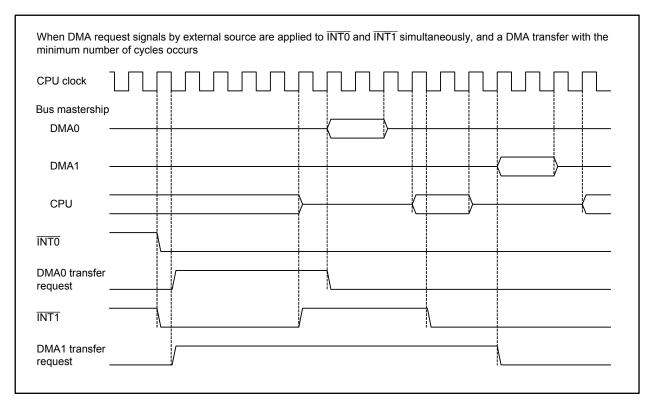


Figure 13.12 DMA Transfer by External Source

13.4 Notes on DMAC

13.4.1 DMAC-associated Register Settings

• Set DMAC-associated registers while bits MDi1 and MDi0 in the DMDi register are 00b (DMA transfer disabled) (i = 0 to 3). Then, set bits MDi1 and MDi0 to 01b (single transfer) or 11b (repeat transfer) at the end of the setup procedure. This procedure also applies when rewriting bits UDAi, USAi, and BWi1 and BWi0 in the DMDi register.

- When rewriting the DMAC-associated registers while DMA transfer is enabled, stop the peripherals that can be DMA triggers so that no DMA transfer request is generated, then set bits MDi1 and MDi0 in the DMDi register of the corresponding channel to 00b (DMA transfer disabled).
- Once a DMA transfer request is accepted, DMA transfer cannot be disabled even if setting bits MDi1 and MDi0 in the DMDi register to 00b (DMA transfer disabled). Do not change the settings of any DMAC-associated registers other than bits MDi1 and MDi0 until the DMA transfer is completed.
- After setting registers DMiSL and DMiSL2, wait at least six peripheral bus clocks to set bits MDi1 and MDi0 in the DMDi register to 01b (single transfer) or 11b (repeat transfer).

13.4.2 Reading DMAC-associated Registers

 Use the following read order to sequentially read registers DMiSL and DMiSL2: DM0SL, DM1SL, DM2SL, and DM3SL DM0SL2, DM1SL2, DM2SL2, and DM3SL2

14. DMAC II

DMAC II starts by an interrupt request from any peripheral and performs data transfer without a CPU instruction. Transfer sources are selectable from memory, immediate data, memory + memory, and immediate data + memory.

Table 14.1 lists specifications of DMAC II.

Table 14.1 DMAC II Specifications

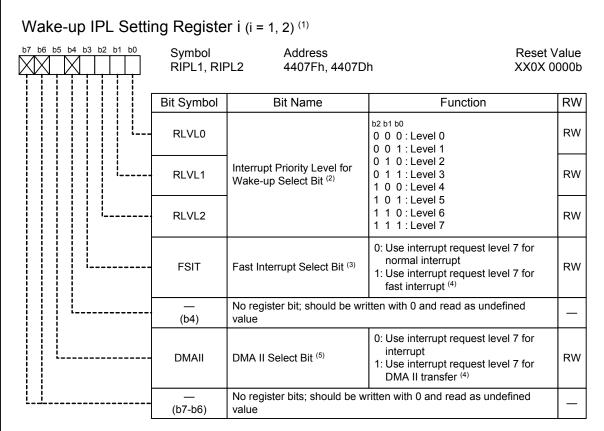
Item	Specification
DMAC II request sources	Interrupt requests from the peripherals of which bits ILVL2 to ILVL0 in the corresponding interrupt control register are set to 111b (level 7)
Transfer types	 Data in memory is transferred to memory (memory-to-memory transfer) Immediate data is transferred to memory (immediate data transfer) Data in memory + data in memory are transferred to memory (calculation result transfer) Immediate data + data in memory are transferred to memory (calculation result transfer)
Transfer sizes	8 bits or 16 bits
Transfer memory spaces	From a given address in a 64-Mbyte space (00000000h to 01FFFFFh and FE000000h to FFFFFFFh) to another given address in the same space (1)
Addressing modes	 Individually selectable for each source address and destination address from the following two modes: Non-incrementing addressing: Address is held constant throughout a data transfer/DMA II transaction Incrementing addressing: Address increments by 1 (when 8-bit data is transferred) or 2 (when 16-bit data is transferred) after each data transfer
Transfer modes	 Single transfer: Only one data transfer is performed by one transfer request Burst transfer: Data transfers are continuously performed for the number of times set in the transfer counter by one transfer request Multiple transfer: Multiple memory-to-memory transfers are performed from different source addresses to different destination addresses by one transfer request
Chain transfer	Data transfer is sequentially performed by switching among multiple DMAC II indexes (transfer information)
DMA II transfer complete interrupt request	An interrupt request is generated when the transfer counter reaches 0000h

Note:

1. When the transfer size is 16 bits and the destination address is FFFFFFFh, data is transferred to FFFFFFFh and 00000000h. This also applies when the source address is FFFFFFFh.

14.1 DMAC II Settings

To use DMAC II, set the following:


- Registers RIPL1 and RIPL2
- DMAC II index
- Interrupt control registers of the peripherals that trigger DMAC II
- Relocatable vectors of the peripherals that trigger DMAC II
- The IRLT bit in the IIOiIE register when using the intelligent I/O interrupt (i = 0 to 11). Refer to 11. "Interrupts" for details on the IIOiIE register.

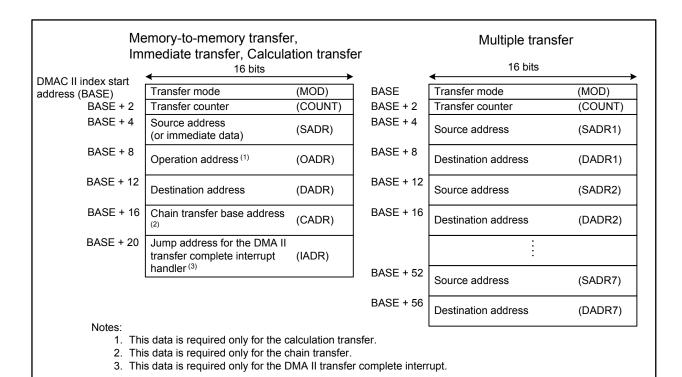
14.1.1 Registers RIPL1 and RIPL2

When the DMAII bit in registers RIPL1 and RIPL2 is set to 1 (DMA II transfer selected) and the FSIT bit is set to 0 (normal interrupt selected), DMAC II starts by an interrupt request from any peripheral whose bits ILVL2 to ILVL0 in the corresponding interrupt control register are set to 111b (level 7).

Figure 14.1 shows registers RIPL1 and RIPL2.

Notes:

- 1. Registers RIPL1 and RIPL2 should be set with the same values.
- 2. The MCU exits wait mode or stop mode when the request level of the requested interrupt is higher than the level selected using bits RLVL2 to RLVL0. Set these bits to the same value as the IPL in the FLG register.
- 3. When the FSIT bit is 1, an interrupt with interrupt request level 7 becomes the fast interrupt. In this case, set the interrupt request level to level 7 with only one interrupt.
- 4. Set either the FSIT or DMAII bit to 1. The fast interrupt and DMAC II cannot be used simultaneously.
- Set bits ILVL2 to ILVL0 in the interrupt control register after the DMAII bit is set. DMA II transfer is not affected by the I flag or IPL.


Figure 14.1 Registers RIPL1 and RIPL2

14.1.2 DMAC II Index

The DMAC II index is a data table of 12 to 60 bytes. It stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chain transfer base address, and jump address for the DMA II transfer complete interrupt handler.

This DMAC II index should be allocated on the RAM.

Figure 14.2 shows a configuration of the DMAC II index and Table 14.2 lists a configuration example of the DMAC II index.

The DMAC II index should be allocated on the RAM. Required data should be set front-aligned. For example, when the calculation transfer is not used, the destination address should be set to BASE + 8 (refer to the "DMAC II Index

Start address of the DMAC II index should be set in the interrupt vector space for the peripheral interrupt triggering DMAC II.

Figure 14.2 DMAC II Index

Configuration" on the next page).

The following are the details on the DMAC II index. These parameters should be aligned in the order listed in Table 14.2 according to the transfer mode to be used.

- Transfer mode (MOD)
- Set a transfer mode in 2 bytes. Refer to Figure 14.3 for details on the setting of MOD.
- Transfer counter (COUNT)
- Set a number of transfers in 2 bytes.
- Source address (SADR)
- Set a source address or immediate data in 4 bytes. Note that the two upper bytes of immediate data are ignored.
- Operation address (OADR)
- Set an address in a to-be calculated memory in 4 bytes. This data setting is required only for the calculation transfer.
- Destination address (DADR)
- Set a destination address in 4 bytes.
- Chain transfer base address (CADR)
- Set the start address of the DMAC II index for the next transfer (BASE) in 4 bytes. This data setting is required only for the chain transfer.
- Jump address for the DMA II transfer complete interrupt handler (IADR)
 Set the start address for the DMA II transfer complete interrupt handler in 4 bytes. This data setting is required only for the DMA II transfer complete interrupt.

The symbols above are hereinafter used in place of their respective parameters.

Table 14.2 DMAC II Index Configuration

Memory-to-memory Transfer/		Calculation Transfer			Multiple			
Im	mediate D	ata Transf	er				Transfer	
Not used	Used	Not used	Used	Not used	Used	Not used	Used	Not available
Not used	Not used	Used	Used	Not used	Not used	Used	Used	Not available
MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD
COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT
SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR1
DADR	DADR	DADR	DADR	OADR	OADR	OADR	OADR	DADR1
12 bytes	CADR	IADR	CADR	DADR	DADR	DADR	DADR	
	16 bytes	16 bytes	IADR	16 bytes	CADR	IADR	CADR	SADRi
			20 bytes		20 bytes	20 bytes	IADR	DADRi
							24 bytes	i = 1 to 7 max. 60 bytes (when i = 7)
	Not used Not used MOD COUNT SADR DADR	Not used Used Not used Not used MOD MOD COUNT SADR SADR DADR DADR 12 bytes CADR	Not used Used Not used Not used Not used Used MOD MOD COUNT COUNT SADR SADR SADR DADR DADR DADR 12 bytes CADR IADR	Not used Used Not used Used Not used Not used Used Used MOD	Not used Used Not used Used Not used Not used Not used Used Used Not used MOD MOD COUNT COUNT COUNT SADR SADR SADR SADR SADR DADR DADR DADR DADR DADR 12 bytes CADR IADR CADR IADR 16 bytes 16 bytes IADR Not used Not used Not used Not used MOD MOD COUNT COUNT COUNT COUNT COUNT COUNT SADR DADR DADR DADR 16 bytes 16 bytes IADR	Not used Used Not used Used Not used Used Not used Not used Used Used Not used Not used Not used Used Not used	Not used Used used Not used Used Not used Used Not used Used Not used Not used Used Not used Not used Not used Not used Used Not used	Not used Used Used Not used Used Used Used Not used Used Used Used Used Used Used Used U

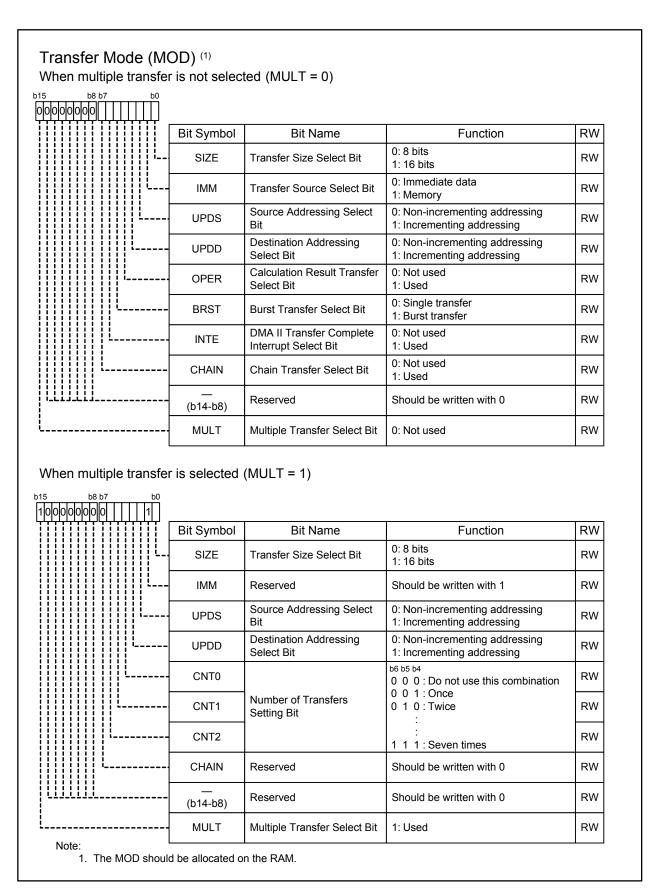


Figure 14.3 MOD

14.1.3 Interrupt Control Register of the Peripherals

Set bits ILVL2 to ILVL0 in the interrupt control register for the peripheral interrupt triggering DMAC II to 111b (level 7).

14.1.4 Relocatable Vector Table of the Peripherals

Set the start address of the DMAC II index in the interrupt vector space for the peripheral interrupt triggering DMAC II.

To use the chain transfer, allocate the relocatable vector table on the RAM.

14.1.5 IRLT Bit in the IIOiIE Register (i = 0 to 11)

To use the intelligent I/O interrupt as a trigger for DMAC II, set the IRLT bit in the corresponding IIOilE register to 0 (interrupt request for DMA or DMA II used).

14.2 DMAC II Operation

Set the DMAII bit in registers RIPL1 and RIPL2 to 1 (interrupt request level 7 used for DMA II transfer) to perform a DMA II transfer. DMAC II starts by an interrupt request from any peripheral whose bits ILVL2 to ILVL0 in the corresponding interrupt control register are set to 111b (level 7). These peripheral interrupt requests are available only for DMA II transfer and cannot be used for the CPU.

When an interrupt request is generated with interrupt request level 7, DMAC II starts irrespective of the state of the I flag or IPL.

When a peripheral interrupt request triggering DMAC II and a higher-priority request such as the watchdog timer interrupt, low voltage detection interrupt, oscillator stop detection interrupt, or NMI are simultaneously generated, the higher-priority interrupt is accepted prior to the DMA II transfer, and the DMA II transfer starts after the higher-priority interrupt sequence.

14.3 Transfer Types

DMAC II transfers three types of 8-bit or 16-bit data as follows:

• Memory-to-memory transfer: Data is transferred from a given memory location in a 64-Mbyte space

(addresses 00000000h to 01FFFFFh and FE000000h to

FFFFFFFh) to another given memory location in the same space.

• Immediate data transfer: Immediate data is transferred to a given memory location in a 64-

Mbyte space.

• Calculation transfer: Two data are added together and the result is transferred to a given

memory location in a 64-Kbyte space.

When 16-bit data is transferred to DADR at FFFFFFFh, it is transferred to 00000000h as well as FFFFFFFh. The same transfer is performed when SADR is FFFFFFFh.

14.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- A transfer from a fixed address to another fixed address
- A transfer from a fixed address to an address range in memory
- A transfer from an address range in memory to a fixed address
- A transfer from an address range in memory to another address range in memory

When increment addressing mode is selected, SADR and DADR increment by 1 in an 8-bit transfer and by 2 in a 16-bit transfer after a data transfer for the next transfer. When SADR or DADR exceeds FFFFFFFh by the incrementation, it returns to 00000000h. Likewise, when SADR or DADR exceeds 01FFFFFFh, it becomes 02000000h, but an actual transfer is performed for FE000000h.

14.3.2 Immediate Data Transfer

DMAC II transfers immediate data to a given memory location. Either incrementing or non-incrementing addressing mode can be selected for the destination address. Store the immediate data to be transferred into SADR. To transfer 8-bit immediate data, set the data to the lower 1 byte of SADR. The upper 3 bytes are ignored. To transfer 16-bit immediate data, set the data to the lower 2 bytes. The upper 2 bytes are ignored.

14.3.3 Calculation Result Transfer

After two memory data or immediate data and memory data are added together, DMAC II transfers the calculated result to a given memory location. Set an address to be calculated or immediate data to SADR and set the other address to be calculated to OADR. Either incrementing or non-incrementing addressing mode can be selected for source and destination addresses when performing data in memory + data in memory calculation transfer. If the source addressing is in incrementing mode, the operation addressing is also in incrementing mode. When performing immediate data + data in memory calculation transfer, the addressing mode is selectable only for the destination address.

14.4 Transfer Modes

DMAC II provides three types of basic transfer mode: single transfer, burst transfer, and multiple transfer. COUNT determines the number of transfers to be performed. Transfers are not performed when COUNT is 0000h.

14.4.1 Single Transfer

Set the BRST bit in the MOD to 0.

A single data transfer is performed by one transfer request.

When incrementing addressing mode is selected for the source and/or destination address, the address or addresses increment after a data transfer for the next transfer.

COUNT is decremented each time a data transfer is performed. When COUNT reaches 0000h, the DMA II transfer complete interrupt request is generated if the INTE bit in the MOD is 1 (DMA II transfer complete interrupt used).

14.4.2 Burst Transfer

Set the BRST bit in the MOD to 1.

DMAC II continuously transfers data for the number of times determined by COUNT with one transfer request. COUNT decrements each time a data transfer is performed. When COUNT reaches 0000h, the burst transfer is completed. The DMA II transfer complete interrupt request is generated if the INTE bit is 1 (DMA II transfer complete interrupt used).

No interrupts are accepted during a burst transfer.

14.4.3 Multiple Transfer

Set the MULT bit in the MOD to 1.

Multiple memory-to-memory transfers are performed from different source addresses to different destination addresses using one transfer request.

Set bits CNT2 to CNT0 in the MOD to select the number of transfers to be performed from 001b (once) to 111b (seven times). Do not set these bits to 000b.

Allocate the required number of SDARs and DADRs alternately following MOD and COUNT.

When the multiple transfer is selected, the following transfer functions are not available: calculation result transfer, burst transfer, chain transfer, and DMA II transfer complete interrupt.

14.5 Chain Transfer

The chain transfer is available when the CHAIN bit in the MOD is 1.

The chain transfer is performed as follows:

(1) When a transfer request is generated, a data transfer is performed according to the DMAC II index specified by the corresponding interrupt vector. Either a single transfer (the BRST bit in the MOD is 0) or burst transfer (the BRST bit is 1) is performed according to the BRST bit setting.

- (2) When COUNT reaches 0000h, the value in the interrupt vector in (1) above is overwritten with the value in CADR. Simultaneously, the DMA II transfer complete interrupt request is generated when the INTE bit in the MOD is 1.
- (3) When the next DMA II transfer request is generated, the data transfer is performed according to the DMAC II index specified by the peripheral interrupt vector in (2) above.

Figure 14.4 shows the relocatable vector and DMAC II index in a chain transfer. To use the chain transfer, the relocatable vector table should be allocated on the RAM.

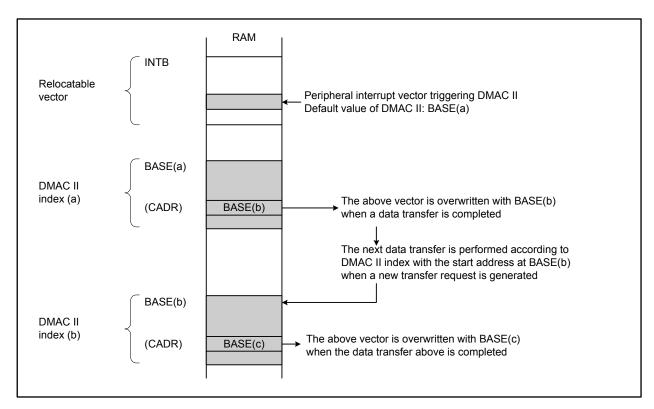


Figure 14.4 Relocatable Vector and DMAC II Index in a Chain Transfer

14.6 DMA II Transfer Complete Interrupt

The DMA II transfer complete interrupt is available when the INTE bit in the MOD is 1. Set the start address of the DMA II transfer complete interrupt handler to IADR. The interrupt request is generated when COUNT reaches 0000h.

The initial instruction of the interrupt handler is executed in the eighth cycle after a DMA II transfer is completed.

14.7 Execution Time

The DMAC II execution cycle is calculated by the following equations:

Mode other than multiple transfer: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles When using multiple transfer: $t = 21 + (11 + b + c) \times k$ cycles

- a: When IMM is 0 (transfer source is immediate data), a is 0; When IMM is 1 (transfer source is memory), a is -1
- b: When UPDS is 1 (source addressing is incrementing), b is 0; When UPDS is 0 (source addressing is non-incrementing), b is 1
- c: When UPDD is 1 (destination addressing is incrementing), c is 0; When UPDD is 0 (destination addressing is non-incrementing), c is 1
- d: When OPER is 0 (calculation transfer is not selected), d is 0; When OPER is 1 (calculation transfer is selected) and UPDS is 0 (source addressing is immediate data or non-incrementing), d is 7; When OPER is 1 (calculation transfer is selected) and UPDS is 1 (source addressing is incrementing), d is 8
- e: When CHAIN is 0 (chain transfer is not selected), e is 0; When CHAIN is 1 (chain transfer is selected), e is 4
- m: When BRST is 0 (single transfer), m is 1; When BRST is 1 (burst transfer), m is COUNT
- n: When COUNT is 0001h, n is 0; if COUNT is 0002h or more, n is 1
- k: The number of transfers set using bits CNT2 to CNT0

The equations above are estimations. The number of cycles may vary depending on CPU state, bus wait state, and DMAC II index allocation.

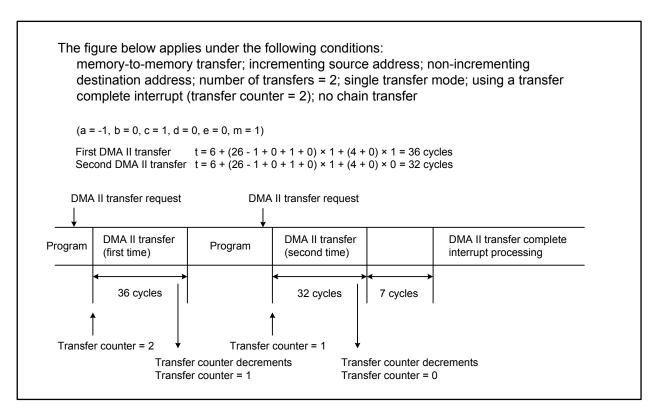


Figure 14.5 Transfer Cycles

15. Programmable I/O Ports

The programmable I/O ports in each pin package are designated as follows:

144-pin package: 124 ports from P0 to P15 (excluding P8_5, and P14_0 to P14_2)

176-pin package: 156 ports from P0 to P19 (excluding P8 5, and P14 0 to P14 2)

Each port status, input or output, can be selected using the direction register except P8_5 and P14_1 which are input only. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since the P8_5 shares a pin with the $\overline{\text{NMI}}$.

Figure 15.1 shows a configuration of programmable I/O ports, and Figures 15.2 and Figure 15.3 show a configuration of each input-only port.

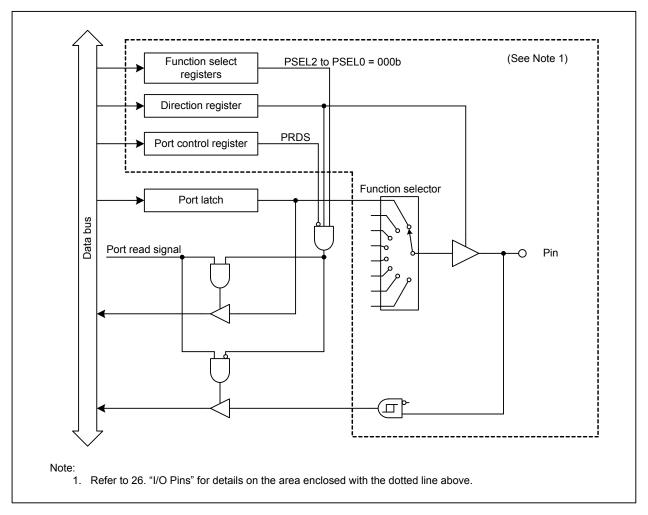


Figure 15.1 Programmable I/O Port Configuration

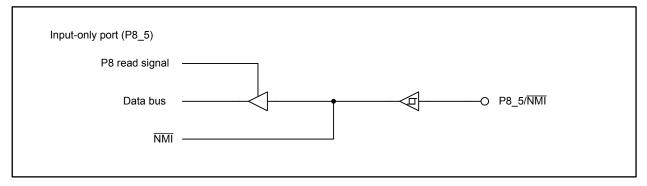


Figure 15.2 Input-only Port Configuration (1/2)

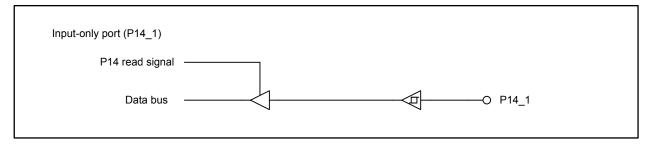
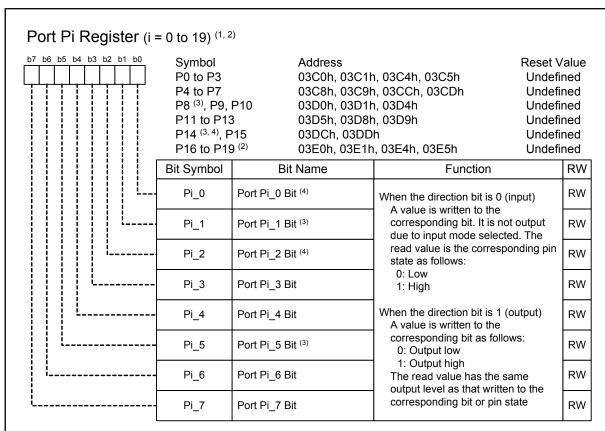


Figure 15.3 Input-only Port Configuration (2/2)


15.1 Port Pi Register (Pi register, i = 0 to 19)

A write/read operation to the Pi register is required to communicate with external devices. This register consists of a port latch to hold output data and a circuit to read pin states. Bits in the Pi register correspond to respective ports.

When a programmable I/O port is selected in the output function select registers, the value in the port latch is read for output and the pin state is read for input.

In memory expansion mode and microprocessor mode, this register cannot control pins being assigned bus control signals (A0 to A23, D0 to D31, \overline{CSO} to $\overline{CS3}$, $\overline{WR}/\overline{WRO}$, $\overline{BC0}$, $\overline{BC1}/\overline{WR1}$, $\overline{BC2}/\overline{WR2}$, $\overline{BC3}/\overline{WR3}$, \overline{RD} , CLKOUT/BCLK, \overline{HLDA} , \overline{HOLD} , ALE, and \overline{RDY}).

Figure 15.4 shows the Pi register.

Notes:

- In memory expansion mode and microprocessor mode, this register cannot control pins being assigned bus control signals (A0 to A23, D0 to D31, CS0 to CS3, WR/WR0, BC0, BC1/WR1, BC2/WR2, BC3/WR3, RD, CLKOUT/BCLK, HLDA, HOLD, ALE, and RDY).
- 2. Registers P16 to P18 are available in the 176-pin package only.
- 3. The P8_5 bit in the P8 register and the P14_1 bit in the P14 register are read only.
- 4. Bits P14_0 and P14_2 in the P14 register are reserved. These bits should be written with 0 and read as undefined values.

Figure 15.4 Registers P0 to P19

15.2 Self Test Function

An output pin state can be verified by an output test of ports.

When the PRDS bit in the PCR register is set to 1 (pin state is read) while the PDi_j bit in the PDi register is 1 (output), the state of the Pi_j pin is read. When the read value is identical to the value written in the Pi_j bit in the Pi register, the setting value is output to the corresponding pin without any error. Otherwise, the pin may have a problem.

For example, when the read value is 0 despite the setting value is 1, this pin must be shorted out to a pin held low like VSS pin. Reversely, when the read value is 1 although the setting value is 0, the pin must be shorted out to a pin held high like VCC pin.

When the both setting values 0 and 1 are identical to the respective read values, at least, the pin is not shorted out to the VSS pin or VCC pin.

To rewrite a single bit in the Pi register, set the PRDS bit in the PCR register to 0 (value in the port latch is read). Otherwise, other bits may be also rewritten.

16. Timers

This MCU has eleven 16-bit timers which are divided into two groups according to their functions: five timer As and six timer Bs. Each timer functions individually. The count source of each timer provides the clock for timer operations such as counting and reloading.

Figure 16.1 and Figure 16.2 show the configuration of timers A and B, respectively.

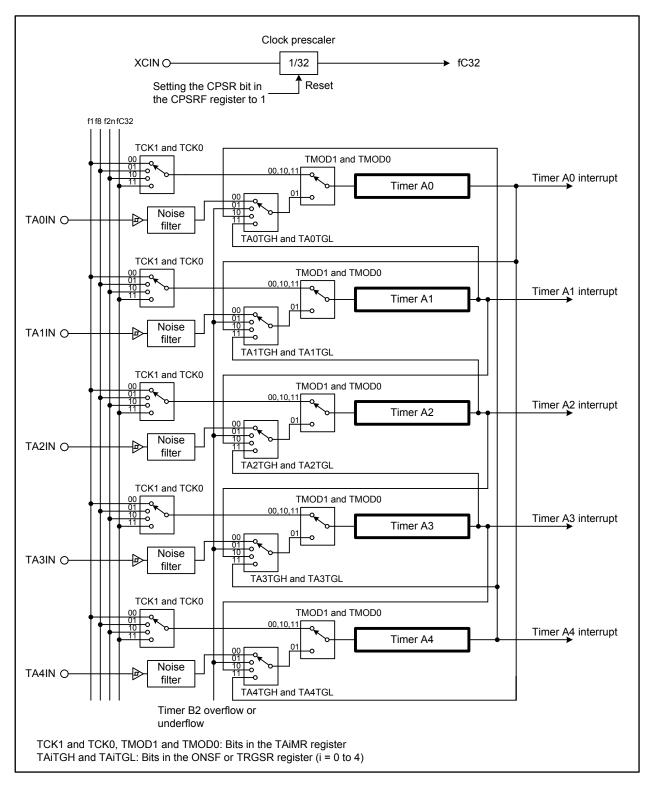


Figure 16.1 Timer A Configuration

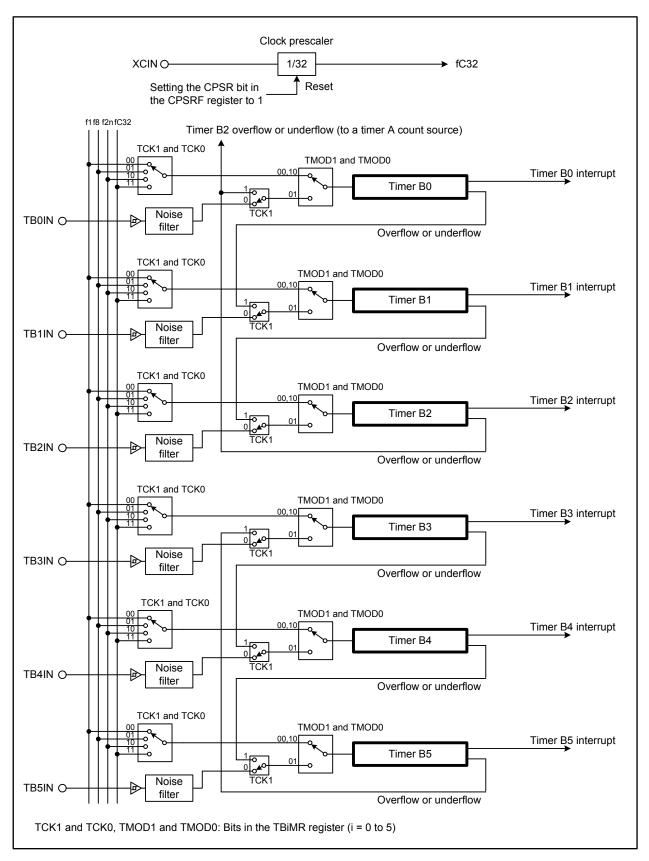


Figure 16.2 Timer B Configuration

16.1 Timer A

Figure 16.3 shows a block diagram of timer A and Figure 16.4 to Figure 16.10 show registers associated with timer A.

Timer A supports the four modes shown below. Timers A0 to A4 in any mode other than the event counter mode have the same function. Select a mode by setting bits TMOD1 and TMOD0 in the TAiMR register (i = 0 to 4).

- Timer mode: The timer counts an internal count source
- Event counter mode: The timer counts an external pulse or overflow and underflow of other timers
- One-shot timer mode: The timer outputs one valid pulse before the counter reaches 0000h
- Pulse-width modulation mode: The timer successively outputs pulses of a given width

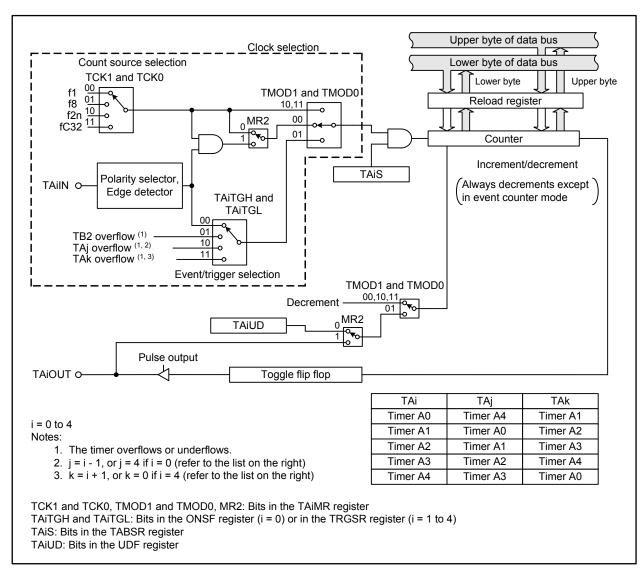
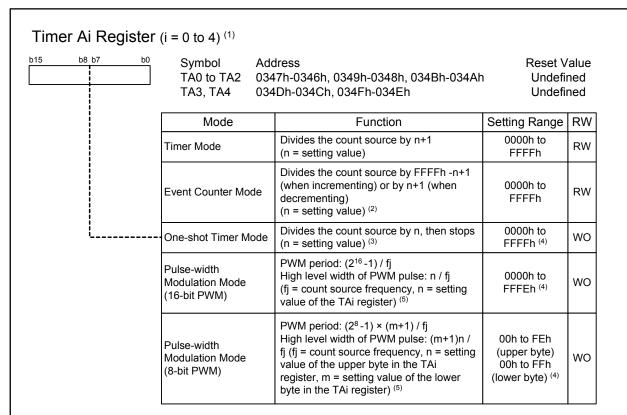



Figure 16.3 Timer A Block Diagram

fj: f1, f8, f2n, fC32

Notes:

- 1. A 16-bit read/write access to this register should be performed.
- 2. The timer counts an external input pulse or overflow and underflow of other timers.
- 3. When the TAi register is set to 0000h, the timer counter does not start, and the TAi interrupt request is not generated.
- 4. Use the MOV instruction to set the TAi register.
- 5. When the TAi register is set to 0000h, the pulse-width modulator does not operate, the TAiOUT pin is held low, and the TAi interrupt request is not generated. The same restrictions apply in 8-bit pulse-width modulator mode if the upper byte in the TAi register is set to 00h.

Figure 16.4 Registers TA0 to TA4

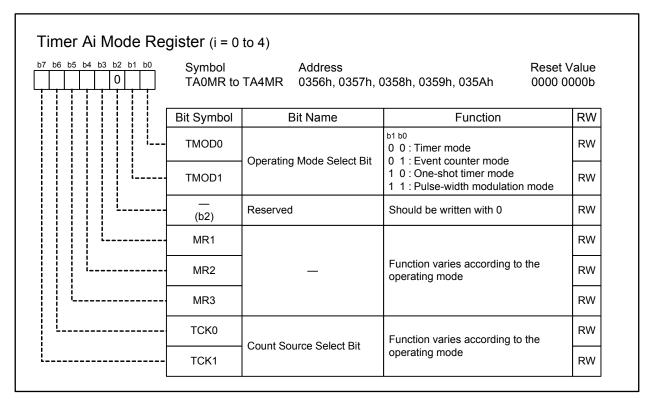


Figure 16.5 Registers TA0MR to TA4MR

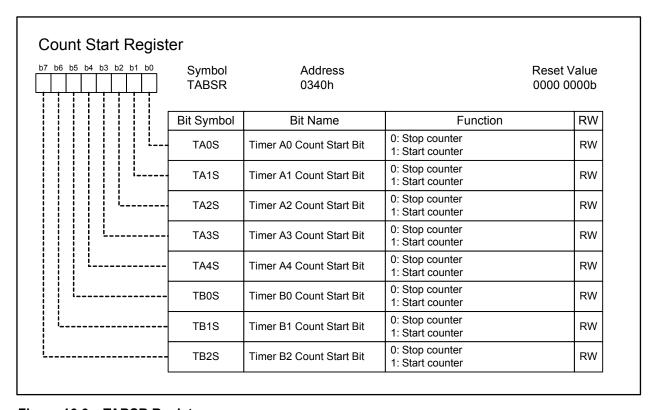


Figure 16.6 TABSR Register

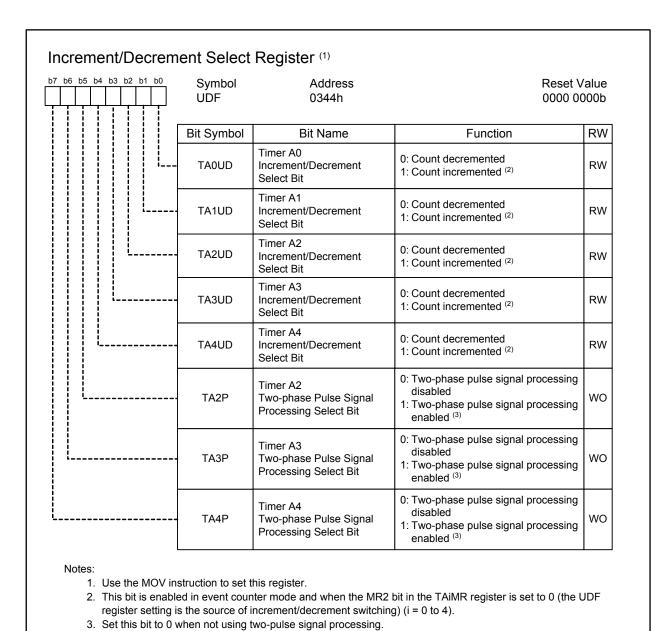


Figure 16.7 UDF Register

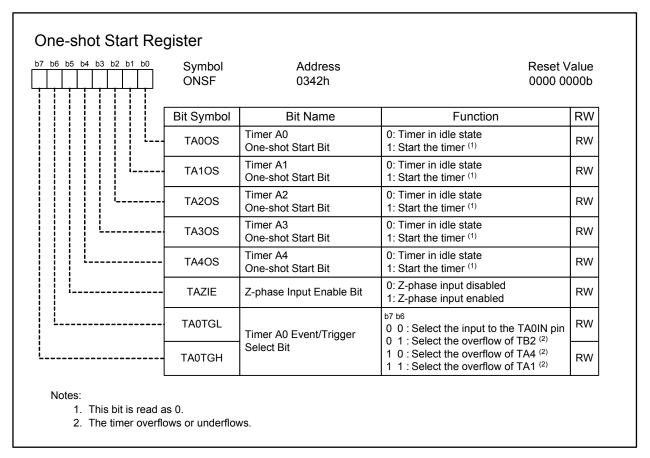


Figure 16.8 ONSF Register

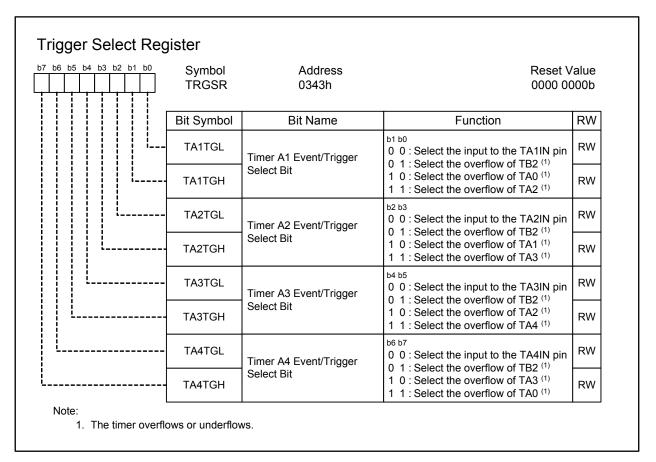


Figure 16.9 TRGSR Register

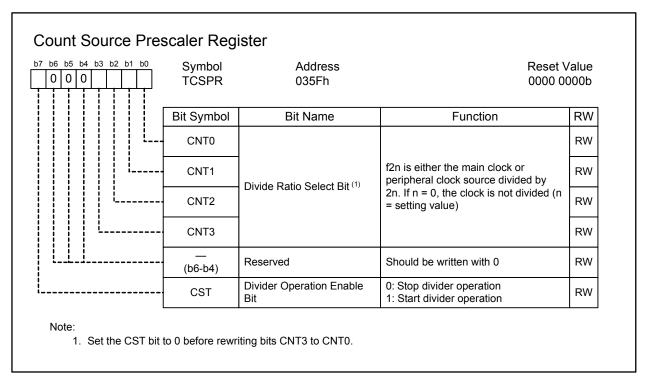


Figure 16.10 TCSPR Register

16.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source. Table 16.1 lists the specifications of timer mode. Figure 16.11 shows registers TA0MR to TA4MR in this mode.

Table 16.1 Timer Mode Specifications (i = 0 to 4)

Item	Specification
Count sources	f1, f8, f2n, or fC32
Count operations	Decrement When the timer counter underflows, the reload register value is reloaded into the counter to continue counting
Divide ratio	$\frac{1}{n+1}$ n: TAi register setting value, 0000h to FFFFh
Count start condition	The TAiS bit in the TABSR register is 1 (start counter)
Count stop condition	The TAiS bit in the TABSR register is 0 (stop counter)
Interrupt request generating timing	When the timer counter underflows
TAilN pin function	Functions as a programmable I/O port or a gate input
TAiOUT pin function	Functions as a programmable I/O port or a pulse output
Read from timer	The TAi register indicates the counter value
Write to timer	 While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both the reload register and the counter While the timer counter is running, the value written to the TAi register is written to the reload register (it is transferred to the counter at the next reload timing)
Other functions	 Gate function Input signal to the TAilN pin can control the count start/stop Pulse output function The polarity of the TAiOUT pin is inverted each time the timer counter underflows. A low is output while the TAiS bit holds 0 (stop counter)

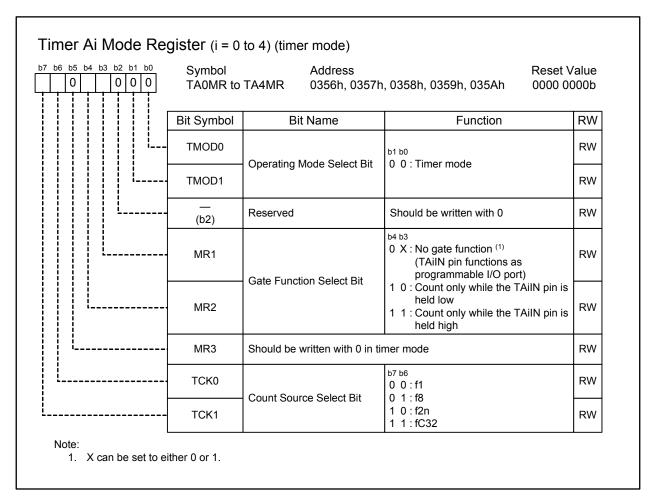


Figure 16.11 Registers TA0MR to TA4MR in Timer Mode

16.1.2 Event Counter Mode

In event counter mode, the timer counts an external signal or an overflow and underflow of other timers. Timers A2, A3, and A4 can count two-phase external signals. Table 16.2 lists the specifications in event count mode and Table 16.3 also lists the specifications when the timers use two-phase pulse signal processing. Figure 16.12 shows registers TA0MR to TA4MR in this mode.

Table 16.2 Event Counter Mode Specifications (without two-phase pulse signal processing) (i = 0 to 4)

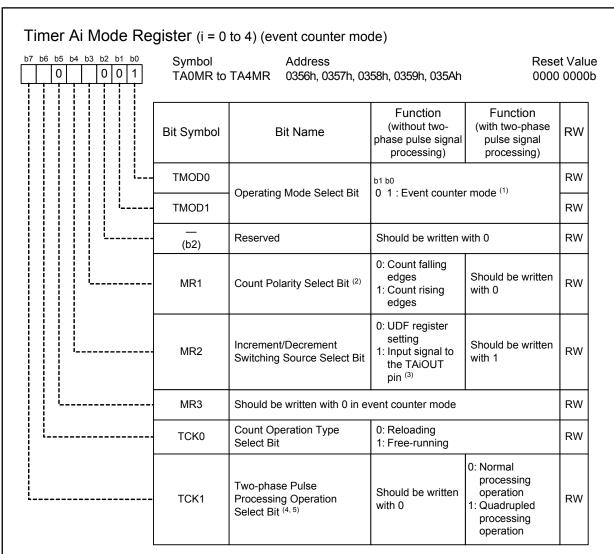

Item	Specification
Count sources	External signal applied to the TAilN pin (valid edge is selectable by a program)
	• One of the following: the overflow and/or underflow signal of timer B2, the
	overflow and/or underflow signal of timer Aj $(j = i - 1, \text{ or } j = 4 \text{ if } i = 0)$, or
Count operations	the overflow and/or underflow signal of timer Ak (k = i + 1, or k = 0 if i = 4) • Increment/decrement can be switched by an external signal or program
Count operations	When the timer counter underflows or overflows, the reload register value
	is reloaded into the counter to continue counting. In a free-running count
	operation, the timer counter continues counting without reloading
Divide ratio	• $\frac{1}{FFFFh-n+1}$ when incrementing
	• $\frac{1}{n+1}$ when decrementing
	n: TAi register setting value, 0000h to FFFFh
Count start condition	The TAiS bit in the TABSR register is 1 (start counter)
Count stop condition	The TAiS bit in the TABSR register is 0 (stop counter)
Interrupt request generating	When the timer counter overflows or underflows
timing	
TAilN pin function	Functions as a programmable I/O port or a count source input
TAiOUT pin function	Functions as a programmable I/O port, a pulse output, or an input for
	switching between increment/decrement
Read from timer	The TAi register indicates a counter value
Write to timer	While the timer counter is stopped or before the initial count source is
	input after starting to count, the value written to the TAi register is written
	to both the reload register and the counter
	• While the timer counter is running, the value written to the TAi register is written to the reload register (it is transferred to the counter at the next
	reload timing)
Other functions	Free-running count function
	The reload register value is not reloaded even if the timer counter
	overflows or underflows
	Pulse output function
	The polarity of the TAiOUT pin is inverted whenever the timer counter
	overflows or underflows.
	A low is output while the TAiS bit holds 0 (stop counter)

Table 16.3 Event Counter Mode Specifications (with two-phase pulse signal processing on timers A2 to A4) (i = 2 to 4)

Item	Specification			
Count sources	Two-phase pulse signal applied to pins TAilN and TAiOUT			
Count operations	 Increment/decrement can be switched by a two-phase pulse signal When the timer counter underflows or overflows, the reload register value is reloaded into the counter to continue counting. In a free-running count operation, the timer counter continues counting without reloading 			
Divide ratio	• $\frac{1}{FFFFh-n+1}$ when incrementing			
	• $\frac{1}{n+1}$ when decrementing n : TAi register setting value, 0000h to FFFFh			
Count start condition	The TAiS bit in the TABSR register is 1 (start counter)			
Count stop condition	The TAiS bit in the TABSR register is 0 (stop counter)			
Interrupt request generating timing	When the timer counter overflows or underflows			
TAilN pin function	A two-phase pulse input			
TAiOUT pin function	A two-phase pulse input			
Read from timer	The TAi register indicates a counter value			
Write to timer	 While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both the reload register and the counter While the timer counter is running, the value written to the TAi register is written to the reload register (it is transferred to the counter at the next reload timing) 			
Other functions (1)	Normal processing operation (timers A2 and A3) While the input signal applied to the TAjOUT pin is held high, the timer increments on the rising edge of the TAjIN pin and decrements on the falling edge (j = 2 or 3) TAjOUT TAjOUT			
	TAJIN IC IC IC DC DC DC DC: Increments DC: Increments DC: DC: Decrements			
	 Quadrupled processing operation (timers A3 and A4) When the input signal applied to the TAkOUT pin is held high on the rising edge of the TAkIN pin, the timer increments on both the rising and falling edges of pins TAkOUT and TAkIN (k = 3 or 4). When the signal is held high on the falling edge of the TAkIN pin, the timer decrements on both the rising and falling edges of pins TAkOUT and TAkIN 			
	TAKOUT A A A A A A A A A A A A A A A A A A A			
	TAKIN Increments on all edges Decrements on all edges			
	Counter reset by Z-phase input (timer A3) The counter value is set to 0 by Z-phase input			

Note:

1. Only timer A3 is available for any of the other functions. Timer A2 is exclusively for normal processing operations and timer A4 is for the quadrupled processing operation.

Notes:

- 1. Set bits TAiTGH and TAiTGL in the ONSF or TRGSR register to select the count source in event counter
- 2. This bit setting is enabled only when an external signal is counted.
- 3. The timer decrements when the input signal to the TAiOUT pin is held low, and increments when the signal is held high.
- 4. The TCK1 bit is enabled only in the TA3MR register.
- 5. For two-phase pulse signal processing, set the TAjP bit in the UDF register to 1 (two-phase pulse signal processing enabled) and bits TAjTGH and TAjTGL to 00b (input to the TAjIN pin) (j = 2 to 4).

Figure 16.12 Registers TA0MR to TA4MR in Event Counter Mode

16.1.2.1 Counter Reset by Two-phase Pulse Signal Processing

A Z-phase input signal resets the timer counter when a two-phase pulse signal is being processed.

This function can be used under the following conditions: timer A3 event counter mode, two-phase pulse signal processing, free-running count operation, and quadrupled processing. The Z-phase signal is applied to the $\overline{\text{INT2}}$ pin.

When the TAZIE bit in the ONSF register is set to 1 (Z-phase input enabled), the timer counter can be reset by Z-phase input. To reset the counter, set the TA3 register to 0000h beforehand.

A Z-phase signal applied to the $\overline{\text{INT2}}$ pin is detected on an edge. The edge polarity is selected using the POL bit in the INT2IC register. The Z-phase signal should be input in order to have a pulse width of at least one count source cycle for timer A3. Figure 16.13 shows the two-phase pulse (phases A and B) and the Z-phase.

The timer counter is reset at the initial count source input after Z-phase input is detected. Figure 16.14 shows the counter reset timing.

When timer A3 overflows or underflows during a reset by the Z-phase input, two timer A3 interrupt requests are successively generated. To avoid this, the timer A3 interrupt request should not be used when using this function.

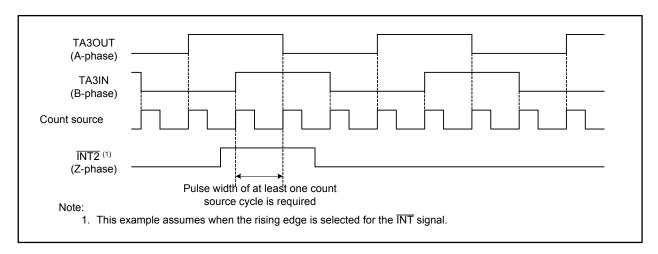


Figure 16.13 Two-phase Pulse (phases A and B) and Z-phase

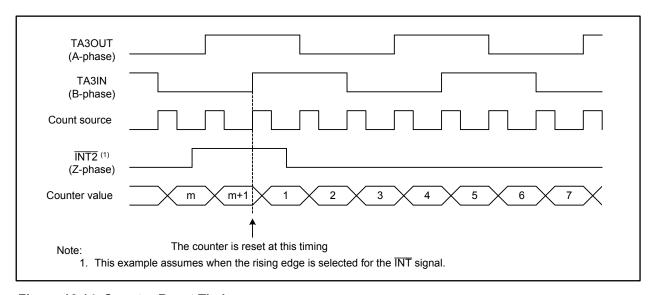


Figure 16.14 Counter Reset Timing

16.1.3 One-shot Timer Mode

In one-shot timer mode, the timer operates only once for each trigger. Table 16.4 lists specifications of one-shot timer mode. Once a trigger occurs, the timer starts and operates for a given period. Figure 16.15 shows registers TA0MR to TA4MR in this mode.

Table 16.4 One-shot Timer Mode Specifications (i = 0 to 4)

Item	Specification			
Count sources	f1, f8, f2n, or fC32			
Count operations	 Decrement When the timer counter reaches 0000h, it stops running after the reload register value is reloaded When a trigger occurs while counting, the reload register value is reloaded into the counter to continue counting 			
Divide ratio	n: TAi register setting value, 0000h to FFFFh (Note that the timer counter does not run if n = 0000h)			
Count start conditions	 The TAiS bit in the TABSR register is 1 (start counter) and any of following triggers occurs: An external trigger applied to the TAiIN pin One of the following: the overflow and/or underflow signal of timer B2, the overflow and/or underflow signal of timer Aj (j = i - 1, or j = 4 if i = 0), or the overflow and/or underflow signal of timer Ak (k = i + 1, or k = 0 if i = 4) The TAiOS bit in the ONSF register is 1 (start the timer) 			
Count stop conditions	 The timer counter reaches 0000h and the reload register value is reloaded The TAiS bit in the TABSR register is 0 (stop counter) 			
Interrupt request generating timing	When the timer counter reaches 0000h			
TAilN pin function	A programmable I/O port or a trigger input			
TAiOUT pin function	A programmable I/O port or a pulse output			
Read from timer	The TAi register indicates an undefined value			
Write to timer	 While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TAi register is written to both the reload register and the counter While the timer counter is running, the value written to the TAi register is written to the reload register (it is transferred to the counter at the next reload timing) 			
Other function	Pulse output function A low is output while the timer counter is stopped and a high is output while the timer counter is running			

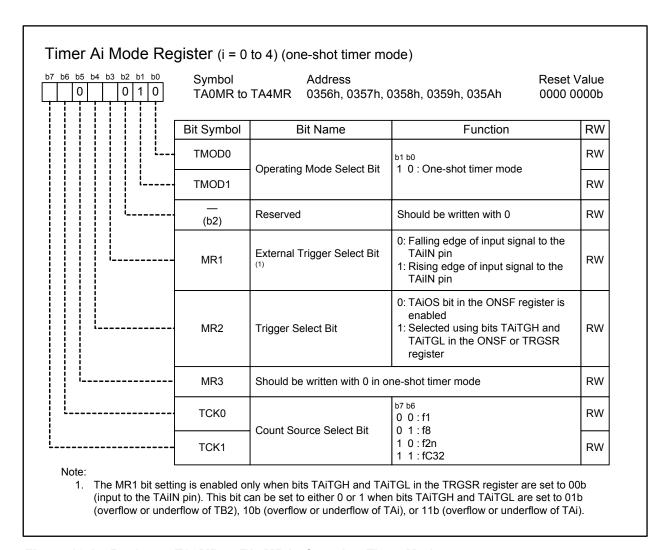


Figure 16.15 Registers TA0MR to TA4MR in One-shot Timer Mode

16.1.4 Pulse-width Modulation Mode

In pulse-width modulation mode, the timer outputs pulses of given width successively. Table 16.5 lists specifications of pulse-width modulation mode. The timer counter functions as either a 16-bit or 8-bit pulse-width modulator. Figure 16.16 shows registers TA0MR to TA4MR in this mode. Figures 16.17 and 16.18 show operation examples of 16-bit and 8-bit pulse-width modulators.

Table 16.5 Pulse-width Modulation Mode Specifications (i = 0 to 4)

Item	Specification			
Count sources	f1, f8, f2n, or fC32			
Count operations	 Decrement (the timer counter functions as an 8-bit or a 16-bit pulse-width modulator) The reload register value is reloaded on the rising edge of a PWM pulse to continue counting The timer is not affected by a trigger that occurs while the counter is running 			
16-bit PWM	• High level width: $\frac{n}{fj}$ n : TAi register setting value, 0000h to FFFEh f : Count source frequency • Period: fixed to $\frac{2^{16}-1}{fj}$			
8-bit PWM	JJ			
Count start conditions	 High level width: \$\frac{n \times (m+1)}{fj}\$ Period: \$\frac{(2^8-1) \times (m+1)}{fj}\$ n: Upper byte of the TAi register setting value, 00h to FEh m: Lower byte of the TAi register setting value, 00h to FFh The TAiS bit in the TABSR register is 1 (start counter) The TAiS bit is 1 and an external trigger is applied to the TAiIN pin 			
Count stop condition	 The TAiS bit is 1 and any of following triggers occurs: the overflow and/or underflow signal of timer B2, the overflow and/or underflow signal of timer Aj (j = i - 1, or j = 4 if i = 0), or the overflow and/ or underflow signal of timer Ak (k = i + 1, or k = 0 if i = 4) The TAiS bit in the TABSR register is 0 (stop counter) 			
·	On the falling edge of the PWM pulse			
Interrupt request generating timing	On the famility edge of the PWW pulse			
TAilN pin function	A programmable I/O port or trigger input			
TAiOUT pin function	A pulse output			
Read from timer	The TAi register indicates an undefined value			
Write to timer	 While the timer counter is stopped or before the initial count source input after starting to count, the value written to the TAi register is w to both the reload register and the counter While the timer counter is running, the value written to the TAi regis written to the reload register (it is transferred to the counter at the needload timing) 			

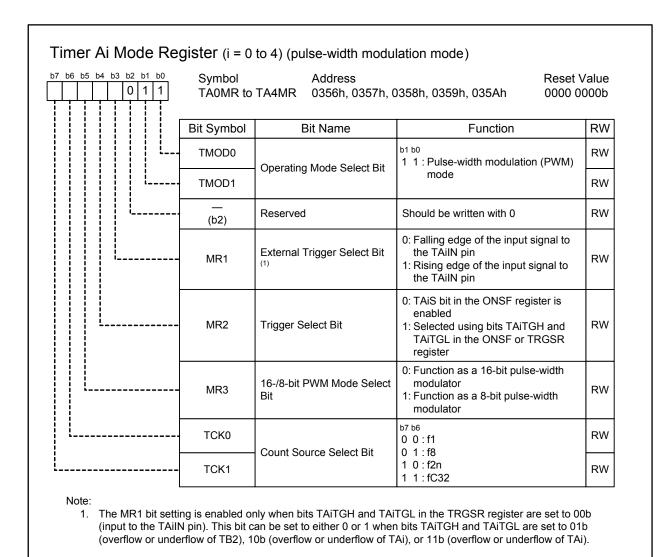


Figure 16.16 Registers TA0MR to TA4MR in Pulse-width Modulation Mode

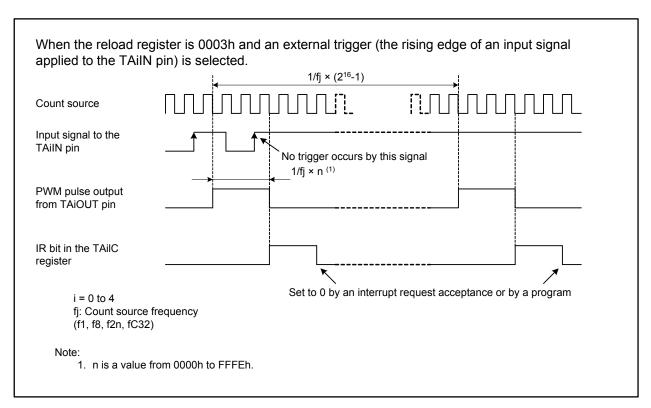


Figure 16.17 16-bit Pulse-width Modulator Operation

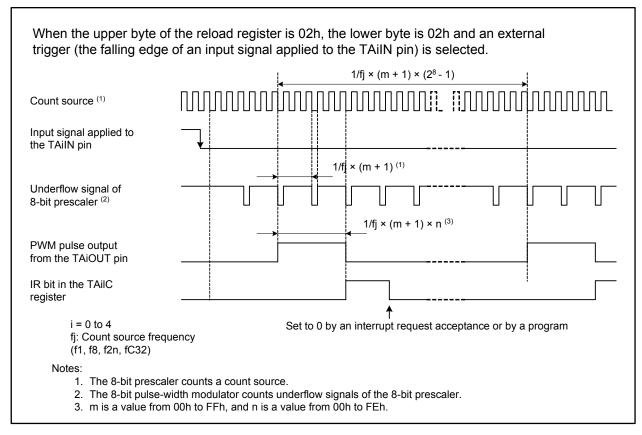


Figure 16.18 8-bit Pulse-width Modulator Operation

16.2 Timer B

Figure 16.19 shows a block diagram of timer B, and Figure 16.20 to Figure 16.23 show registers associated with timer B.

Timer B supports the three modes shown below. Select a mode by setting bits TMOD1 and TMOD0 in the TBiMR register (i = 0 to 5).

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- Pulse period/pulse-width measure mode: The timer measures the pulse period or pulse width of an external signal.

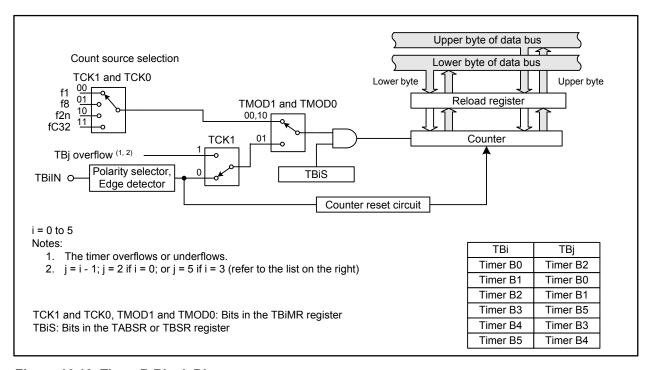


Figure 16.19 Timer B Block Diagram

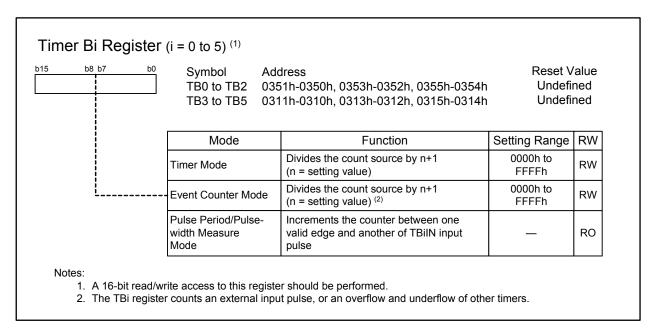


Figure 16.20 Registers TB0 to TB5

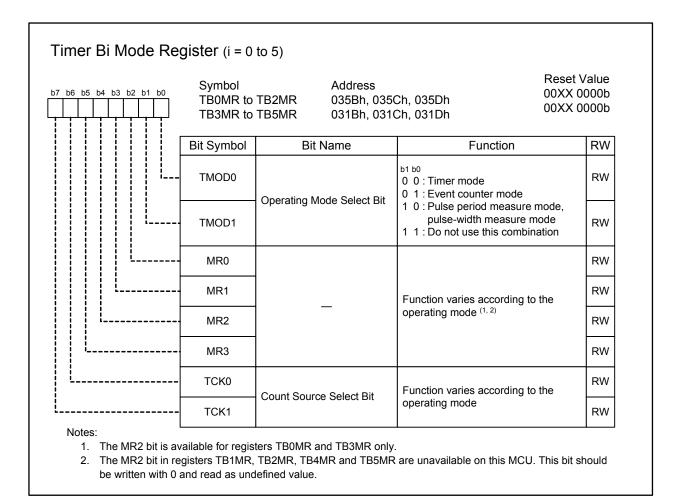


Figure 16.21 Registers TB0MR to TB5MR

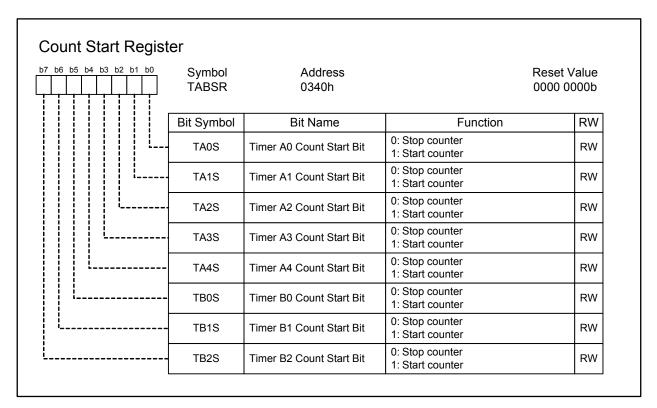


Figure 16.22 TABSR Register

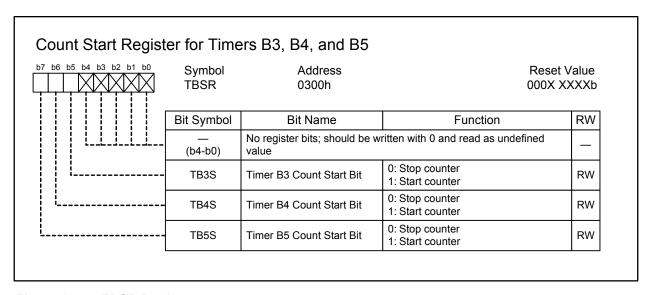


Figure 16.23 TBSR Register

16.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source. Table 16.6 lists specifications of timer mode. Figure 16.24 shows registers TB0MR to TB5MR in this mode.

Table 16.6 Timer Mode Specifications (i = 0 to 5)

Item	Specification			
Count sources	f1, f8, f2n, or fC32			
Count operations	• Decrement			
	• When the timer counter underflows, the reload register value is reloaded into the counter to continue counting			
Divide ratio	$\frac{1}{n+1}$ n : TBi register setting value, 0000h to FFFFh			
Count start condition	The TBiS bit in the TABSR or TBSR register is 1 (start counter)			
Count stop condition	The TBiS bit in the TABSR or TBSR register is 0 (stop counter)			
Interrupt request generating timing	When the timer counter underflows			
TBiIN pin function	Functions as a programmable I/O port			
Read from timer	The TBi register indicates a counter value			
Write to timer	 While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TBi register is written to both the reload register and the counter While the timer counter is running, the value written to the TBi register is written to the reload register (it is transferred to the counter at the next reload timing) 			

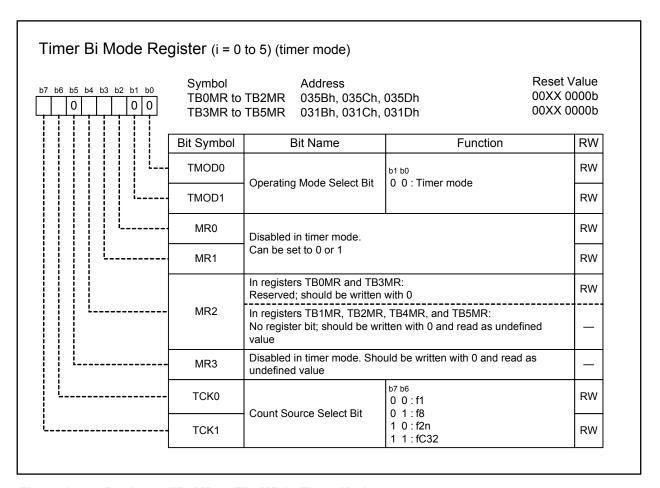


Figure 16.24 Registers TB0MR to TB5MR in Timer Mode

16.2.2 Event Counter Mode

In event counter mode, the timer counts an external signal or the overflow or underflow of other timers. Table 16.7 lists specifications of event counter mode. Figure 16.25 shows the TBiMR register in this mode (i = 0 to 5).

Table 16.7 Event Counter Mode Specifications (i = 0 to 5)

Item	Specification				
Count sources	 External signal applied to the TBilN pin (valid edge is selectable amo the falling edge, the rising edge, or both) The overflow or underflow signal of TBj (j = i - 1; j = 2 if i = 0; or j = 5 if 				
	i = 3)				
Count operations	 Decrement When the timer counter underflows, the reload register value is reloaded into the counter to continue counting 				
Divide ratio	$\frac{1}{n+1}$ n: TBi register setting value, 0000h to FFFFh				
Count start condition	The TBiS bit in the TABSR or TBSR register is 1 (start counter)				
Count stop condition	The TBiS bit in the TABSR or TBSR register is 0 (stop counter)				
Interrupt request generation timing	When the timer counter underflows				
TBiIN pin function	Functions as a programmable I/O port or count source input				
Read from timer	The TBi register indicates a counter value				
Write to timer	 While the timer counter is stopped or before the initial count source is input after starting to count, the value written to the TBi register is written to both the reload register and the counter While the timer counter is running, the value written to the TBi register is written to the reload register (it is transferred to the counter at the next reload timing) 				

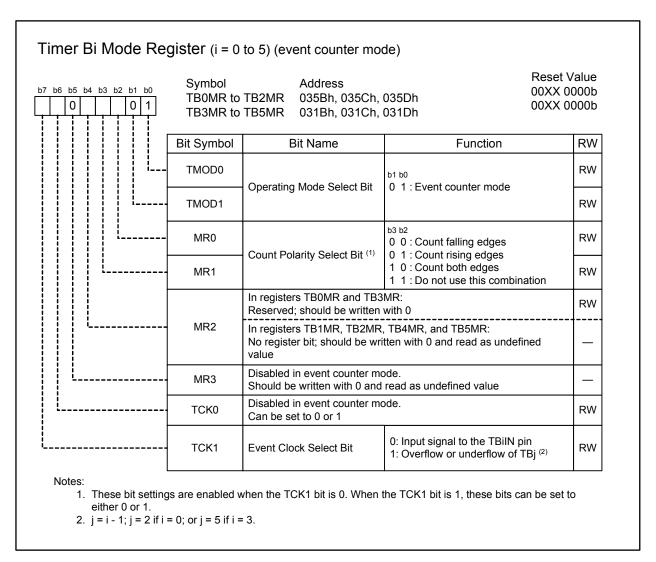


Figure 16.25 Registers TB0MR to TB5MR in Event Counter Mode

16.2.3 Pulse Period/Pulse-width Measure Mode

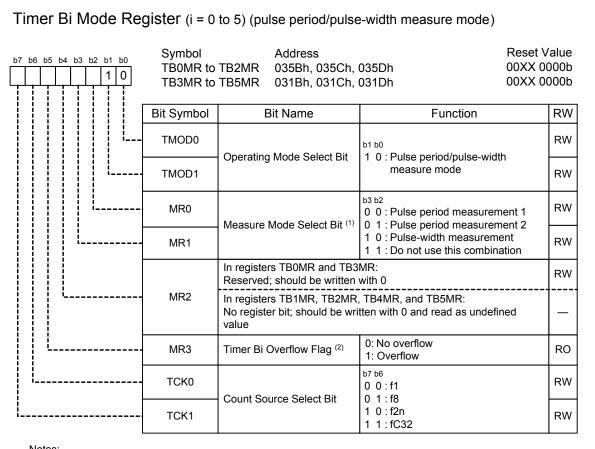

In pulse period/pulse-width measure mode, the timer measures the pulse period or pulse width of an external signal. Table 16.8 lists specifications of the pulse period/pulse-width measure mode. Figure 16.26 shows registers TB0MR to TB5MR in this mode. Figures 16.27 and 16.28 show an operation example of pulse period measurement and pulse-width measurement, respectively.

Table 16.8 Pulse Period/Pulse-width Measure Mode Specifications (i = 0 to 5)

Item	Specification		
Count sources	f1, f8, f2n, or fC32		
Count operations	• Increment		
	• The counter value is transferred to the reload register on the valid edge of a pulse to be measured, then it is set to 0000h to resume counting		
Count start condition	The TBiS bit in the TABSR or TBSR register is 1 (start counter)		
Count stop condition	The TBiS bit in the TABSR or TBSR register is 0 (stop counter)		
Interrupt request generating	On the valid edge of a pulse to be measured (1)		
timing	When the timer counter overflows		
	(when the MR3 bit in the TBiMR register becomes 1 (overflow)) (2)		
TBiIN pin function	A pulse input to be measured		
Read from timer	The TBi register indicates a reload register value (measurement results) (3		
Write to timer	The value written to the TBi register is written to neither the reload register nor the counter		

Notes:

- 1. No interrupt request is generated when the pulse to be measured is applied on the initial valid edge after the timer counter starts.
- 2. While the TBiS bit is 1 (start counter), after the MR3 bit becomes 1 (overflow) and at least one count source cycle has elapsed, a write operation to the TBiMR register sets the MR3 bit to 0 (no overflow).
- 3. The TBi register indicates an undefined value until the pulse to be measured is applied on the second valid edge after the timer counter starts.

Notes:

1. The measure modes selected by setting bits MR1 and MR0 are as follows:

Pulse period measurement 1 (bits MR1 and MR0 = 00b):

Measures between a falling edge and the next falling edge of a pulse

Pulse period measurement 2 (bits MR1 and MR0 = 01b):

Measures between a rising edge and the next rising edge of a pulse

Pulse-width measurement (bits MR1 and MR0 = 10b):

Measures between a falling edge and the next rising edge of a pulse and between the rising edge and the next falling edge of the pulse

2. The MR3 bit is undefined when the timer is reset.

While the TBiS bit in the TABSR or TBSR register is 1 (start counter), after the MR3 bit becomes 1 and at least one count source cycle has elapsed, a write operation to the TBiMR register sets the MR3 bit to 0. The MR3 bit cannot be set to 1 by a program.

Figure 16.26 Registers TB0MR to TB5MR in Pulse Period/Pulse-width Measure Mode

Figure 16.27 Operation Example in Pulse Period Measurement

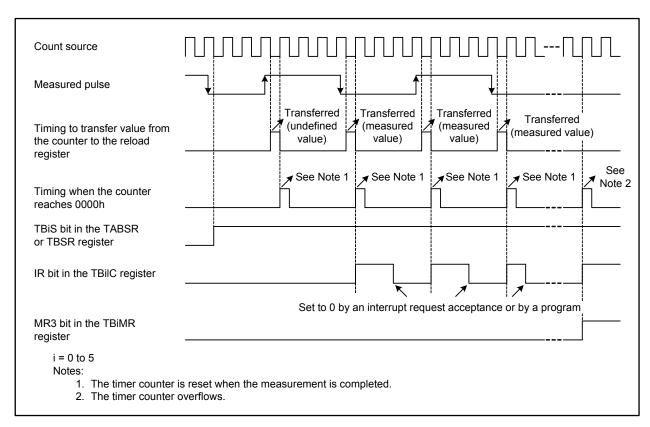


Figure 16.28 Operation Example in Pulse-width Measurement

16.3 Notes on Timers

16.3.1 Timer A and Timer B

All timers are stopped after a reset. To restart timers, configure parameters such as operating mode, count source, and counter value, then set the TAiS bit or TBjS bit in the TABSR or TBSR register to 1 (count starts) (i = 0 to 4; i = 0 to 5).

The following registers and bits should be set while the TAiS bit or TBjS bit is 0 (count stops):

- Registers TAiMR and TBjMR
- UDF register
- Bits TAZIE, TA0TGL, and TA0TGH in the ONSF register
- TRGSR register

16.3.2 Timer A

16.3.2.1 Timer Mode

• While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

16.3.2.2 Event Counter Mode

While the timer counter is running, the TAi register indicates a counter value at any given time.
 However, FFFFh is read if the timer counter underflows or 0000h if overflows while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

16.3.2.3 One-shot Timer Mode

- If the TAiS bit in the TABSR register is set to 0 (count stops) while the timer counter is running, the following operations are performed:
 - The timer counter stops and the setting value of the TAi register is reloaded.
 - A low signal is output at the TAiOUT pin.
 - The IR bit in the TAilC register becomes 1 (interrupts requested) after one CPU clock cycle.
- The one-shot timer is operated by an internal count source. When the trigger is an input to the TAilN pin, the signal is output with a maximum one count source clock delay after a trigger input to the TAilN pin.
- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done:
 - Select one-shot timer mode after a reset.
 - Switch operating modes from timer mode to one-shot timer mode.
 - Switch operating modes from event counter mode to one-shot timer mode.
- If a retrigger occurs while counting, the timer counter decrements by one, reloads the setting value of the TAi register, and then continues counting. To generate a retrigger while counting, wait at least one count source cycle after the last trigger is generated.
- When an external trigger input is selected to start counting in timer A one-shot mode, do not provide an external retrigger for 300 ns before the timer counter reaches 0000h. Otherwise, it may stop counting.

16.3.2.4 Pulse-width Modulation Mode

• The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done (i = 0 to 4):

- Select pulse-width modulation mode after a reset.
- Switch operating modes from timer mode to pulse-width modulation mode.
- Switch operating modes from event counter mode to pulse-width modulation mode.
- If the TAiS bit in the TABSR register is set to 0 (count stops) while PWM pulse is output, the following operations are performed:
 - The timer counter stops.
 - The output level at the TAiOUT pin changes from high to low. The IR bit becomes 1.
 - When a low signal is output at the TAiOUT pin, it does not change. The IR bit does not change, either.

16.3.3 Timer B

16.3.3.1 Timer Mode and Event Counter Mode

• While the timer counter is running, the TBj register indicates a counter value at any given time (j = 0 to 5). However, FFFFh is read while reloading is in progress. When a value is set to the TBj register while the timer counter is stopped, if the TBj register is read before the count starts, the set value is read.

16.3.3.2 Pulse Period/Pulse-width Measure Mode

- While the TBjS bit in the TABSR or TBSR register is 1 (start counter), after the MR3 bit becomes 1 (overflow) and at least one count source cycle has elapsed, a write operation to the TBjMR register sets the MR3 bit to 0 (no overflow).
- Use the IR bit in the TBjIC register to detect overflow. The MR3 bit is used only to determine an interrupt request source within the interrupt handler.
- The counter value is undefined when the timer counter starts. Therefore, the timer counter may overflow before a measured pulse is applied on the initial valid edge and cause a timer Bj interrupt request to be generated.
- When the measured pulse is applied on the initial valid edge after the timer counter starts, an undefined value is transferred to the reload register. At this time, a timer Bj interrupt request is not generated.
- The IR bit may become 1 (interrupt requested) by changing bits MR1 and MR0 in the TBjMR register after the timer counter starts. However, if the same value is rewritten to bits MR1 and MR0, the IR bit does not change.
- Pulse width is continuously measured in pulse-width measure mode. Whether the measurement result is high-level width or not is determined by a program.
- When an overflow occurs at the same time a pulse is applied on the valid edge, this pulse is not recognized since an interrupt request is generated only once. Do not let an overflow occur in pulse period measure mode.
- In pulse-width measure mode, determine whether an interrupt source is a pulse applied on the valid edge or an overflow by reading the port level in the timer Bj interrupt handler.

17. Three-phase Motor Control Timers

A three-phase motor driving waveform can be output using timers A1, A2, A4, and B2. The three-phase motor control timers are enabled by setting the INV02 bit in the INVC0 register to 1. Timer B2 is used for carrier wave control, and timers A1, A2, and A4 for three-phase PWM output (U, \overline{U} , V, \overline{V} , W, and \overline{W}) control. Table 17.1 lists the specifications of the three-phase motor control timers and Figure 17.1 shows its block diagram. Figures 17.2 to 17.6 show registers associated with this function.

Table 17.1 Specifications for Three-phase Motor Control Timers

Item	Specification		
Three-phase PWM waveform	Six pins: U, \overline{U} , V, \overline{V} , W, and \overline{W}		
output pins			
Forced cutoff (1)	A low input to the NMI pin		
Timers	Timers A4, A1, and A2 are used in one-shot timer mode:		
	Timer A4 is used for U- and $\overline{\text{U}}$ -phase waveform control		
	Timer A1 is used for V- and $\overline{\text{V}}$ -phase waveform control		
	Timer A2 is used for W- and $\overline{\text{W}}$ -phase waveform control		
	Timer B2 is used in timer mode		
	Carrier wave cycle control		
	Dead time timer (three 8-bit timers share a reload register):		
	Dead time control		
Output waveforms	Triangular wave modulation and sawtooth wave modulation		
	Output of a high or a low waveform for one cycle		
	Separately settable levels of high side and low side		
Carrier wave periods	Triangular wave modulation: count source × (m + 1) × 2		
	Sawtooth wave modulation: count source × (m + 1)		
	m: TB2 register setting value from 0000h to FFFFh		
	Count source: f1, f8, f2n, or fC32		
Three-phase PWM output	Triangular wave modulation: count source × n × 2		
width	Sawtooth wave modulation: count source × n		
	n: Setting value of registers TA4, TA1, and TA2 (registers TA4, TA41,		
	TA1, TA11, TA2, and TA21 when the INV11 bit in the INVC1 register		
	is 1) from 0001h to FFFFh		
	Count source: f1, f8, f2n, or fC32		
Dead time (width)	Count source × p or no dead time		
	p: DTT register setting value from 01h to FFh		
	Count source: f1 or f1 divided by 2		
Active level	Selectable either active high or active low		
Simultaneous conduction	Function to detect simultaneous turn-on signal outputs, function to disable		
prevention	signal output when simultaneous turn-on signal outputs are detected		
Interrupt frequency	Selectable from one through 15 time-carrier wave cycle-to-cycle basis for		
	the timer B2 interrupt		

Note:

1. Forced cutoff by a signal input to the NMI pin can be performed when the PM24 bit in the PM2 register is 1 (NMI enabled), the INV02 bit in the INVC0 register is 1 (three-phase motor control timers used), and the INV03 bit is 1 (three-phase motor control timer output enabled).

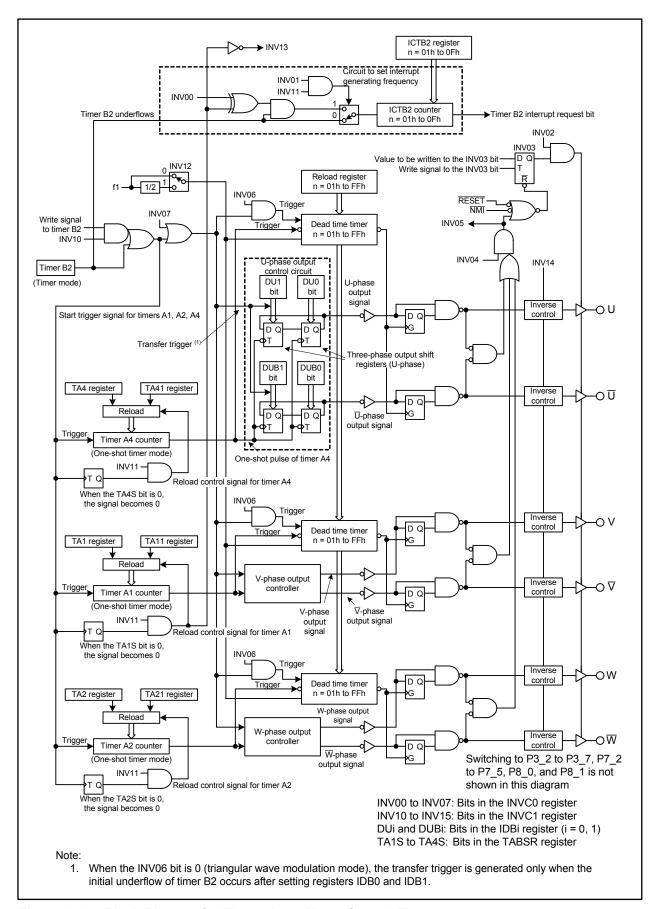
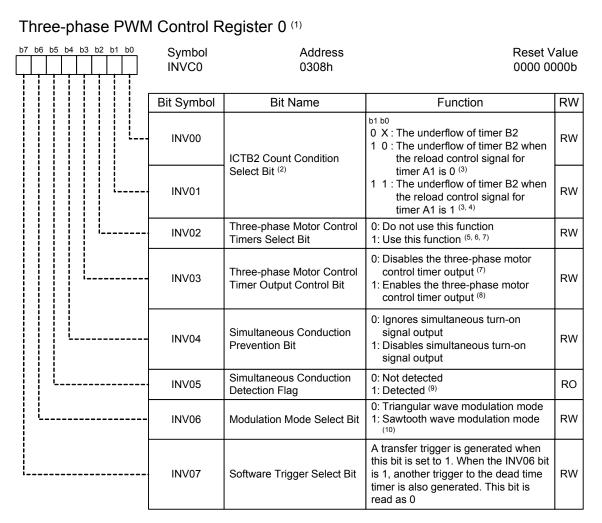
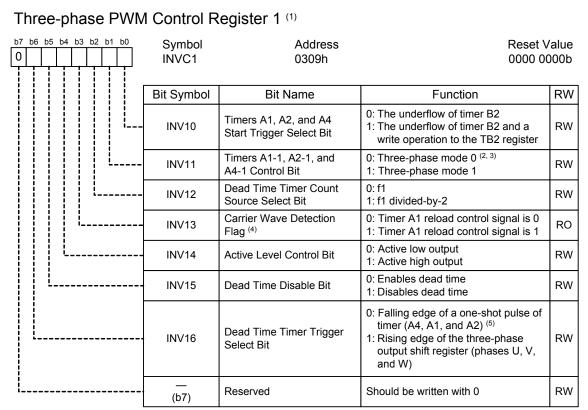



Figure 17.1 Block Diagram for Three-phase Motor Control Timers



Notes:

- 1. Set this register after setting the PRC1 bit in the PRCR register to 1 (write enabled). Also, rewrite bits INV00 to INV02 and INV06 while timers A1, A2, A4, and B2 are stopped.
- 2. This bit is enabled when the INV11 bit in the INVC1 register is 1 (three-phase mode 1). When the INV11 bit is 0 (three-phase mode 0), the ICTB2 counter increments by one each time timer B2 underflows irrespective of the INV00 and INV01 bit settings.
- 3. Set the ICTB2 register before setting the INV01 bit to 1. Also, set the TA1S bit in the TABSR register to 1 before the initial timer B2 underflow occurs.
- 4. When the INV00 bit is 1, the first interrupt occurs when timer B2 underflows n-1 times (n is the value set in the ICTB2 counter). Subsequent interrupts occur every n times timer B2 underflows.
- Set the INV02 bit to 1 to operate the dead time timer, U-, V-, and W-phase output control circuits, and the ICTB2 counter.
- After setting the INV02 bit to 1, pins should be configured first by the IOBC register then by the output function select registers.
- 7. When the INV02 bit is set to 1 and the INV03 bit is set to 0, pins U, \overline{U} , V, \overline{V} , W, and \overline{W} , even when they are assigned to other peripheral functions, become high-impedance.
- 8. The INV03 bit becomes 0 when any of the following occurs:
 - Reset
 - Signals of both the high and low sides are simultaneously switched to active when the INV04 bit is 1.
 - The INV03 bit is set to 0 by a program.
 - The NMI pin goes from high to low when the PM24 bit in the PM2 register is 1 (NMI enabled).
- 9. This bit cannot be set to 1 by a program. Set the INV04 bit to 0 to set this bit to 0.
- 10. When the INV06 bit is 1, set the INV11 bit in the INVC1 register to 0 (three-phase mode 0) and the PWCON bit in the TB2SC register to 0 (timer B2 register reloaded when timer B2 underflows).

Figure 17.2 INVC0 Register

Notes:

- 1. Set this register after setting the PRC1 bit in the PRCR register to 1 (write enabled). Also, rewrite this register while timers A1, A2, A4, and B2 are stopped.
- 2. Set the INV11 bit to 0 when the INV06 bit in the INVC0 register is 1 (sawtooth wave modulation mode).
- 3. Set the PWCON bit in the TB2SC register to 0 (timer B2 register reloaded if timer B2 underflows) when the INV11 bit is 0.
- 4. This bit setting is enabled when the INV06 bit is 0 (triangular wave modulation mode) and the INV11 bit is 1.
- 5. Set the INV16 bit to 1 when the following conditions are all met:
 - The INV15 bit is 0.
 - The Dij bit has a different value from the DiBj bit whenever the INV03 bit is 1 (enables the three-phase motor control timer output); the high- and low-side output signals always have inverse levels on periods other than dead time (i = U, V, or W; j = 0, 1).

Set the INV16 bit to 0 when the conditions above are not met.

Figure 17.3 INVC1 Register

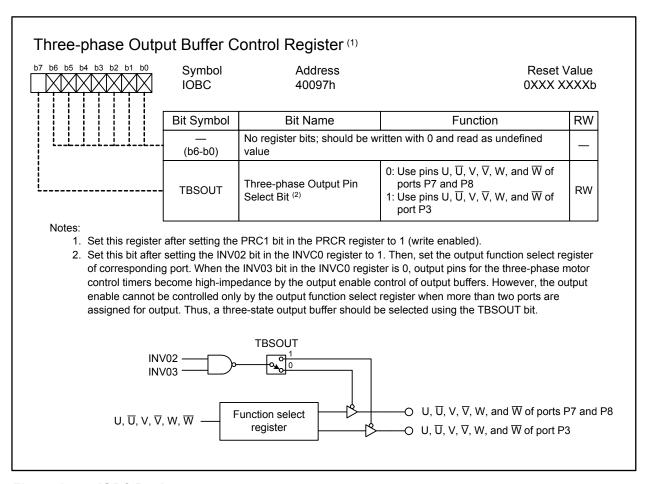


Figure 17.4 IOBC Register

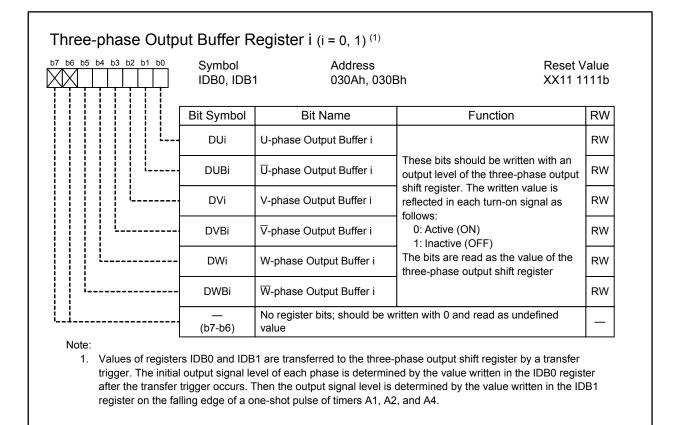


Figure 17.5 Registers IDB0 and IDB1

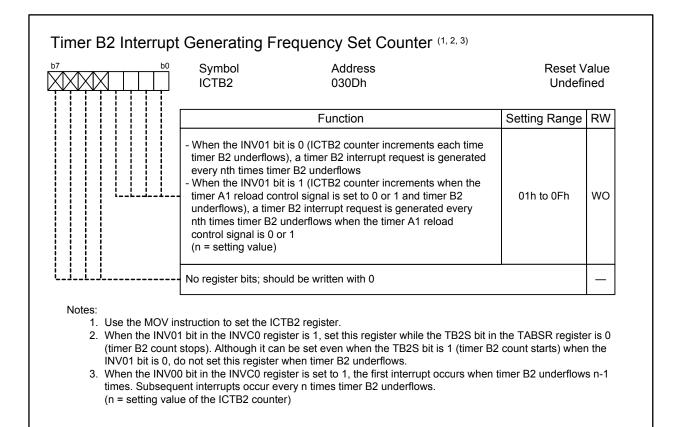


Figure 17.6 ICTB2 Register

17.1 Modulation Modes of Three-phase Motor Control Timers

The three-phase motor control timers support two modulation modes: triangular wave modulation mode and sawtooth wave modulation mode. The triangular wave modulation mode has two modes: three-phase mode 0 and three-phase mode 1. Table 17.2 lists bit settings and characteristics of each mode.

Table 17.2 Modulation Modes

Item	Triangular Wave Modulation Mode		Sawtooth Wave Modulation Mode
	Three-phase mode 0	Three-phase mode 1	(Three-phase mode 0)
Bit settings	INV06 is 0, INV11 is 0, PWCON is 0	INV06 is 0, INV11 is 1	INV06 is 1, INV11 is 0, PWCON is 0
Waveform	Triangular wave	Sawtooth wave	
Registers TA11, TA21, and TA41	Not used	Used	Not used
Timing to transfer data from registers IDB0 and IDB1 to the three-phase output shift register	Only once when a transfe setting registers IDB0 and	Whenever a transfer trigger ⁽¹⁾ occurs	
Timing to trigger the dead time timer when the INV16 bit is 0	On the falling edge of a o A1, A2, and A4	When a transfer trigger occurs, or on the falling edge of a one-shot pulse of timers A1, A2, and A4	
Bits INV00 and INV01 in the INVC0 register	Disabled. The ICTB2 counter increments each time timer B2 underflows, irrespective of the INV00 and INV01 bit settings	Enabled	Disabled. The ICTB2 counter increments each time timer B2 underflows, irrespective of the INV00 and INV01 bit settings
INV13 bit	Disabled	Enabled	Disabled

Note:

1. The transfer trigger is a timer B2 underflow, a write operation to the INV07 bit, or a write operation to the TB2 register when the INV10 bit is 1.

17.2 Timer B2

Timer B2, which operates in timer mode, is used for carrier wave control in the three-phase motor control timers.

Figures 17.7 and 17.8 show registers TB2 and TB2MR in this function, respectively. Figure 17.9 shows the TB2SC register which switches timing to change the carrier wave frequency in three-phase mode 1.

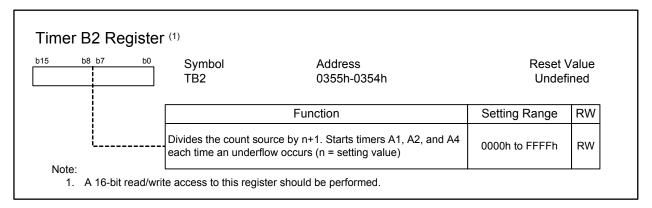


Figure 17.7 TB2 Register When Using Three-phase Motor Control Timers

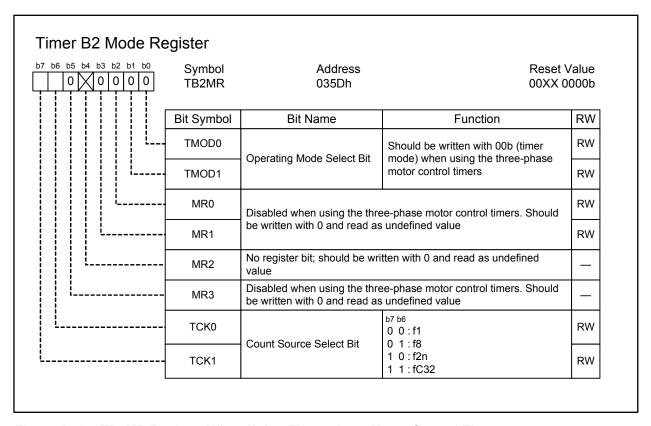


Figure 17.8 TB2MR Register When Using Three-phase Motor Control Timers

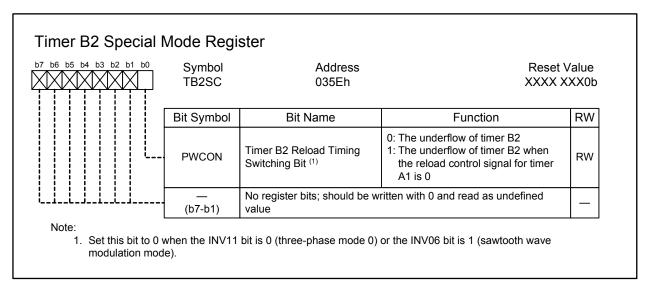


Figure 17.9 TB2SC Register

17.3 Timers A4, A1, and A2

Timers A4, A1, and A2 are used for three-phase PWM output (U, \overline{U} , V, \overline{V} , W, and \overline{W}) control when using the three-phase motor control timers.

These timers should be operated in one-shot timer mode. Every time timer B2 underflows, a trigger is input to timers A4, A1, and A2 to generate a one-shot pulse. If the values of registers TA4, TA1, and TA2 are rewritten every time a timer B2 interrupt occurs, the duty cycle of the PWM waveform can be varied. In three-phase mode 1, the value of registers TAi and TAi-1 is alternately reloaded to the counter at each timer B2 interrupt, which halves the timer B2 interrupt frequency (i = 4, 1, 2).

Figure 17.10 shows registers TA1, TA2, TA4, TA11, TA21, and TA41 in the three-phase motor control timers. Figure 17.11 shows registers TA1MR, TA2MR, and TA4MR in this function. Figures 17.12 and 17.13 show registers TRGSR and TABSR, respectively, in this function.

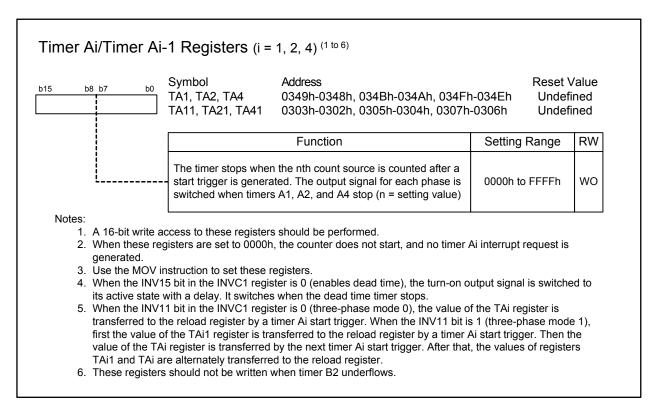


Figure 17.10 Registers TA1, TA2, TA4, TA11, TA21, and TA41

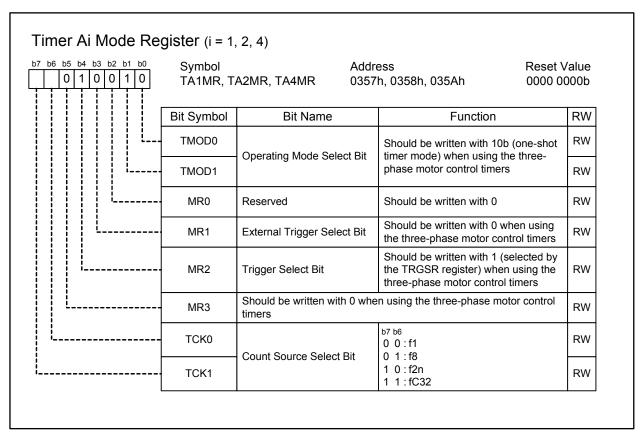


Figure 17.11 Registers TA1MR, TA2MR, and TA4MR When Using Three-phase Motor Control Timers

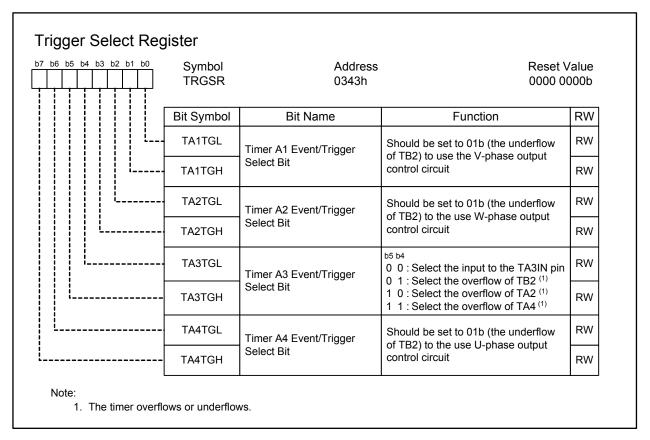


Figure 17.12 TRGSR Register in Three-phase Motor Control Timers

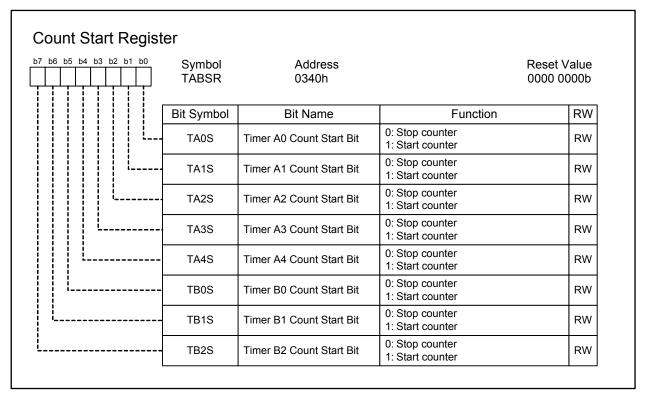


Figure 17.13 TABSR Register

17.4 Simultaneous Conduction Prevention and Dead Time Timer

The three-phase motor control timers offer two ways to avoid shoot-through, which occurs when high-side and low-side transistors are simultaneously turned on.

One is "simultaneous turn-on signal output disable function". This function prevents high-side and low-side transistors from being inadvertently switched to active due to events like program errors. The other is by the use of dead time timers. A dead time timer delays the turn-on of one transistor in order to ensure that an adequate time (the dead time) passes after the other is turned off.

To disable simultaneous turn-on output signals, the INV04 bit in the INVC0 register should be set to 1. If outputs for any pair of phases (U and \overline{U} , V and \overline{V} , or W and \overline{W}) are simultaneously switched to an active state, every three-phase motor control output pin becomes high-impedance. Figure 17.14 shows an example of output waveform when simultaneous turn-on signal output is disabled.

To enable the dead time timer, the INV15 bit in the INVC1 register should be set to 0. The DTT register determines the dead time. Figure 17.15 shows the DTT register and Figure 17.16 shows an example of output waveform on using dead time timer.

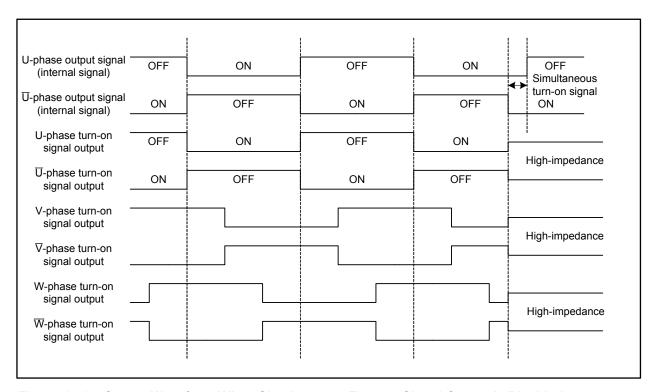


Figure 17.14 Output Waveform When Simultaneous Turn-on Signal Output is Disabled

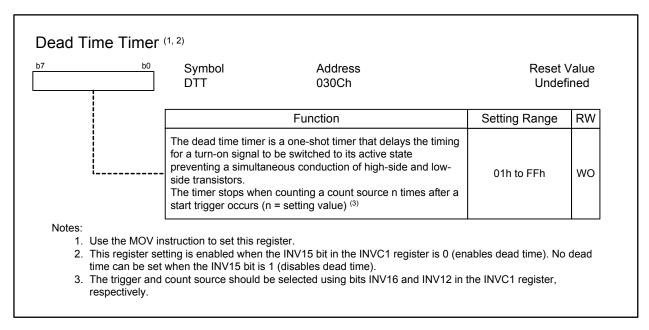


Figure 17.15 DTT Register

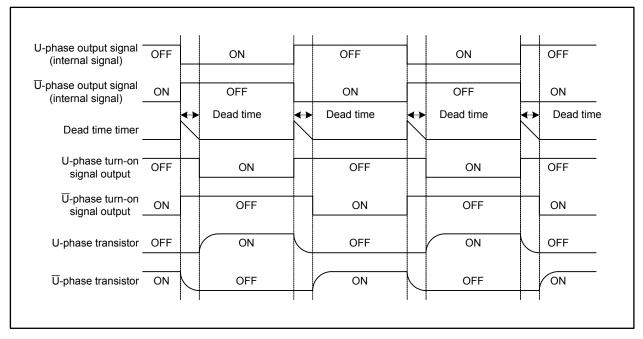


Figure 17.16 Output Waveform When Using Dead Time Timer

17.5 Three-phase Motor Control Timer Operation

Figures 17.17 and 17.18 show an operation example of triangular wave modulation and sawtooth wave modulation, respectively.

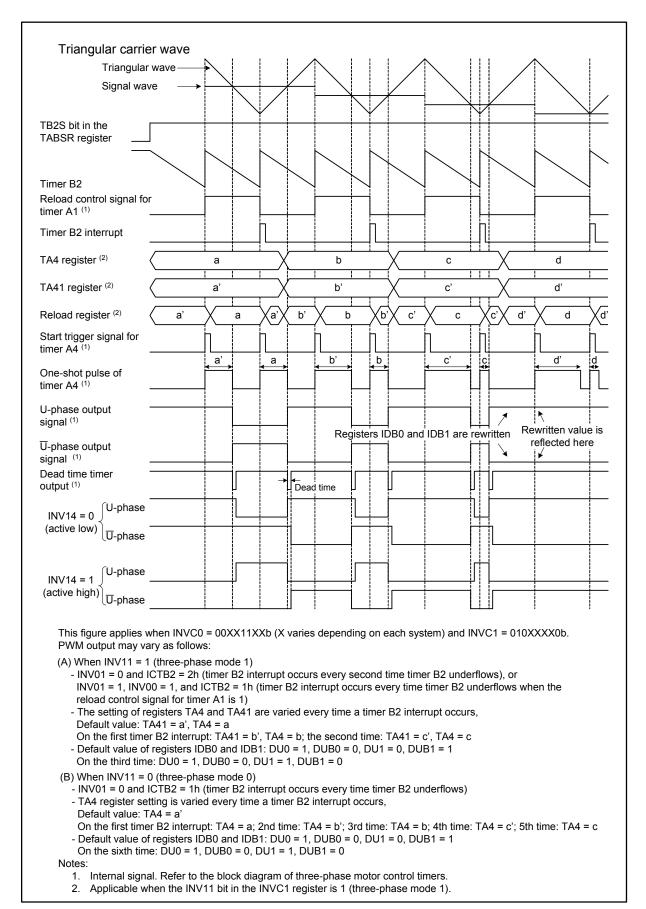


Figure 17.17 Triangular Wave Modulation Operation

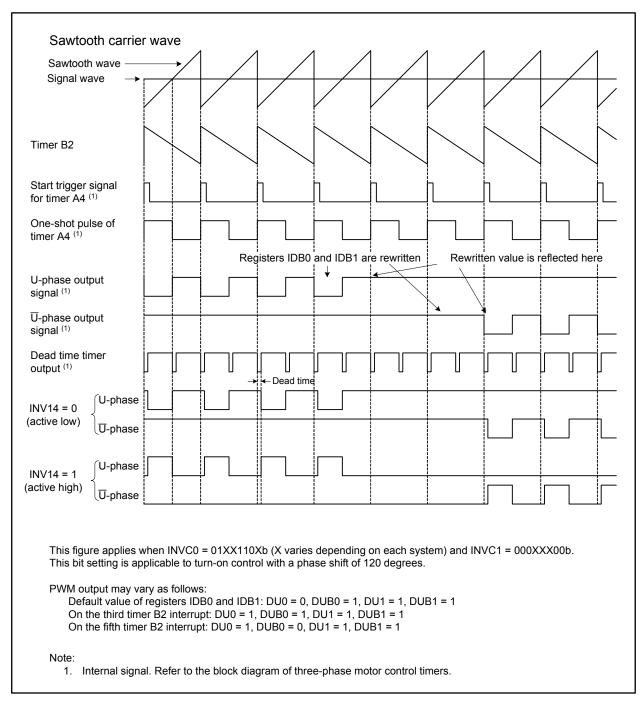


Figure 17.18 Sawtooth Wave Modulation Operation

17.6 Notes on Three-phase Motor Control Timers

17.6.1 Shutdown

• When a low signal is applied to the $\overline{\text{NMI}}$ pin with the following bit settings, pins TA1OUT, TA2OUT, and TA4OUT become high-impedance: the PM24 bit in the PM2 register is 1 (NMI enabled), the INV02 bit in the INVC0 register is 1 (three-phase motor control timers used), and the INV03 bit is 1 (three-phase motor control timer output enabled).

17.6.2 Register Setting

• Do not write to the TAi1 register before and after timer B2 underflows (i = 1, 2, 4). Before writing to the TAi1 register, read the TB2 register to verify that sufficient time remains until timer B2 underflows. Then, immediately write to the TAi1 register so no interrupt handling is performed during this write procedure. If the TB2 register indicates little time remains until the underflow, write to the TAi1 register after timer B2 underflows.

18. Serial Interface

The serial interface consists of 11 channels: UART0 to UART10.

Each channel has an exclusive timer to generate the transmit/receive clock and operates independently. Figures 18.1 and 18.2 show block diagrams of UART0 to UART6 and UART7 to UART10, respectively. UARTi supports the following modes:

- Synchronous serial interface mode (for UART0 to UART10)
- Asynchronous serial interface mode (UART mode) (for UART0 to UART10)
- Special mode 1 (I²C mode) (for UART0 to UART6)
- Special mode 2 (for UART0 to UART6)
- Special mode 4 (Bus collision detection: IE mode) (optional) (1) (for UART0 to UART6)

Figures 18.3 to 18.20 show registers associated with UARTi (i = 0 to 10).

Refer to the tables listing each mode for registers and pin settings.

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Table 18.1 Comparison of UART0 to UART10 Functions

Mode/Function		UART0 to UART6	UART7 to UART10	
Synchronous serial interface mode		Available	Available	
Serial data logic inversion		Available	Not available	
UART mode		Available	Available	
	CTS/RTS function selection	Available	Available	
	TXD and RXD I/O polarity selection	Available	Not available	
Special mode 1 (I ² C mode)		Available	Not available	
Special mode 2		Available	Not available	
Special mode 4 (IE mode) (optional) (1)		Available	Not available	
Pins TXD and RXD output mode		Push-pull output, N-channel open drain output programmable by port function select registers	Push-pull output, N-channel open drain output programmable by port function select registers	

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

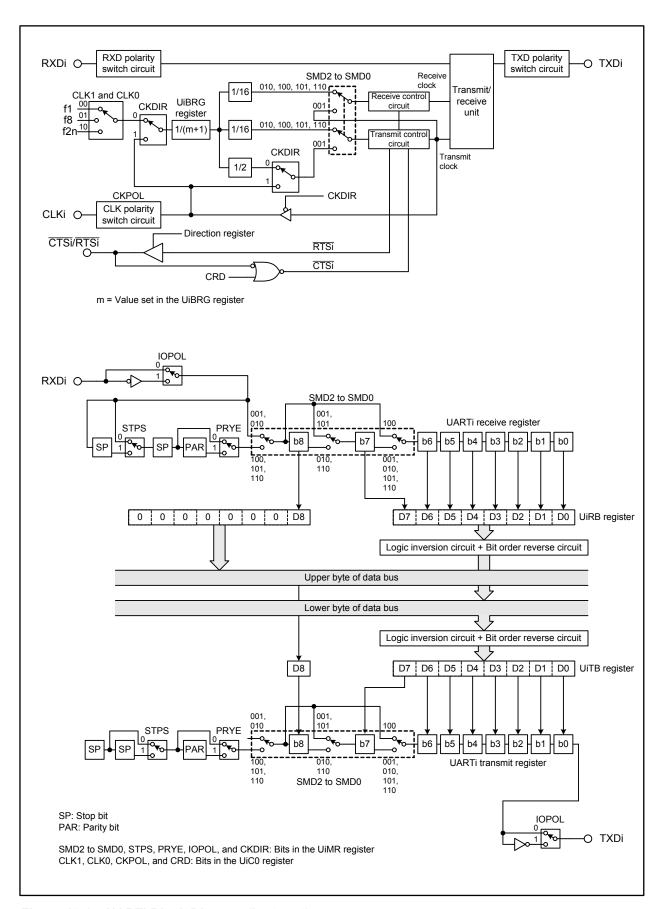


Figure 18.1 UARTi Block Diagram (i = 0 to 6)

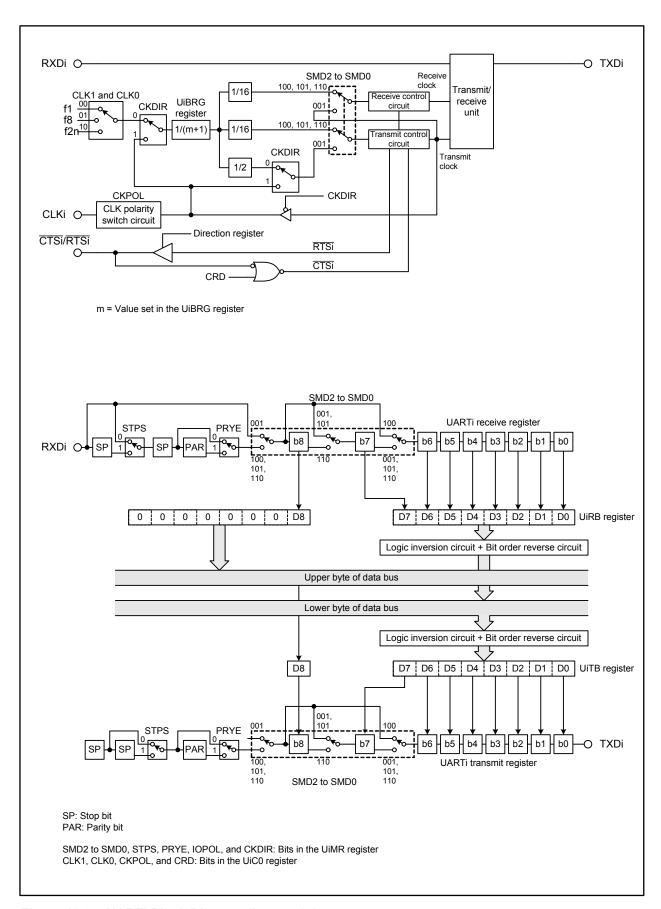


Figure 18.2 UARTi Block Diagram (i = 7 to 10)

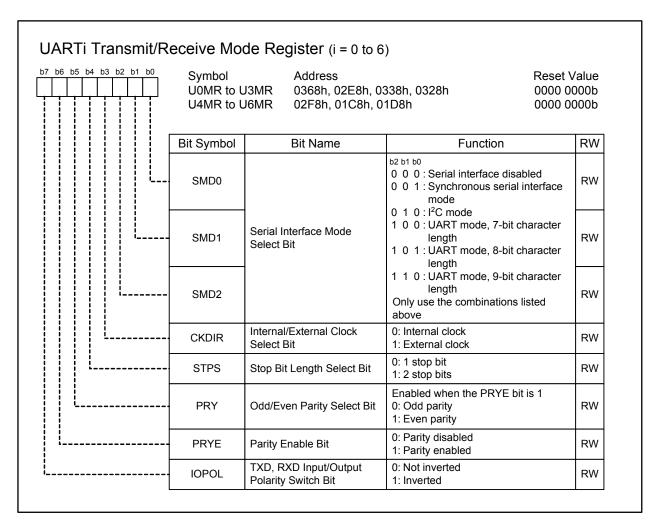
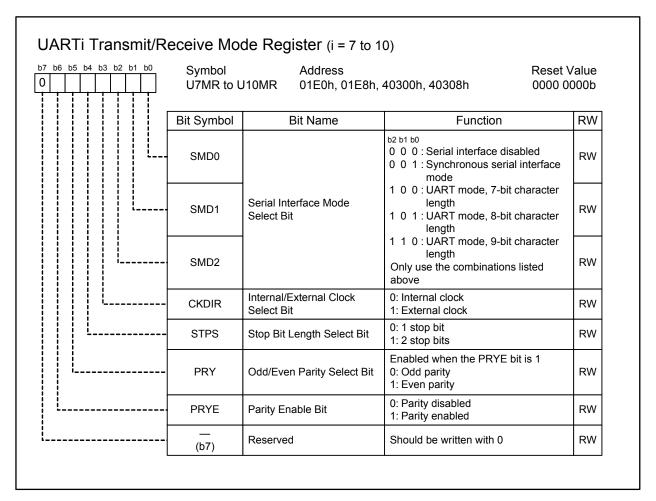
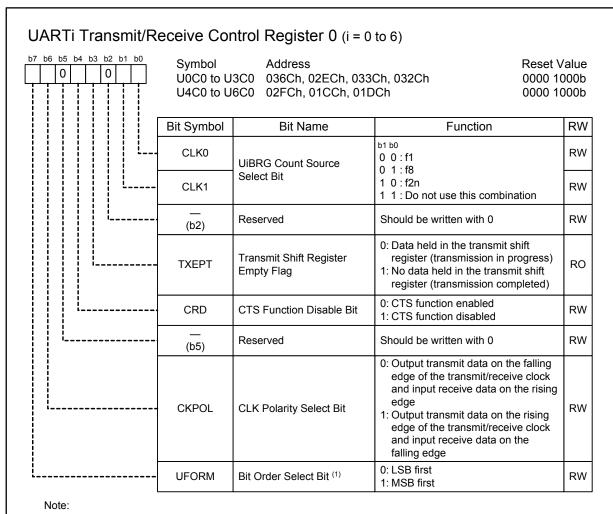
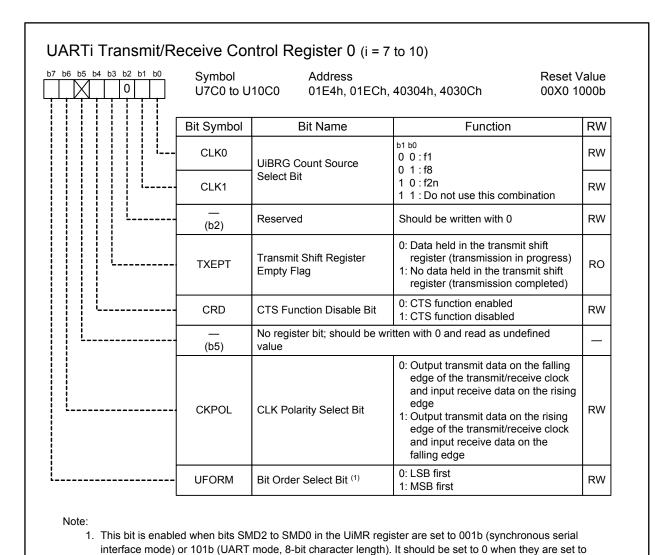


Figure 18.3 Registers U0MR to U6MR


Figure 18.4 Registers U7MR to U10MR

1

Figure 18.5 Registers U0C0 to U6C0

^{1.} This bit is enabled when bits SMD2 to SMD0 in the UiMR register are set to 001b (synchronous serial interface mode) or 101b (UART mode, 8-bit character length). It should be set to 1 when bits SMD2 to SMD0 are set to 010b (I²C mode) and should be set to 0 when they are set to 100b (UART mode, 7-bit character length) or 110b (UART mode, 9-bit character length).

100b (UART mode, 7-bit character length) or 110b (UART mode, 9-bit character length).

Figure 18.6 Registers U7C0 to U10C0

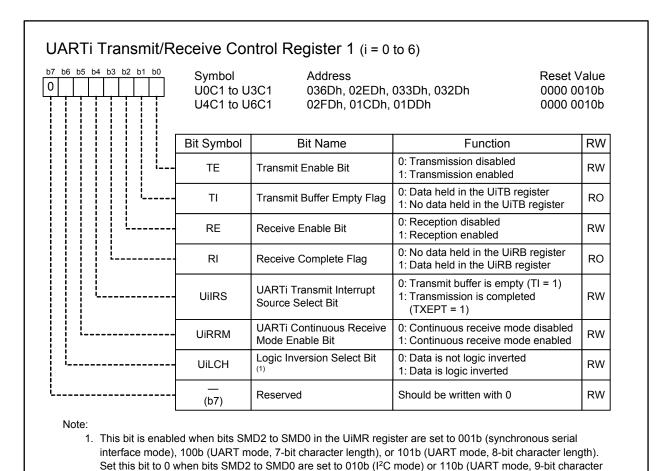


Figure 18.7 Registers U0C1 to U6C1

length).

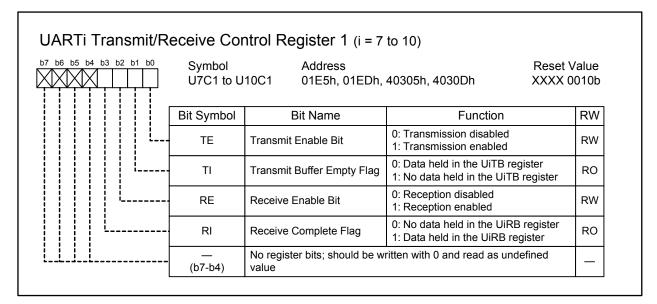


Figure 18.8 Registers U7C1 to U10C1

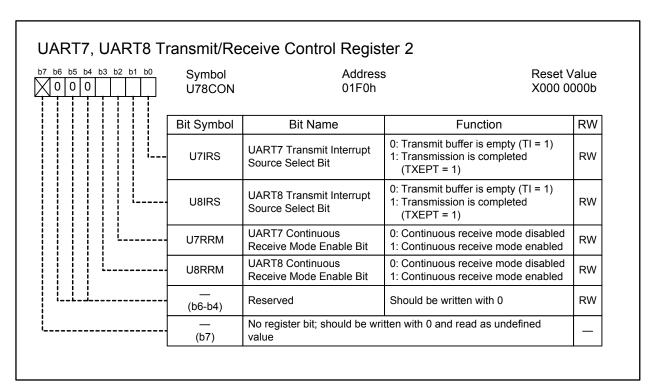


Figure 18.9 U78CON Register

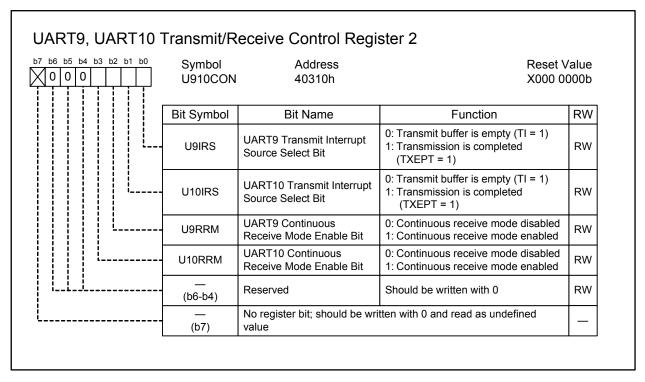
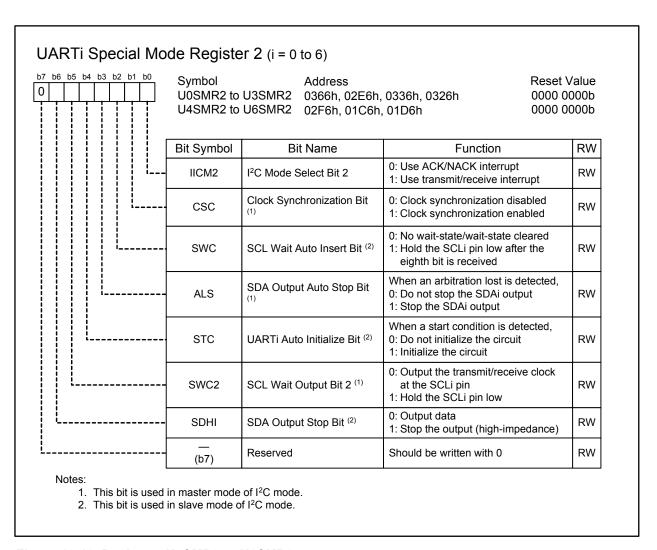
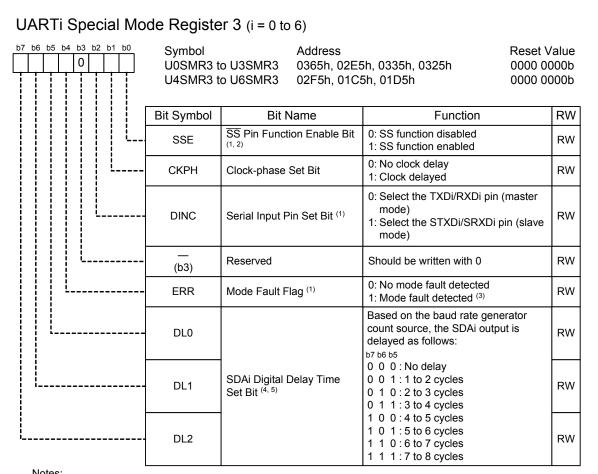
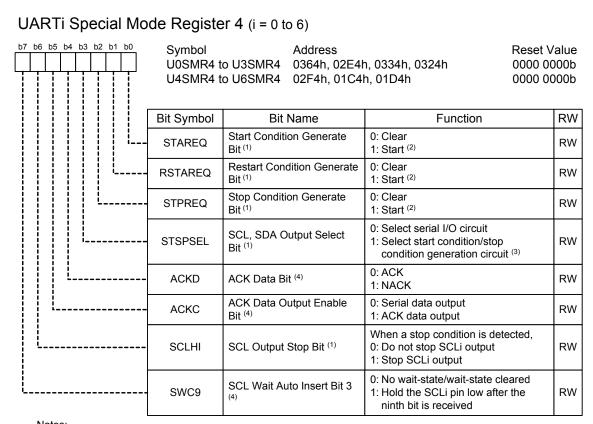


Figure 18.10 U910CON Register

Figure 18.11 Registers U0SMR to U6SMR


Figure 18.12 Registers U0SMR2 to U6SMR2

18. Serial Interface R32C/116A Group

- 1. This bit is used in special mode 2.
- 2. Set the CRD bit in the UiC0 register to 1 (CTS function disabled) to use the SS function.
- 3. The ERR bit can only be set to 0. Writing 1 to this bit has no effect.
- 4. Bits DL2 to DL0 in I²C mode generate a digital delay for the SDAi output. Set these bits to 000b in all modes other than I2C mode.
- 5. When an external clock is selected, a delay of approximately 100 ns is added.

Figure 18.13 Registers U0SMR3 to U6SMR3

- 1. This bit is used in master mode of I²C mode. It can be set to 1 when the IICM bit in the UiSMR register is 1 (I²C mode).
- 2. This bit becomes 0 when the condition is generated. The setting remains 1 when the condition is incomplete.
- 3. Set the STSPSEL bit to 1 after setting the STAREQ, RSTAREQ, or STPREQ bit to 1.
- This bit is used in slave mode of I²C mode. It can be set to 1 when the IICM bit in the UiSMR register is 1 (I²C mode).

Figure 18.14 Registers U0SMR4 to U6SMR4

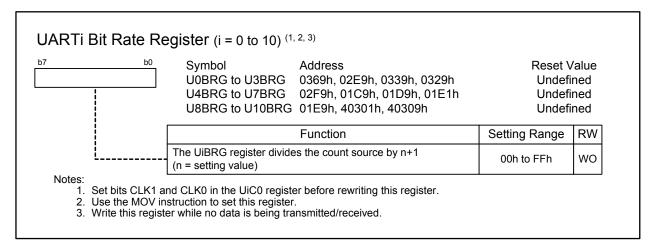
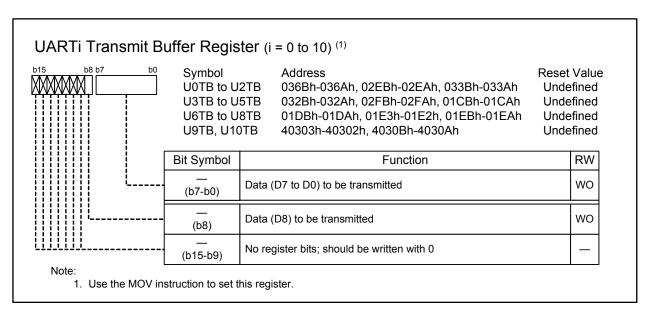
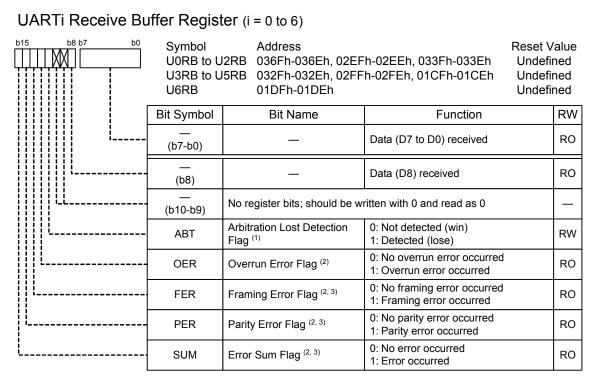
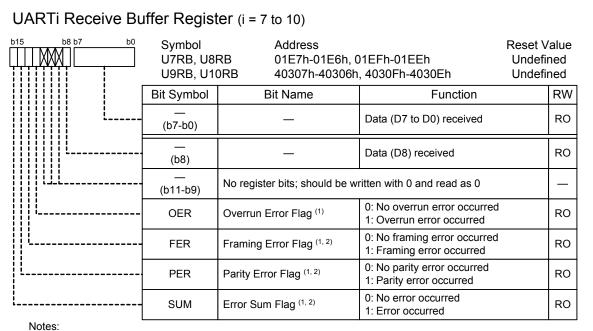


Figure 18.15 Registers U0BRG to U10BRG


Figure 18.16 Registers U0TB to U10TB

- 1. The ABT bit can only be set to 0.
- 2. Bits OER, FER, PER, and SUM become 0 when bits SMD2 to SMD0 in the UiMR register are set to 000b (serial interface disabled) or the RE bit in the UiC1 register is set to 0 (reception disabled). When bits OER, FER, and PER all become 0, the SUM bit also becomes 0. Bits FER and PER become 0 when the lower byte in the UiRB register is read.
- 3. When bits SMD2 to SMD0 are 001b (synchronous serial interface mode) or 010b (I²C mode), these error flags are disabled and read as an undefined value.

Figure 18.17 Registers U0RB to U6RB

1. Bits OER, FER, PER, and SUM become 0 when bits SMD2 to SMD0 in the UiMR register are set to 000b (serial interface disabled) or the RE bit in the UiC1 register is set to 0 (reception disabled). When bits OER, FER, and PER all become 0, the SUM bit also becomes 0. Bits FER and PER become 0 when the lower byte in the UiRB register is read.

2. When bits SMD2 to SMD0 are 001b (synchronous serial interface mode) or 010b (I²C mode), these error flags are disabled and read as an undefined value.

Figure 18.18 Registers U7RB to U10RB

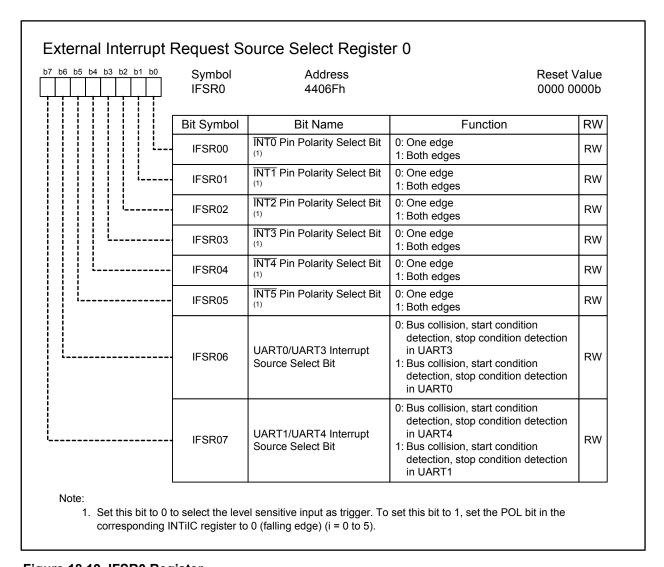


Figure 18.19 IFSR0 Register

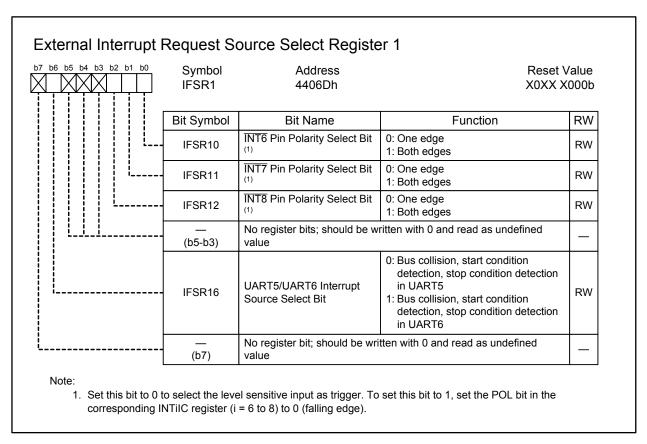


Figure 18.20 IFSR1 Register

18.1 Synchronous Serial Interface Mode

The synchronous serial interface mode allows data transmission/reception synchronized with the transmit/receive clock. Table 18.2 lists specifications of synchronous serial interface mode.

Table 18.2 Synchronous Serial Interface Mode Specifications

Item	Specification			
Data format	8-bit character length			
Transmit/receive clock	• The CKDIR bit in the UiMR register is 0 (internal clock) (i = 0 to 10):			
	$\frac{fx}{2(m+1)}$ $fx = f1$, f8, f2n; m : UiBRG register setting value, 00h to FFh			
	The CKDIR bit is 1 (external clock): input to the CLKi pin			
Transmit/receive control	CTS function enabled, RTS function enabled, or CTS/RTS function disabled			
Transmit start conditions	The conditions for starting data transmission are as follows ⁽¹⁾ : • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register) • Input level at the CTSi pin is low when the CTS function is selected			
Receive start conditions	The conditions for starting data reception are as follows (1): • The RE bit in the UiC1 register is 1 (reception enabled) • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register) • Input level at the CTSi pin is low when the CTS function is selected			
Interrupt request generating timing	In transmit interrupt, one of the following conditions can be selected by setting the UiIRS bit in registers U0C1 to U6C1, U78CON, and U910CON: • The UiIRS bit is 0 (transmit buffer is empty): when data is transferred from the UiTB register to the UARTi transmit register (when the transmission has started) • The UiIRS bit is 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt, • When data is transferred from the UARTi receive register to the UiRB register (when the reception is completed)			
Error detection	Overrun error (2) This error occurs when the seventh bit of the next data is received before the UiRB register is read			
Other functions	CLK polarity Rising or falling edge of the transmit/receive clock for output and input of transmit/receive data Bit order selection LSB first or MSB first Continuous receive mode Data reception is enabled by a read access to the UiRB register Serial data logic inversion (UART0 to UART6) This function logically inverses transmit/receive data			

- 1. When selecting an external clock, the following preconditions should be met:
 - The CLKi pin is held high when the CKPOL bit in the UiC0 register is set to 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge).
 - The CLKi pin is held low when the CKPOL bit is set to 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge).
- 2. The UiRB register is undefined when an overrun error occurs. The IR bit in the SiRIC register does not change to 1 (interrupt requested).

Tables 18.3 and 18.4 list register settings. When UARTi operating mode is selected, a high is output at the TXDi pin until transmission starts (the TXDi pin is high-impedance when the N-channel open drain output is selected) (i = 0 to 10).

Figures 18.21 and 18.22 show examples of transmit and receive operations in synchronous serial interface mode, respectively.

Table 18.3 Register Settings in Synchronous Serial Interface Mode (for UART0 to UART6)

Register	Bits	Function	
UiMR	7 to 4	Set the bits to 0000b	
	CKDIR	Select either an internal clock or external clock	
	SMD2 to SMD0	Set the bits to 001b	
UiC0	UFORM	Select either LSB first or MSB first	
	CKPOL	Select a transmit/receive clock polarity	
	5	Set the bit to 0	
	CRD	Select CTS function enabled or disabled	
	TXEPT	Transmit register empty flag	
	2	Set the bit to 0	
	CLK1 and CLK0	Select a count source for the UiBRG register	
UiC1	7	Set the bit to 0	
	UiLCH	Set the bit to 1 to use logic inversion	
	UiRRM	Set the bit to 1 to use continuous receive mode	
	UilRS	Select a source for the UARTi transmit interrupt	
	RI	Receive complete flag	
	RE	Set the bit to 1 to enable data reception	
	TI	Transmit buffer empty flag	
	TE	Set the bit to 1 to enable data transmission/reception	
UiSMR	7 to 0	Set the bits to 00h	
UiSMR2	7 to 0	Set the bits to 00h	
UiSMR3	7 to 0	Set the bits to 00h	
UiSMR4	7 to 0	Set the bits to 00h	
UiBRG	7 to 0	Set the bit rate	
IFS0	IFS06	Select input pins for CLK3, RXD3, and CTS3	
	IFS03 and IFS02	Select input pins for CLK6, RXD6, and CTS6	
UiTB	7 to 0	Set the data to be transmitted	
UiRB	OER	Overrun error flag	
	7 to 0	Received data is read	
i = 0 to 6			

i = 0 to 6

Table 18.4 Register Settings in Synchronous Serial Interface Mode (for UART7 to UART10)

Register	Bits	Function
UiMR	7 to 4	Set the bits to 0000b
	CKDIR	Select an internal clock or external clock
	SMD2 to SMD0	Set the bits to 001b
UiC0	UFORM	Select either LSB first or MSB first
	CKPOL	Select a transmit/receive clock polarity
	5	Set the bit to 0
	CRD	Select CTS function enabled or disabled
	TXEPT	Transmit register empty flag
	2	Set the bit to 0
	CLK1 and CLK0	Select a count source for the UiBRG register
UiC1	RI	Receive complete flag
	RE	Set the bit to 1 to enable data reception
	TI	Transmit buffer empty flag
	TE	Set the bit to 1 to enable data transmission/reception
U78CON	UiRRM	Set the bit to 1 to use continuous receive mode
	UilRS	Select an interrupt source for UARTi transmit
U910CON	UiRRM	Set the bit to 1 to use continuous receive mode
	UilRS	Select an interrupt source for UARTi transmit
IFS0	IFS05	Select input pins for CLK7, RXD7, and CTS7
	IFS04	Select input pins for CLK8, RXD8, and CTS8
IFS3	IFS35	Select input pins for CLK10, RXD10, and CTS10
	IFS34	Select input pins for CLK9, RXD9, and CTS9
UiBRG	7 to 0	Set the bit rate
UiTB	7 to 0	Set the data to be transmitted
UiRB	OER	Overrun error flag
	7 to 0	Received data can be read

i = 7 to 10

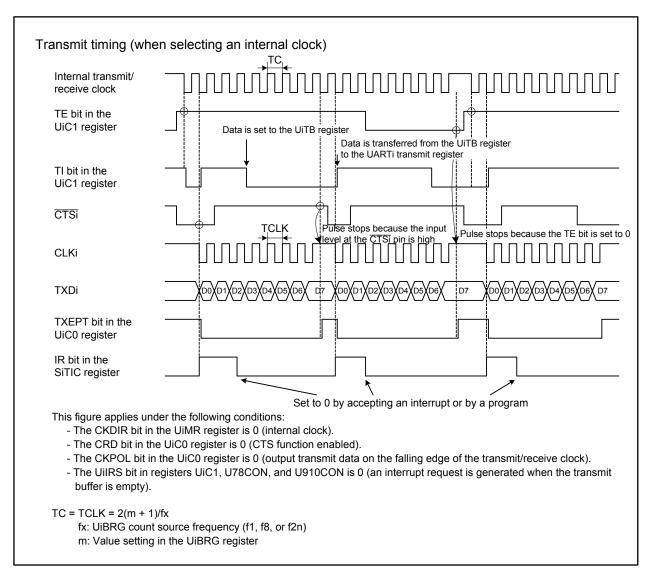


Figure 18.21 Transmit Operation in Synchronous Serial Interface Mode

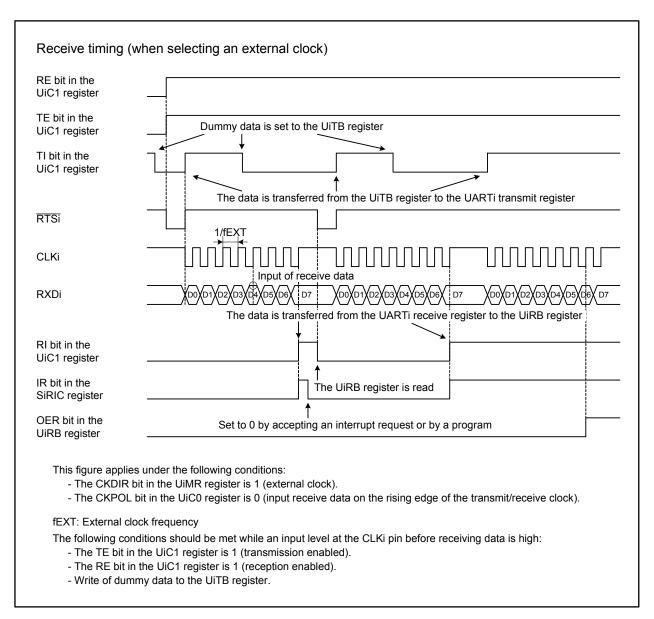


Figure 18.22 Receive Operation in Synchronous Serial Interface Mode

18.1.1 Reset Procedure on Transmit/Receive Error

When a transmit/receive error occurs in synchronous serial interface mode, follow the procedures below to perform a reset:

- A. Reset procedure for the UiRB register (i = 0 to 10)
 - (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
 - (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (3) Set bits SMD2 to SMD0 to 001b (synchronous serial interface mode).
 - (4) Set the RE bit in the UiC1 register to 1 (reception enabled).
- B. Reset procedure for the UiTB register
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (2) Set bits SMD2 to SMD0 to 001b (synchronous serial interface mode).
 - (3) Irrespective of its status, set the TE bit in the UiC1 register to 1 (transmission enabled).

18.1.2 CLK Polarity

As shown in Figure 18.23, the polarity of the transmit/receive clock is selected using the CKPOL bit in the UiC0 register (i = 0 to 10).

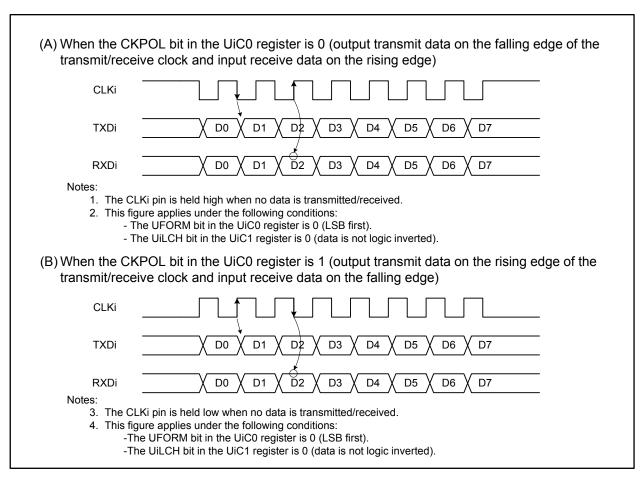


Figure 18.23 Transmit/Receive Clock Polarity (i = 0 to 10)

18.1.3 LSB First and MSB First Selection

As shown in Figure 18.24, the bit order is selected by setting the UFORM bit in the UiC0 register (i = 0 to 10).

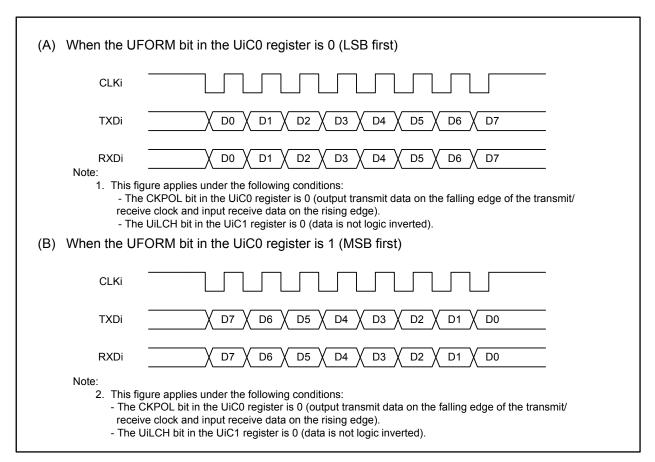


Figure 18.24 Bit Order (i = 0 to 10)

18.1.4 Continuous Receive Mode

In continuous receive mode, data reception is automatically enabled by a read access to the receive buffer register without writing dummy data to the transmit buffer register. To start data reception, however, dummy data is required to read the receive buffer register.

When the UiRRM bit in registers U0C1 to U6C1, the U78CON register, and the U910CON register is set to 1 (continuous receive mode enabled), the TI bit in the UiC1 register becomes 0 (data held in the UiTB register) by a read access to the UiRB register (i = 0 to 10). In this UiRRM bit setting, no dummy data should be written to the UiTB register.

18.1.5 Serial Data Logic Inversion

When the UiLCH bit in the UiC1 register is 1 (data is logic inverted), the logical value written in the UiTB register is inverted before being transmitted (i = 0 to 6). The UiRB register is read as logic-inverted receive data. Figure 18.25 shows the logic inversion of serial data.

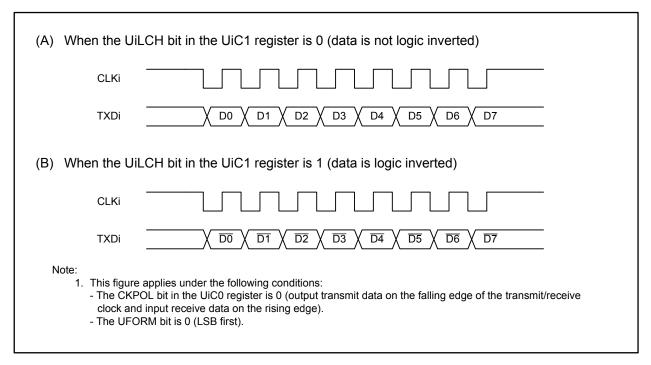


Figure 18.25 Serial Data Logic Inversion (i = 0 to 6)

18.1.6 CTS/RTS Function

CTS function controls data transmission using the $\overline{\text{CTSi}/\text{RTSi}}$ pin (i = 0 to 10). When an input level at the pin becomes low, data transmission starts. If the input level changes to high during transmission, the transmission of the next data is stopped.

In synchronous serial interface mode, the transmitter is required to operate even during the receive operation. If CTS function is enabled, the input level at the $\overline{\text{CTSi/RTSi}}$ pin should be low to start data reception as well.

RTS function indicates receiver status using the CTSi/RTSi pin. When data reception is ready, the output level at the pin becomes low. It becomes high on the first falling edge of the CLKi pin.

18.2 Asynchronous Serial Interface Mode (UART Mode)

The UART mode enables data transmission/reception synchronized with an internal clock generated by a trigger on the falling edge of the start bit. Table 18.5 lists specifications of UART mode.

Table 18.5 UART Mode Specifications

Item	Specification
Data format	 Start bit: 1-bit Data bit (data character): 7-bit, 8-bit, or 9-bit Parity bit: odd, even, or none Stop bit: 1-bit or 2-bit
Transmit/receive clock	The CKDIR bit in the UiMR register is 0 (internal clock) (i = 0 to 10):
	$\frac{fx}{16(m+1)}$ $fx = f1, f8, f2n; m$: UiBRG register setting value, 00h to FFh • The CKDIR bit is 1 (external clock) $\frac{fEXT}{16(m+1)}$ $fEXT$: Clock applied to the CLKi pin
Transmit/receive control	CTS function enabled, RTS function enabled, or CTS/RTS function disabled
Transmit start conditions	The conditions for starting data transmission are as follows: • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register) • Input level at the CTSi pin is low when CTS function is selected
Receive start conditions	The conditions for starting data reception are as follows: • The RE bit in the UiC1 register is 1 (reception enabled) • The start bit is detected
Interrupt request generating timing	 In transmit interrupt, one of the following conditions can be selected by setting the UiIRS bit in registers U0C1 to U6C1, the U78CON register, and the U910CON register: The UiIRS bit is 0 (transmit buffer is empty): when data is transferred from the UiTB register to the UARTi transmit register (when the transmission has started) The UiIRS bit is 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt, When data is transferred from the UARTi receive register to the UiRB register (when reception is completed)
Error detection	 Overrun error (1) This error occurs when 1 bit prior to the stop bit (when 1 stop bit length is selected) or the first stop bit (when 2 stop bit length is selected) of the next data is received before the UiRB register is read Framing error This error occurs when the required number of stop bits is not detected Parity error This error occurs when an even number of 1's in parity and character bits is detected while the odd number is set, or vice versa. The parity should be enabled Error sum flag This flag becomes 1 when any of overrun error, framing error, or parity error occurs
Other functions	 Bit order selection LSB first or MSB first Serial data logic inversion This function logically inverses transmit/receive data. The start bit and stop bit are not inverted TXD/RXD I/O polarity switching The output level from the TXD pin and the input level to the RXD pin are inverted. All I/O levels are inverted

Note:

1. The UiRB register is undefined when an overrun error occurs. The IR bit in the SiRIC register does not change to 1 (interrupt requested).

Tables 18.6 and 18.7 list register settings. When UARTi operating mode is selected, a high is output at the TXDi pin until transmission starts (the TXDi pin is high-impedance when the N-channel open drain output is selected) (i = 0 to 10). Figures 18.26 and 18.27 show examples of transmit operations in UART mode. Figure 18.28 shows an example of receive operation.

Table 18.6 Register Settings in UART Mode (UART0 to UART6)

Register	Bits	Function		
UiMR	IOPOL	Select I/O polarity of pins TXD and RXD		
	PRY and PRYE	Select parity enabled or disabled, and odd or even		
	STPS	Select a stop bit length		
	CKDIR	Select an internal clock or external clock		
	SMD2 to SMD0	Set the bits to 100b in 7-bit character length		
		Set the bits to 101b in 8-bit character length		
		Set the bits to 110b in 9-bit character length		
UiC0	UFORM	Select LSB first or MSB first in 8-bit character length. Set the bit to 0 in 7-bit or 9-bit character length		
	CKPOL	Set the bit to 0		
	5	Set the bit to 0		
	CRD	Select CTS function enabled or disabled		
	TXEPT	Transmit register empty flag		
	2	Set the bit to 0		
	CLK1 and CLK0	Select a count source for the UiBRG register		
UiC1	7	Set the bit to 0		
	UiLCH	Set the bit to 1 to use logic inversion		
	UiRRM	Set the bit to 0		
	UilRS	Select an interrupt source for UARTi transmission		
	RI	Receive complete flag		
	RE	Set the bit to 1 to enable data reception		
	TI	Transmit buffer empty flag		
	TE	Set the bit to 1 to enable data transmission		
UiSMR	7 to 0	Set the bits to 00h		
UiSMR2	7 to 0	Set the bits to 00h		
UiSMR3	7 to 0	Set the bits to 00h		
UiSMR4	7 to 0	Set the bits to 00h		
UiBRG 7 to 0		Set the bit rate		
IFS0	IFS06	Select input pins for CLK3, RXD3, and CTS3		
	IFS03 and IFS02	Select input pins for CLK6, RXD6, and CTS6		
UiTB	8 to 0	Set the data to be transmitted (1)		
UiRB	OER, FER, PER, and SUM	Error flag		
	8 to 0	Received data is read (1)		

i = 0 to 6

Note:

1. The bits used are as follows: 7-bit character length: bits 6 to 0

8-bit character length: bits 7 to 0 9-bit character length: bits 8 to 0

Table 18.7 Register Settings in UART Mode (UART7 to UART10)

Register	Bits	Function	
UiMR	PRY and PRYE	Select parity enabled or disabled, and odd or even	
	STPS	Select a stop bit length	
	CKDIR	Select an internal clock or external clock	
	SMD2 to SMD0	Set the bits to 100b in 7-bit character length	
		Set the bits to 101b in 8-bit character length	
		Set the bits to 110b in 9-bit character length	
UiC0	UFORM	Select LSB first or MSB first in 8-bit character length. Set the bit	
		to 0 in 7-bit or 9-bit character length	
	CKPOL	Set the bit to 0	
	5	Set the bit to 0	
	CRD	Select CTS function enabled or disabled	
	TXEPT	Transmit register empty flag	
	2	Set the bit to 0	
	CLK1 and CLK0	Select a count source for the UiBRG register	
UiC1	RI	Receive complete flag	
	RE	Set the bit to 1 to enable data reception	
	TI	Transmit buffer empty flag	
	TE	Set the bit to 1 to enable data transmission	
U78CON	UiRRM	Set the bit to 0	
	UilRS	Select an interrupt source for UARTi transmission	
U910CON	UiRRM	Set the bit to 0	
	UilRS	Select an interrupt source for UARTi transmission	
UiBRG	7 to 0	Set the bit rate	
IFS0	IFS05	Select input pins for CLK7, RXD7, and CTS7	
	IFS04	Select input pins for CLK8, RXD8, and CTS8	
IFS3	IFS35	Select input pins for CLK10, RXD10, and CTS10	
	IFS34	Select input pins for CLK9, RXD9, and CTS9	
UiTB	8 to 0	Set the data to be transmitted ⁽¹⁾	
UiRB	OER, FER, PER, and SUM	Error flag	
	8 to 0	Received data is read (1)	
	<u>L</u>	1	

i = 7 to 10

Note:

1. The bits used are as follows: 7-bit character length: bits 6 to 0 $\,$

8-bit character length: bits 7 to 0 9-bit character length: bits 8 to 0

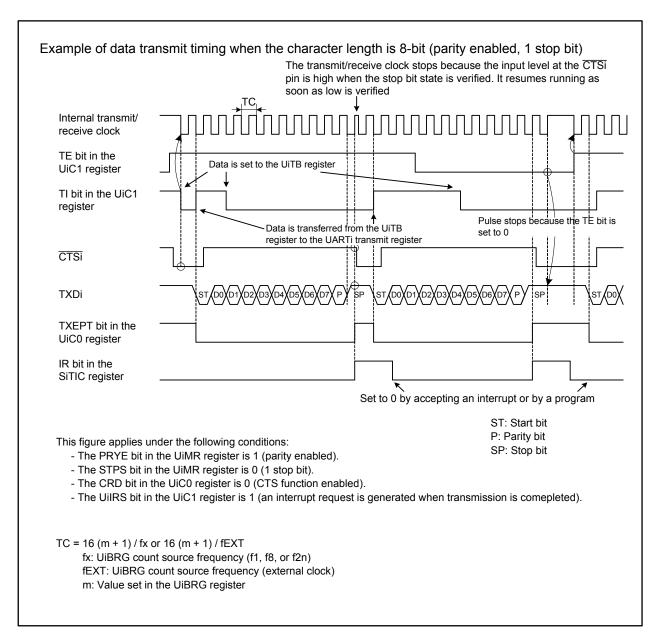


Figure 18.26 Transmit Operation in UART Mode (1/2) (i = 0 to 10)

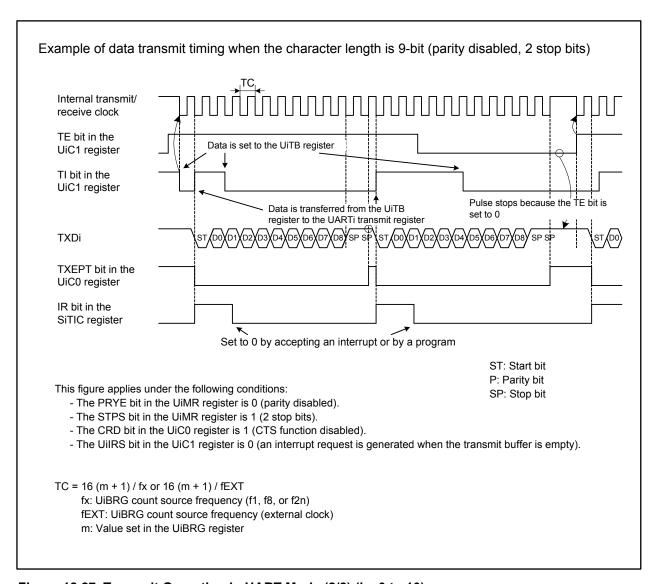


Figure 18.27 Transmit Operation in UART Mode (2/2) (i = 0 to 10)

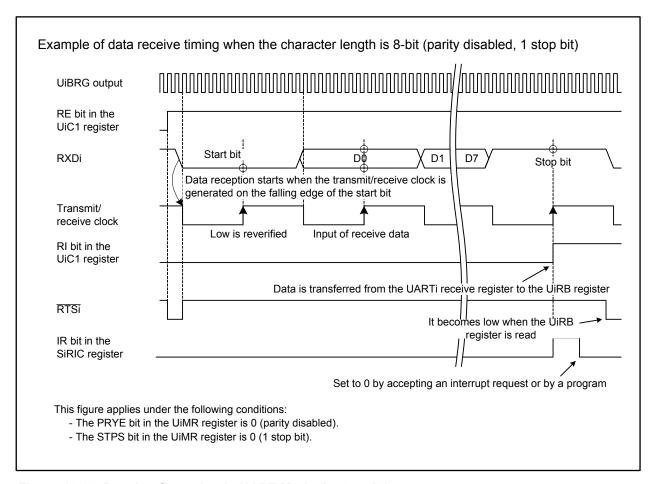


Figure 18.28 Receive Operation in UART Mode (i = 0 to 10)

18.2.1 Bit Rate

In UART mode, the bit rate is a clock frequency which is divided by a setting value of the UiBRG register and again divided by 16 (i = 0 to 10). Table 18.8 lists an example of bit rate setting.

Table 18.8 Bit Rate Setting

	Count Source of BRG	Peripheral Clock: 30 MHz		Peripheral Clock: 32 MHz	
Bit Rate (bps)		Setting value of	Actual bit rate	Setting value of	Actual bit rate
		BRG: n	(bps)	BRG: n	(bps)
1200	f8	194 (C2h)	1202	207 (CHh)	1202
2400	f8	97 (61h)	2392	103 (67h)	2404
4800	f8	48 (30h)	4783	51 (33h)	4808
9600	f1	194 (C2h)	9615	207 (CFh)	9615
14400	f1	129 (81h)	14423	138 (8Ah)	14388
19200	f1	97 (61h)	19133	103 (67h)	19231
28800	f1	64 (40h)	28846	68 (44h)	28986
31250	f1	59 (3Bh)	31250	63 (3Fh)	31250
38400	f1	48 (30h)	38265	51 (33h)	38462
51200	f1	36 (24h)	50676	38 (26h)	51282

18.2.2 Reset Procedure on Transmit/Receive Error

When a transmit/receive error occurs in UART mode, follow the procedure below to perform a reset:

- A. Reset procedure for the UiRB register (i = 0 to 10)
 - (1) Set the RE bit in the UiC1 register to 0 (reception disabled).
 - (2) Set the RE bit in the UiC1 register to 1 (reception enabled).
- B. Reset procedure for the UiTB register
 - (1) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
 - (2) Set again bits SMD2 to SMD0 to either of 001b, 101b, or 110b.
 - (3) Irrespective of its status, set the TE bit in the UiC1 register to 1 (transmission enabled).

18.2.3 LSB First and MSB First Selection

As shown in Figure 18.29, the bit order is selected by setting the UFORM bit in the UiC0 register (i = 0 to 10). This function is available when the character length is 8-bit.

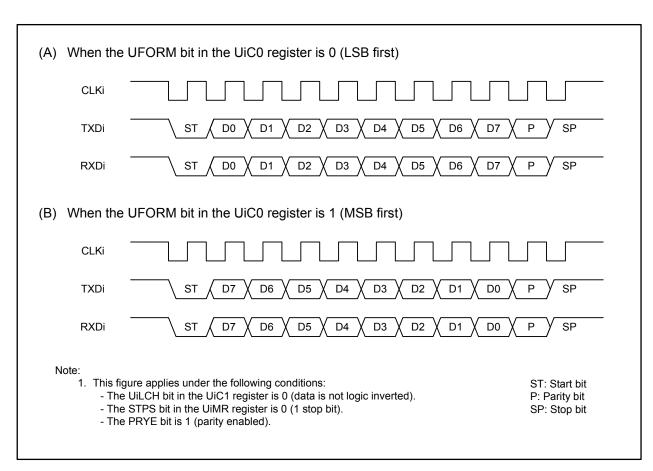


Figure 18.29 Bit Order (i = 0 to 10)

18.2.4 Serial Data Logic Inversion

When the UiLCH bit in the UiC1 register is 1 (data is logic inverted), the logical value written in the UiTB register is inverted before being transmitted (i = 0 to 6). The UiRB register is read as logic-inverted receive data. The parity bit is not inverted. Figure 18.30 shows the logic inversion of serial data.

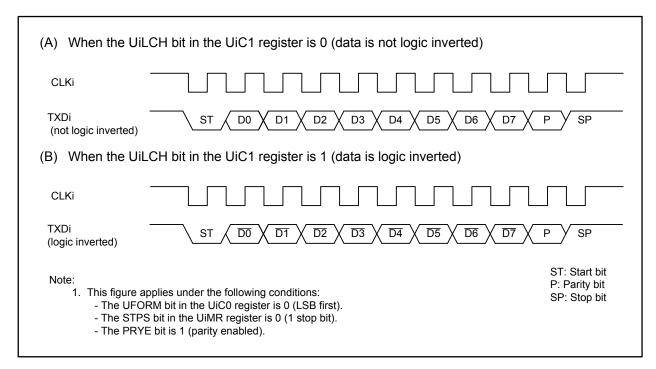


Figure 18.30 Serial Data Logic Inversion (i = 0 to 6)

18.2.5 TXD and RXD I/O Polarity Inversion

The output level at the TXD pin and the input level at the RXD pin are inverted by this function. All I/O data levels, including the start bit, stop bit, and parity bit are inverted by setting the IOPOL bit in the UiMR register to 1 (inverted) (i = 0 to 6). Figure 18.31 shows TXD and RXD I/O polarity inversion.

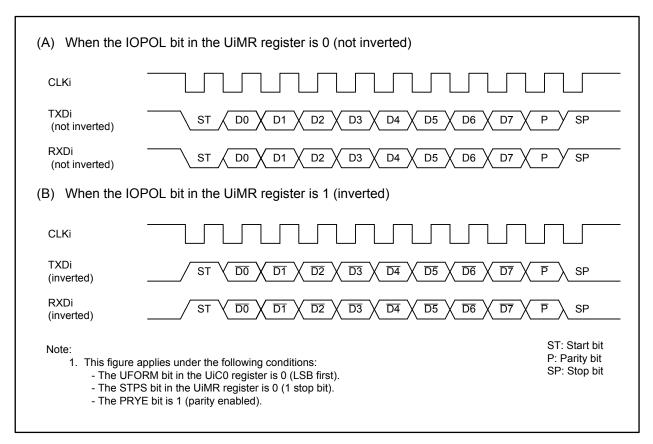


Figure 18.31 TXD and RXD I/O Polarity Inversion (i = 0 to 6)

18.2.6 CTS/RTS Function

CTS function controls data transmission using the $\overline{\text{CTSi/RTSi}}$ pin (i = 0 to 10). When an input level at the pin becomes low, data transmission starts. If the input level changes to high during transmit operation, transmission of the next data is stopped.

RTS function indicates receiver status using the $\overline{\text{CTSi}/\text{RTSi}}$ pin. When the MCU is ready to receive data, the output level at the pin becomes low. It becomes high on the first falling edge of the CLKi pin.

18.3 Special Mode 1 (I²C Mode)

This mode uses an I²C-typed interface for communication. Table 18.9 lists specifications of the I²C mode.

Table 18.9 I²C Mode Specifications

Item	Specification		
Data format	8-bit character length		
Transmit/receive clock	In master mode • The CKDIR bit in the UiMR register is 0 (internal clock) (i = 0 to 6):		
	$\frac{fx}{2(m+1)} \qquad fx = f1, f8, f2n$		
	m: UiBRG register setting value, 00h to FFh		
	In slave mode • The CKDIR bit is 1 (external clock): input to the SCLi pin		
Transmit start conditions	The conditions for starting data transmission are as follows (1): • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register)		
Receive start conditions	The conditions for starting data reception are as follows (1): • The RE bit in the UiC1 register is 1 (reception enabled) • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register)		
Interrupt request generating timing	When any of the following is detected: start condition, stop condition, NACK (not-acknowledge), or ACK (acknowledge)		
Error detection	Overrun error ⁽²⁾ This error occurs when the eighth bit of the next data is received before the UiRB register is read		
Other functions	 Arbitration lost Update timing of the ABT bit in the UiRB register can be selected SDAi digital delay No digital delay or two to eight cycles of digital delay of UiBRG count source Clock phase setting Clock delayed or no clock delay 		

Notes:

- 1. When an external clock is selected, the conditions should be met while the external clock signal is held high.
- 2. The UiRB register is undefined when an overrun error occurs. The IR bit in the SiRIC register does not change to 1 (interrupt requested).

Table 18.10 lists register settings in I^2C mode, and Tables 18.11 and 18.12 list I^2C mode functions. Figure 18.32 shows a block diagram of I^2C mode, and Figure 18.33 shows timings for the transfer to the UiRB register and the interrupt (i = 0 to 6).

As shown in Tables 18.11 and 18.12, UARTi enters this mode when bits SMD2 to SMD0 in the UiMR register are set to 010b, and the IICM bit in the UiSMR register is set to 1 (i = 0 to 6). Since a transmit signal at the SDAi pin is output via the delay circuit, it changes after the SCLi pin is stably held low.

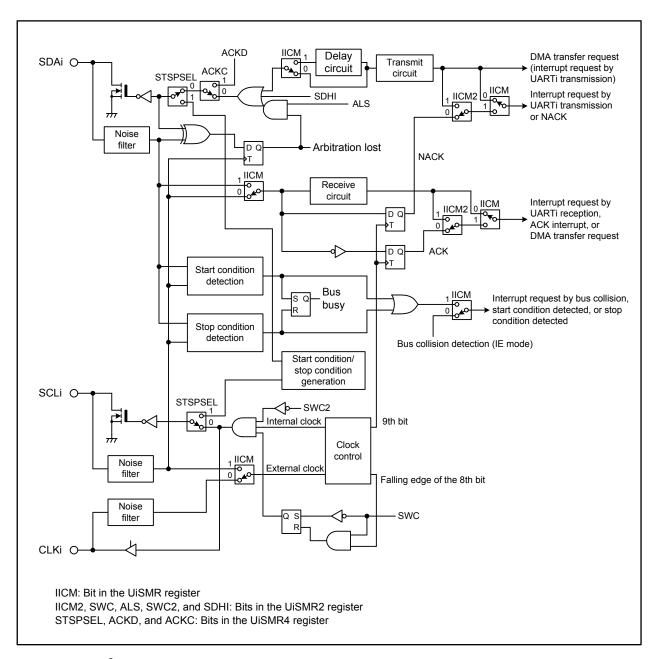


Figure 18.32 I²C Mode Block Diagram (i = 0 to 6)

Table 18.10 Register Settings in I²C Mode (i = 0 to 6)

Register	Bits	Function			
rtegistei		Master	Slave		
UiMR	IOPOL	Set the bit to 0			
	CKDIR	Set the bit to 0	Set the bit to 1		
	SMD2 to SMD0	Set the bit to 010b			
UiC0	7 to 4	Set the bits to 1001b			
	TXEPT	Transmit register empty flag			
	2	Set the bit to 0			
	CLK1 and CLK0	Select a count source for the UiBRG register	Disabled		
UiC1	7 to 5	Set the bits to 000b			
	UilRS	Set the bit to 1			
	RI	Receive complete flag			
	RE	Set the bit to 1 to enable data reception			
	TI	Transmit buffer empty flag			
	TE	Set the bit to 1 to enable data transmission/reception			
JiSMR	7 to 3	Set the bits to 00000b			
o ioivii (BBS	Bus busy flag			
	ABC	Select an arbitration lost detection timing	Disabled		
	IICM	Set the bit to 1	Disabled		
JiSMR2	7	Set the bit to 0			
DIOMINZ	SDHI	Set the bit to 0			
		·			
	SWC2	Set the bit to 1 to hold the SCL output at a forcible low	10 · · · · · · · · · · · · · · · · · · ·		
	STC	Set the bit to 0	Set the bit to 1 to reset UARTi by		
	AL C	Cot the hit to 4 to stop the suitant of the CDA; air to detect on	detecting the start condition		
	ALS	Set the bit to 1 to stop the output at the SDAi pin to detect an arbitration lost	Set the bit to 0		
	SWC	Set the bit to 1 to hold a low output at the SCLi pin after receiving the eighth bit of the clock			
	CSC	Set the bit to 1 to enable clock synchronization	Set the bit to 0		
	IICM2	Refer to Tables 18.11 and 18.12			
JiSMR3	DL2 to DL0	Set the digital delay value of SDAi			
	4 to 2	Set the bit to 000b			
	CKPH	Refer to Tables 18.11 and 18.12			
	SSE	Set the bit to 0			
UiSMR4	SWC9	Set the bit to 0	Set the bit to 1 to hold a low output at the SCLi pin after receiving the ninth bit of the close		
	SCLHI	Set the bit to 1 to stop the SCL output to detect stop condition	Set the bit to 0		
	ACKC	Set the bit to 1 for ACK data output			
	ACKD	Select ACK or NACK			
	STSPSEL	Set the bit to 1 when any condition is output	Set the bit to 0		
	STPREQ	Set the bit to 1 to generate a stop condition	Set the bit to 0		
	RSTAREQ	Set the bit to 1 to generate a restart condition	Set the bit to 0		
	STAREQ	Set the bit to 1 to generate a start condition	Set the bit to 0		
JiBRG	7 to 0	Set the bit rate	Disabled		
FSR0	IFSR06 and IFSR07	Select a UART as interrupt source	Disabled		
FSR1	IFSR16	Select a UART as interrupt source			
FS0	IFS06	Select input pins for SCL3 and SDA3			
	IFS03 and IFS02	Select input pins for SCL6 and SDA6			
JiTB	8	Set the bit to 1 when transmitting. Set the bit to the value of the A	CK bit when receiving		
	7 to 0	Set the data to be transmitted when transmitting. Set the register	=		
JiRB	OER	Overrun error flag	<u> </u>		
	ABT	Arbitration lost detection flag	Disabled		
	8	D0 is loaded immediately after a receive interrupt occurs. ACK or interrupt occurs			
	7 to 0	D7 to D1 are read immediately after a receive interrupt occurs. D interrupt occurs	7 to D0 are read after a transmit		

Table 18.11 I^2C Mode Functions (i = 0 to 6) (1/2)

	Synchronous		I ² C Mode (S	MD2 to SMD0 are 010b,	IICM is 1)
Function	Serial Interface Mode	IICM2 (ACK/NACI			2 is 1 eive interrupt)
Tunction	(SMD2 to SMD0 are 001b, IICM is 0)	CKPH is 0 (No clock delay)	CKPH is 1 (Clock delayed)	CKPH is 0 (No clock delay)	CKPH is 1 (Clock delayed)
Source of software interrupt numbers 6 and 39 to 41 (1) (refer to Figure 18.33)	_	Start condition	n or stop con	dition detection (refer to	Table 18.13)
Source of software interrupt numbers 2, 4, 17, 19, 33, 35, and 37 ⁽¹⁾ (refer to Figure 18.33)	UARTi transmission: Transmission started or completed (selected using the UiIRS register)	NACK detection: Rising edge of the ninth bit of SCLi		UARTi transmission: Rising edge of the ninth bit of SCLi	UARTi transmission: Falling edge of the ninth bit of SCLi
Source of software interrupt numbers 3, 5, 18, 20, 34, 36, and 38 ⁽¹⁾ (refer to Figure 18.33)	UARTi reception: Receiving at eighth bit CKPOL is 0 (rising edge) CKPOL is 1 (falling edge)	ACK detection: Rising edge of the ninth bit of SCLi		UARTi reception: Falling edge of the eighth bit of SCLi	
Data transfer timing from the UART receive register to the UiRB register	CKPOL is 0 (rising edge) CKPOL is 1 (falling edge)	Rising edge of bit of SCLi	of the ninth	Falling edge of the eighth bit of SCLi	Falling edge of the eighth bit and rising edge of the ninth bit of SCLi
UARTi transmit output delay	No delay	Delayed			
Pins P6_3, P6_7, P7_0, P7_3, P7_6, P9_2, P9_6, P11_0, P12_0, P15_0, and P15_4	TXDi output	SDAi I/O			
Pins P6_2, P6_6, P7_1, P7_5, P8_0, P9_1, P9_7, P11_2, P12_2, P15_2, and P15_5	RXDi input	SCLi I/O			
Pins P6_1, P6_5, P7_2, P7_4, P7_7, P9_0, P9_5, P11_1, P12_1, P15_1, and P15_6	Select CLKi input or output	— (Not used in I	² C mode)		

Note:

- 1. Steps to change an interrupt source are as follows:
 - (1) Disable the interrupt of the corresponding software interrupt number.
 - (2) Change the source of interrupt.
 - (3) Set the IR bit of the corresponding software interrupt number to 0 (no interrupt requested).
 - (4) Set bits ILVL2 to ILVL0 of the corresponding software interrupt number.

Table 18.12 I^2C Mode Functions (i = 0 to 6) (2/2)

	Synchronous	I ² C Mode (SMD2 to SMD0 are 010b, IICM is 1)			
Function	Serial Interface Mode (SMD2 to SMD0 are 001b, IICM is 0)	IICM2 is 0 (ACK/NACK interrupt)		IICM2 is 1 (Transmit/receive interrupt)	
		CKPH is 0 (No clock delay)	CKPH is 1 (Clock delayed)	CKPH is 0 (No clock delay)	CKPH is 1 (Clock delayed)
Read level at pins RXDi and SCLi	Readable irrespec	ctive of the po	rt direction bit	t	
Default output value at the SDAi pin	_		set in the port ct registers (i	Pi register if the I/O port = 0 to 7))	is selected by output
SCLi default and end values	_	High	Low	High	Low
DMA source (refer to Figure 18.33)	UARTi reception	ACK detection	n	UARTi reception: Falling of SCLi	g edge of the eighth bit
Store received data	The first to eighth bits of received data are stored into bits 0 to 7 in the UiRB register	The first to el received data into bits 7 to 0 register		The first to seventh bits of received data are stored into bits 6 to 0 in the UiRB register and the eighth bit is stored into bit 8	Same as on the left column on the first data storing. (1) The first to eighth bits of received data are stored into 7 to 0 bits in the UiRB register and the ninth bit is stored into bit 8 on the second data storing (2)
Read received data	The UiRB register status is read as it is		Bits 6 to 0 in the UiRB register are read as bits 7 to 1 and bit 8 is read as bit 0	Same as on the left column on the first read. ⁽¹⁾ The UiRB register status is read as it is on the second read ⁽²⁾	

Notes:

- 1. The first data transfer to the UiRB register starts on the rising edge of the eighth bit of SCLi.
- 2. The second data transfer to the UiRB register starts on the rising edge of the ninth bit of SCLi.

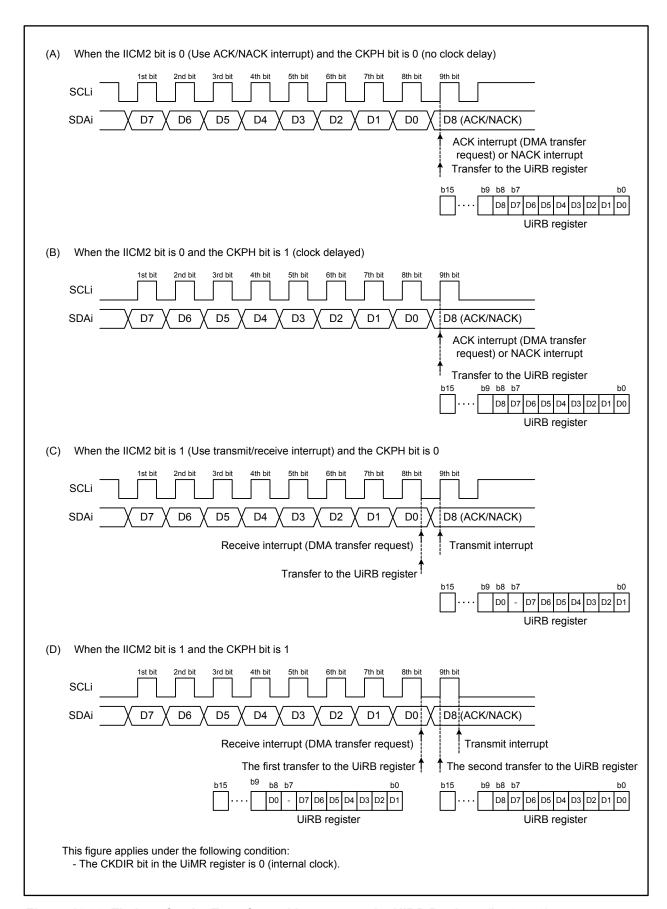


Figure 18.33 Timings for the Transfer and Interrupt to the UiRB Register (i = 0 to 6)

18.3.1 Start Condition and Stop Condition Detection

The start condition and stop condition are detected by their respective detectors.

The start condition detection interrupt request is generated by a high-to-low transition at the SDAi pin while the SCLi pin is held high (i = 0 to 6). The stop condition detection interrupt request is generated by a low-to-high transition at the SDAi pin while the SCLi pin is held high.

The start condition detection interrupt shares interrupt control registers and vectors with the stop condition detection interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

To detect a start condition or stop condition, both set-up and hold times require at least six cycles of the peripheral clock (f1) as shown in Figure 18.34. To meet the condition for the Fast-mode specification, f1 must be at least 10 MHz.

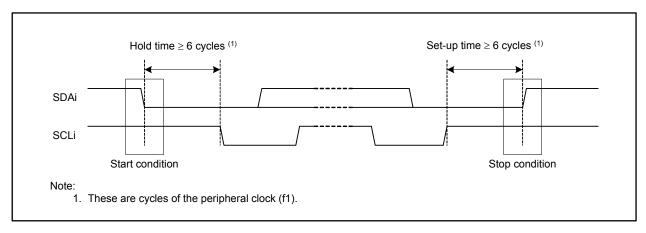


Figure 18.34 Start Condition and Stop Condition Detection Timing (i = 0 to 6)

18.3.2 Start Condition and Stop Condition Generation

The start condition, restart condition, and stop condition are generated by bits STAREQ, RSTAREQ, and STPREQ in the UiSMR4 register, respectively (i = 0 to 6). To output a start condition, set the STSPSEL bit in the UiSMR4 register to 1 (select start condition/stop condition generation circuit) after setting the STAREQ bit to 1 (start). To output a restart condition or stop condition, set the STSPSEL bit to 1 after setting RSTAREQ bit or STPREQ bit to 1, respectively.

Table 18.13 and Figure 18.35 show the functions of the STSPSEL bit.

Table 18.13 STSPSEL Bit Functions

Function	STSPSEL is 0	STSPSEL is 1
Start condition and stop condition generation		Start condition or stop condition is output according to the STAREQ, RSTAREQ, or STPREQ bit
Start condition and stop condition interrupt request generating timing	<u> </u>	When start condition or stop condition generation is completed

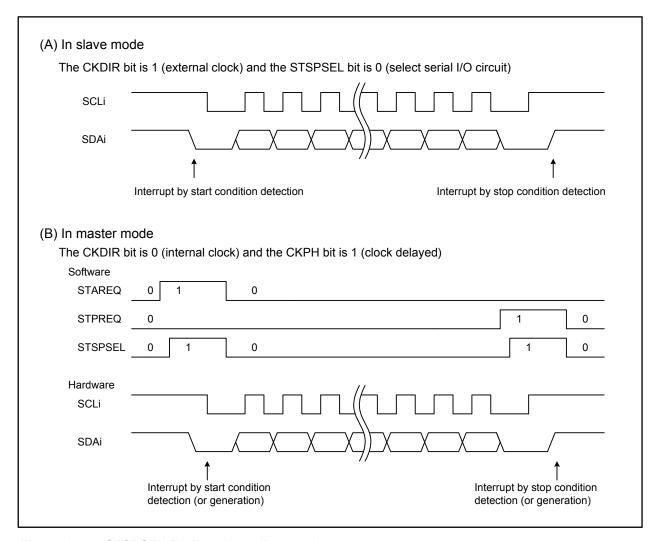


Figure 18.35 STSPSEL Bit Functions (i = 0 to 6)

18.3.3 Arbitration

On the rising edge of the SCLi, the MCU compares the transmit data with the data input from the SDAi pin. If no match is found, the MCU performes arbitration by stopping the SDAi output.

The update timing for the ABT bit in the UiRB register is selected by setting the ABC bit in the UiSMR register (i = 0 to 6).

When the ABC bit is 0 (update every bit), the ABT bit becomes 1 (detected (lose)) as soon as a data discrepancy is detected. If not detected, the ABT bit becomes 0 (not detected (win)). When the ABC bit is 1 (update every byte), the ABT bit becomes 1 on the falling edge of the eighth bit of the SCLi if any discrepancy is detected. In this ABC bit setting, set the ABT bit to 0 to start the next 1-byte transfer.

When the ALS bit in the UiSMR2 register is 1 (stop the SDAi output), the SDAi pin becomes high-impedance as the ABT bit becomes 1 when an arbitration lost occurs.

18.3.4 SCL Control and Clock Synchronization

Data transmission/reception in I²C mode uses the transmit/receive clock as shown in Figure 18.33. The clock speed increase makes it difficult to secure the required time for ACK generation and data transmit procedure. I²C mode supports a function of wait-state insertion to secure this required time and a function of clock synchronization with a wait-state inserted by other devices.

The SWC bit in the UiSMR2 register is used to insert a wait-state for ACK generation (i = 0 to 6). When the SWC bit is 1 (hold the SCLi pin low after the eighth bit is received), the SCLi pin is held low on the falling edge of the eighth bit of the SCLi. When the SWC bit is 0 (no wait-state/wait-state cleared), the SCLi line is released.

When the SWC2 bit in the UiSMR2 register is 1 (hold the SCLi pin low), the SCLi pin is forced low even during transmission or reception. When the SWC2 bit is 0 (output the transmit/receive clock at the SCLi pin), the SCLi line is released to output the transmit/receive clock.

The SWC9 bit in the UiSMR4 register is used to insert a wait-state for checking received acknowledge bits. While the CKPH bit in the UiSMR3 register is 1 (clock delayed), when the SWC9 bit is set to 1 (hold the SCLi pin low after the ninth bit is received), the SCLi pin is held low on the falling edge of the ninth bit of the SCLi. When the SWC9 bit is set to 0 (no wait-state/wait-state cleared), the SCLi line is released.

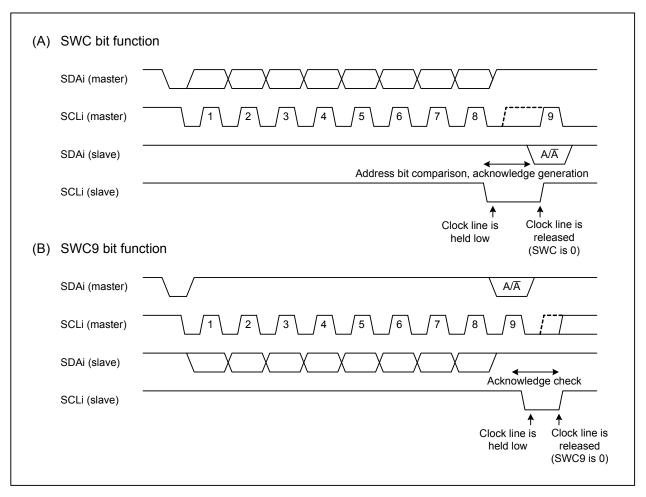


Figure 18.36 Wait-state Insertion Using the SWC or SWC9 Bit (i = 0 to 6)

The CSC bit in the UiSMR2 register is used to synchronize an internally generated clock with the clock applied to the SCLi pin. For example, if a wait-state is inserted from another device, the two clocks are not synchronized. While the CSC bit is 1 (clock synchronization enabled) and the internal clock is held high, when a high at the SCLi pin changes to low, the internal clock becomes low in order to reload the value of the UiBRG register and to resume counting. While the SCLi pin is held low, when the internal clock changes from low to high, the count is stopped until the SCLi pin becomes high. That is, the UARTi transmit/receive clock is the logical AND of the internal clock and the SCLi. The synchronized period starts from one clock prior to the first synchronized clock and ends when the ninth clock is completed. The CSC bit can be set to 1 only when the CKDIR bit in the UiMR register is 0 (internal clock).

The SCLHI bit in the UiSMR4 register is used to leave the SCLi pin open when another master generates a stop condition while the master is in transmit/receive operation. If the SCLHI bit is set to 1 (stop SCLi output), the SCLi pin is open (the pin is high-impedance) when a stop condition is detected and the clock output is stopped.

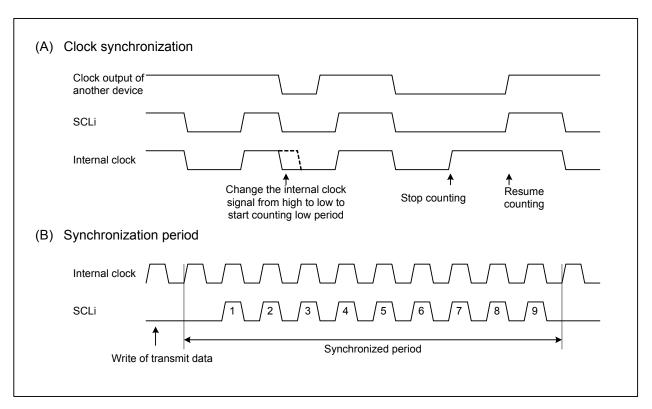


Figure 18.37 Clock Synchronization (i = 0 to 6)

18.3.5 SDA Output

Values set to bits 8 to 0 (D8 to D0) in the UiTB register are output starting from D7 to D0, and lastly D8, which is a bit for the acknowledge signal (i = 0 to 6). When transmitting, D8 should be set to 1 to free the bus. When receiving, D8 should be set to ACK or NACK.

Bits DL2 to DL0 in the UiSMR3 register set a delay time of the SDAi on the falling edge of the SCLi. Based on the UiBRG count source, the delay time can be selected from zero cycles (no delay) or two to eight cycles.

The SDAi pin can be high-impedance at any given time once the SDHI bit in the UiSMR2 register is set to 1 (stop the output). Output at the SDAi pin is low if an I/O port is selected for the SDAi and the pin is specified as the output port after selecting I²C mode. In this case, if the SDHI bit is 1, the SDAi pin becomes high-impedance.

When the SDHI bit is rewritten while the SCLi pin is held high, a start condition or stop condition is generated. When it is rewritten immediately before the rising edge of SCLi, arbitration lost may be accidently detected. Therefore, the SDHI bit should be rewritten so the SDAi pin level changes while the SCLi pin is low.

18.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register is 0 (use ACK/NACK interrupt), the first 8 bits of received data (D7 to D0) are stored into bits 7 to 0 in the UiRB register and the ninth bit (ACK/NACK) is stored into bit 8 (i = 0 to 6).

When the IICM2 bit is 1, the first 7 bits of received data (D7 to D1) are stored into bits 6 to 0 in the UiRB register and eighth bit (D0) is stored into bit 8.

If the IICM2 bit is 1 and the CKPH bit in the UiSMR3 register is 1 (clock delayed), the same data that is set when the IICM2 bit is 0 can be read. To read this data, read the UiRB register after data in the ninth bit is latched on the rising edge of the SCLi.

18.3.7 Acknowledge

When data is to be received in master mode, ACK is output after 8 bits are received by setting the UiTB register to 00FFh as dummy data. When the STSPSEL bit in the UiSMR4 register is 0 (select serial I/O circuit) and the ACKC bit is 1 (ACK data output), the value of the ACKD bit is output at the SDAi pin (i = 0 to 6).

If the IICM2 bit is 0, a NACK interrupt request is generated when the SDAi pin is high on the rising edge of the ninth bit of the SCLi. An ACK interrupt request is generated when the SDAi pin is low.

When the DMA request source is "UARTi receive interrupt request or ACK interrupt request", the DMA transfer starts when an ACK is detected.

18.3.8 Initialization of Transmit/Receive Operation Reset

When the CKDIR bit in the UiMR register is 1 (external clock), the STC bit in the UiSMR2 register is 1 (initialize the circuit), and a start condition is detected, the following three operations are performed (i = 0 to 6):

- The transmit register is reset and the UiTB register value is transferred to the transmit register. New data transmission starts on the falling edge of the first bit of the next SCLi as transmit clock. The transmit register value before the reset is output at the SDAi pin in the period from the falling edge of the SCLi until the first data output.
- The receive register is reset and the new data reception starts on the falling edge of the first bit of the next SCLi.
- The SWC bit in the UiSMR2 register becomes 1 (hold the SCLi pin low after the eighth bit is received).

The TI bit in the UiC1 register does not change when using this function to start the UARTi transmission/reception.

18.4 Special Mode 2

Special mode 2 enables serial communication between one or multiple masters and multiple slaves. The \overline{SSi} input pin controls serial bus communication (i = 0 to 6). Table 18.14 lists specifications of special mode 2.

Table 18.14 Special Mode 2 Specifications

Item	Specification		
Data format	8-bit character length		
Transmit/receive clock	• The CKDIR bit in the UiMR register is set to 0 (internal clock) (i = 0 to 6):		
	$\frac{fx}{2(m+1)}$ $fx = f1$, f8, f2n m : UiBRG register setting value, 00h to FFh • The CKDIR bit is set to 1 (external clock): input to the CLKi pin		
Transmit/receive control	SS function		
Transmit start conditions	The conditions for starting data transmission are as follows (1): • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register)		
Receive start conditions	The conditions for starting data reception are as follows (1): • The RE bit in the UiC1 register is 1 (reception enabled) • The TE bit in the UiC1 register is 1 (transmission enabled) • The TI bit in the UiC1 register is 0 (data held in the UiTB register)		
Interrupt request generating timing	In transmit interrupt, one of the following conditions can be selected by setting the UilRS bit in registers U0C1 to U6C1: • The UilRS bit is 0 (transmit buffer is empty): when data is transferred from the UiTB register to the UARTi transmit register (when the transmission has started) • The UilRS bit is 1 (transmission is completed): when data transmission from the UARTi transmit register is completed In receive interrupt, • When data is transferred from the UARTi receive register to the UiRB register (when the reception is completed)		
Error detection	Overrun error ⁽²⁾ This error occurs when the seventh bit of the next data has been received before reading the UiRB register		
Other functions	CLK polarity Rising or falling edge of the transmit/receive clock for transfer data input and output Bit order selection LSB first or MSB first Continuous receive mode Data reception is enabled by a read access to the UiRB register Serial data logic inversion This function logically inverses transmit/receive data Clock phase selection One of four combinations of transmit/receive clock polarity and phases SSi input pin function Output pin can be high-impedance when the SSi pin is high		

Notes:

- 1. When selecting an external clock, the following preconditions should be met:
 - The CLKi pin is held high when the CKPOL bit in the UiC0 register is 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge).
 - The CLKi pin is held low when the CKPOL bit is 1 (transmit data output on the rising edge of the transmit/ receive clock and receive data input on the falling edge).
- 2. The UiRB register is undefined when an overrun error occurs. The IR bit in the SiRIC register does not change to 1 (interrupt requested).

Table 18.15 lists register settings in special mode 2.

Table 18.15 Register Settings in Special Mode 2 (i = 0 to 6)

Register	Bits	Function	
UiMR	7 to 4	Set the bits to 0000b	
	CKDIR	Set the bit to 0 in master mode and set it to 1 in slave mode	
	SMD2 to SMD0	Set the bits to 001b	
UiC0	UFORM	Select either LSB first or MSB first	
	CKPOL	Clock phase can be set by the combination of bits CKPOL and CKPH in the UiSMR3 register	
	5	Set the bit to 0	
	CRD	Set the bit to 1	
	TXEPT	Transmit register empty flag	
	2	Set the bit to 0	
	CLK1 and CLK0	Select a count source for the UiBRG register	
UiC1	7 and 6	Set the bits to 00b	
	UiRRM	Set the bit to 1 to use continuous receive mode	
	UilRS	Select a source for UARTi transmit interrupt	
	RI	Receive complete flag	
	RE	Set the bit to 1 to enable data reception	
	TI	Transmit buffer empty flag	
TE Set the bit to 1 to enable		Set the bit to 1 to enable data transmission/reception	
UiSMR	7 to 0	Set the bits to 00h	
UiSMR2	7 to 0	Set the bits to 00h	
UiSMR3 7 to 5 Set the bits to 000b		Set the bits to 000b	
	ERR	Mode fault flag	
	3	Set the bit to 0	
	DINC	Set to 0 in master mode and set to 1 in slave mode	
	СКРН	Clock phase can be set by the combination of bits CKPH and CKPOL in the UiC0 register	
	SSE	Set the bit to 1	
UiSMR4	7 to 0	Set the bits to 00h	
UiBRG	7 to 0	Set the bit rate	
IFS0	FS0 IFS06 Select input pins for CLK3, RXD3, SRXD3, and SS3		
	IFS03 and IFS02	Select input pins for CLK6, RXD6, SRXD6, and SS6	
UiTB	7 to 0	Set the data to be transmitted	
UiRB	OER	Overrun error flag	
	7 to 0	Received data is read	

18.4.1 \overline{SSi} Input Pin Function (i = 0 to 6)

Special mode 2 is selected by setting the SSE bit in the UiSMR3 register to 1 (SS function enabled). The CTSi/RTSi/SSi pin functions as SSi input.

The DINC bit in the UiSMR3 register determines which MCU performs as a master or slave.

When multiple MCUs perform as masters (multi-master system), the \overline{SSi} pin setting determines which master MCU is active and when.

18.4.1.1 SS Function in Slave Mode

When the DINC bit is 1 (slave mode) while input at the \overline{SSi} pin is high, the STXDi pin becomes high-impedance and the clock input at the CLKi pin is ignored. When input at the \overline{SSi} pin is low, the clock input is valid and serial data is output from the STXDi pin to enable serial communication.

18.4.1.2 SS Function in Master Mode

When the DINC bit is 0 (master mode) while input at the \overline{SSi} pin is high, which means there is the only one master MCU or no other master MCU is active, the MCU as master starts communication. The master provides the transmit/receive clock output at the CLKi pin. When input at the \overline{SSi} pin is low, which means that there are more masters, pins TXDi and CLKi become high-impedance. This error is called a mode fault. It can be verified using the ERR bit in the UiSMR3 register. The ongoing data transmission/reception does not stop even if a mode fault occurs. To stop transmission/reception, bits SMD2 to SMD0 in the UiMR register should be set to 000b (serial interface disabled).

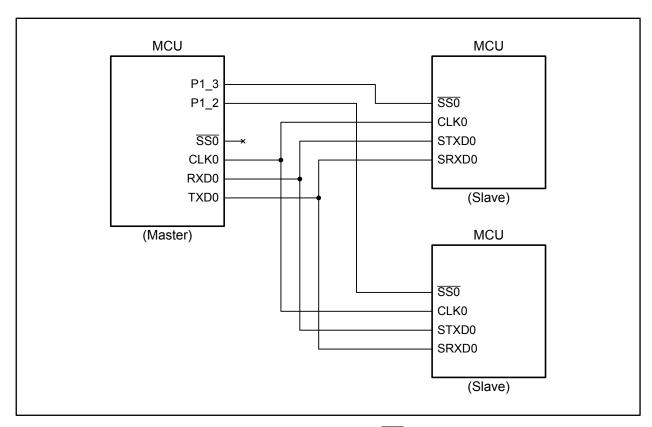


Figure 18.38 Serial Bus Communication Control with the SSi Pin

18.4.2 Clock Phase Setting

The CKPH bit in the UiSMR3 register and the CKPOL bit in the UiC0 register select one of four combinations of transmit/receive clock polarity and serial clock phase (i = 0 to 6).

The transmit/receive clock phase and polarity should be identical for the master device and the communicating slave device.

18.4.2.1 Transmit/Receive Timing in Master Mode

When the DINC bit is 0 (master mode), the CKDIR bit in the UiMR register should be set to 0 (internal clock) to generate the clock. Figure 18.39 shows transmit/receive timing of each clock phase.

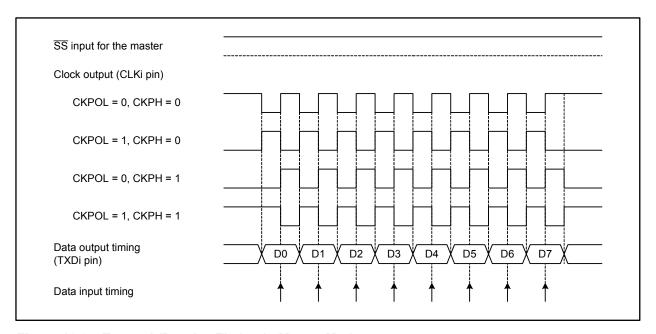


Figure 18.39 Transmit/Receive Timing in Master Mode

18.4.2.2 Transmit/Receive Timing in Slave Mode

When the DINC bit is 1 (slave mode), the CKDIR bit in the UiMR register should be set to 1 (external clock).

When the CKPH bit is 0 (no clock delay) while input at the \overline{SSi} pin is high, the STXDi pin becomes high-impedance. When input at the \overline{SSi} pin is low, the conditions for data transmission are all met, but output is undefined. Then the data transmission/reception starts synchronizing with the clock. Figure 18.40 shows the transmit/receive timing.

When the CKPH bit is 1 (clock delayed) while input at the \overline{SSi} pin is high, the STXDi pin becomes high-impedance. When input at the \overline{SSi} pin is low, the first data is output. Then the data transmission starts synchronizing with the clock. Figure 18.41 shows the transmit/receive timing.

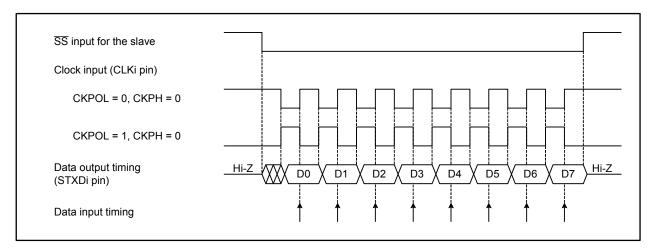


Figure 18.40 Transmit/Receive Timing in Slave Mode (CKPH = 0)

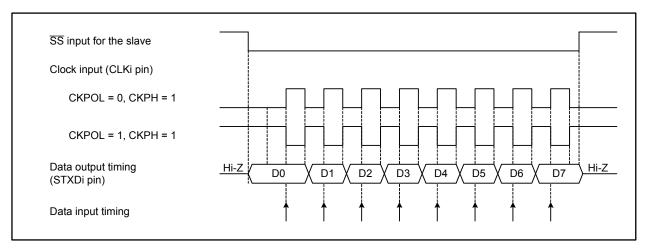


Figure 18.41 Transmit/Receive Timing in Slave Mode (CKPH = 1)

18.5 Notes on Serial Interface

18.5.1 Changing the UiBRG Register (i = 0 to 10)

• Set the UiBRG register after setting bits CLK1 and CLK0 in the UiC0 register. When these bits are changed, the UiBRG register must be set again.

• When a clock is input immediately after the UiBRG register is set to 00h, the counter may become FFh. In this case, it requires extra 256 clocks to reload 00h to the register. Once 00h is reloaded, the counter performs the operation without dividing the count source according to the setting.

18.5.2 Synchronous Serial Interface Mode

18.5.2.1 Selecting an External Clock

- If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register is 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge), or while the external clock is held low when the CKPOL bit is 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge) (i = 0 to 10):
 - The TE bit in the UiC1 register is 1 (transmission enabled).
 - The RE bit in the UiC1 register is 1 (reception enabled). This bit setting is not required when only transmitting.
 - The TI bit in the UiC1 register is 0 (data held in the UiTB register).

18.5.2.2 Receive Operation

- In synchronous serial interface mode, the transmit/receive clock is controlled by the transmit control circuit. Set UARTi-associated registers for a transmit operation, even if the MCU is used only for receive operation (i = 0 to 10). Dummy data is output from the TXDi pin while receiving when the TXDi pin is set to output mode.
- When data is received continuously, an overrun error occurs when the RI bit in the UiC1 register is 1 (data held in the UiRB register) and the seventh bit of the next data is received in the UARTi receive shift register. Then, the OER bit in the UiRB register becomes 1 (overrun error occurred). In this case, the UiRB register becomes undefined. If an overrun error occurs, the IR bit in the SiRIC register does not change to 1.

18.5.3 Special Mode 1 (I²C Mode)

• To generate a start condition, stop condition, or restart condition, set the STSPSEL bit in the UiSMR4 register to 0 (i = 0 to 6). Then, wait at least a half clock cycle of the transmit/receive clock to change the condition generate bits (STAREQ, RSTAREQ, or STPREQ bit) from 0 to 1.

18.5.4 Reset Procedure on Communication Error

Operations which result in communication errors such as rewriting function select registers during transmission/reception should not be performed. Follow the procedure below to reset the internal circuit once the communication error occurs in the following cases: when the operation above is performed by a receiver or transmitter or when a bit slip is caused by noise.

A. Synchronous Serial Interface Mode

- (1) Set the TE bit in the UiC1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled) (i = 0 to 10).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode).
- (4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

B. UART Mode

- (1) Set the TE bit in the UiC1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to 100b (UART mode, 7-bit character length), 101b (UART mode, 8-bit character length), or 110b (UART mode, 9-bit character length).
- (4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

19. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.

A/D converted results are stored in the A/D registers corresponding to selected pins. Results are stored in the AD00 register only when the DMAC operating mode is enabled.

When the A/D converter is not in use, power consumption can be reduced by setting the VCUT bit in the AD0CON1 register to 0 (VREF disconnected). This bit setting enables the power supply from the VREF pin to the resistor ladder to stop.

Table 19.1 lists specifications of the A/D converter. Figure 19.1 shows a block diagram of the A/D converter. Figures 19.2 to 19.8 show registers associated with the A/D converter.

Table 19.1 A/D Converter Specifications

Item	Specification	
A/D conversion method	Capacitance-based successive approximation	
Analog input voltage (1)	0 V to AVCC (VCC)	
Operating clock, ϕ AD (2)	fAD, fAD divided by 2, fAD divided by 3, fAD divided by 4, fAD divided by 6, or fAD divided by 8	
Resolution	8 bits or 10 bits	
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweet mode 0, repeat sweep mode 1, multi-port single sweep mode, multi-port repeat sweep mode 0,	
	and self test mode	
Analog input pins (3)	34	
	8 pins each for AN, AN0, AN2, and AN15	
	2 function-extended input pins (ANEX0 and ANEX1)	
A/D conversion start	Software trigger	
conditions	The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a program	
	External trigger (retrigger is enabled)	
	An input signal at the ADTRG pin switches from high to low after the ADST bit	
	is set to 1 by a program	
	Hardware trigger (retrigger is enabled)	
	Generation of a timer B2 interrupt request which has passed through the	
	circuit to set an interrupt generating frequency in the three-phase motor	
	control timers after the ADST bit is set to 1 by a program	
Conversion rates per pin	Without sample and hold function	
	49 φAD cycles at 8-bit resolution	
	59 φAD cycles at 10-bit resolution	
	including 2 φAD cycles for sampling time	
	With sample and hold function	
	28 φAD cycles at 8-bit resolution	
	33 φAD cycles at 10-bit resolution	
	including 3 φAD cycles for sampling time	

Notes:

- 1. The analog input voltage is not dependent on whether the sample and hold function is enabled or disabled.
- 2. The ϕ AD frequency should be as follows:
 - When VCC = 4.2 to 5.5 V, 16 MHz or below
 - When VCC = 3.0 to 4.2 V, 10 MHz or below
 - When not using the sample and hold function, 250 kHz or above
 - When using the sample and hold function, 1 MHz or above
- 3. When AVCC = VREF = VCC, A/D input voltage for pins AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.

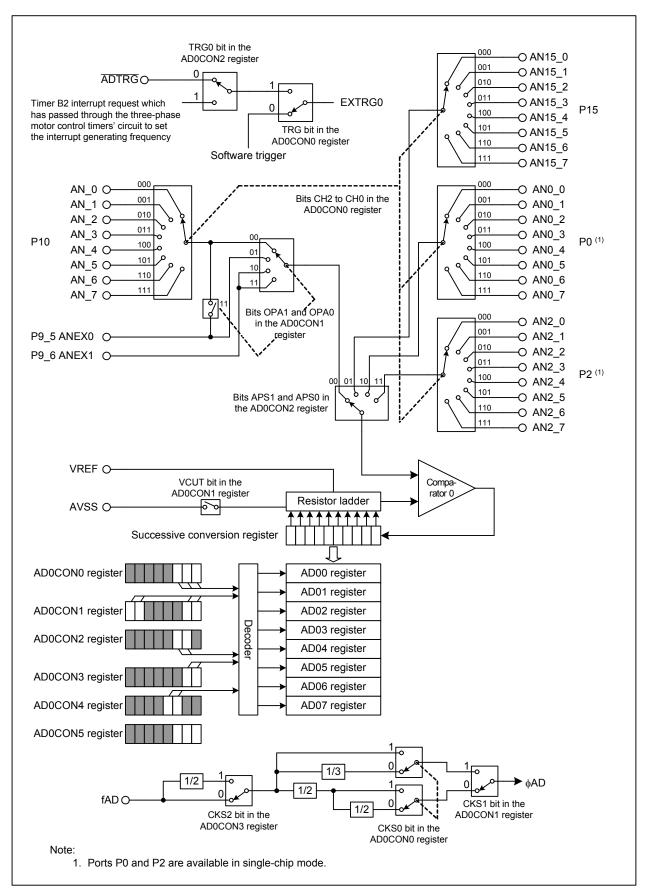
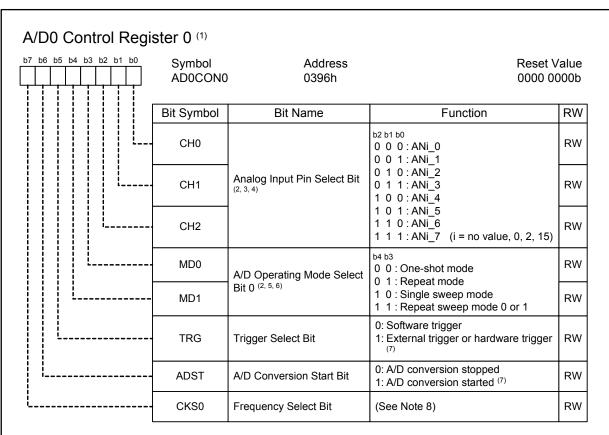
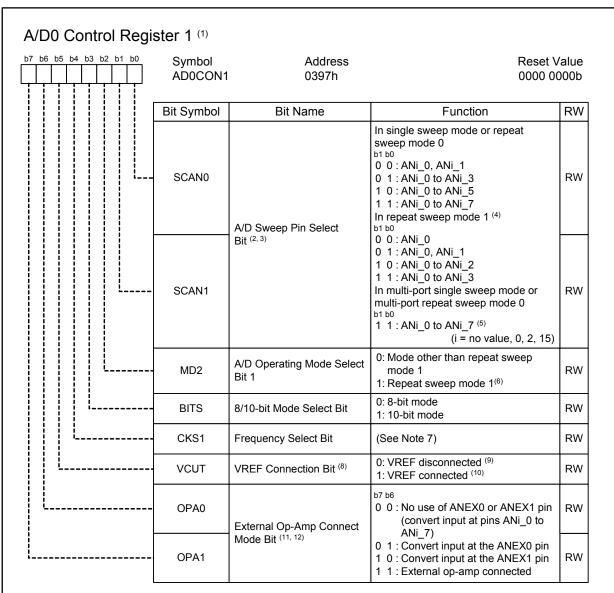



Figure 19.1 A/D Converter Block Diagram


Notes:

- 1. When this register is rewritten during an A/D conversion, the converted result is undefined.
- 2. Set the analog input pins again after changing the A/D operating mode.
- 3. This bit setting is enabled in one-shot mode or repeat mode.
- 4. Select a port from AN, ANO, AN2, or AN15 by using bits APS1 and APS0 in the AD0CON2 register.
- 5. When the MSS bit in the AD0CON3 register is 1 (multi-port sweep mode enabled), set bits MD1 and MD0 to 10b for multi-port single sweep mode and 11b for multi-port repeat sweep mode 0.
- 6. Set bits MD1 and MD0 to 10b or 11b when the MSS bit in the AD0CON3 register is 1.
- 7. To use the external trigger or the hardware trigger, select the source of the trigger by setting the TRG0 bit in the AD0CON2 register. Then set the ADST bit to 1 after setting the TRG bit to 1.
- 8. The ϕ AD frequency should be as follows: 16 MHz or below when VCC = 5 V, 10 MHz or below when VCC = 3.3 V

The ϕ AD frequency is selected from the combination of bits CKS0, CKS1, and CKS2 shown as below:

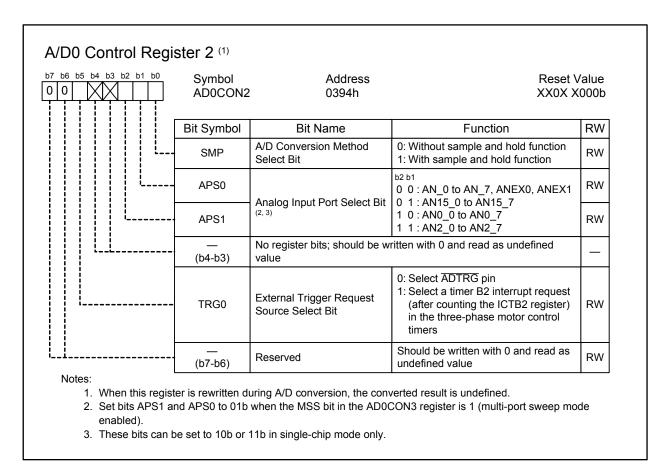
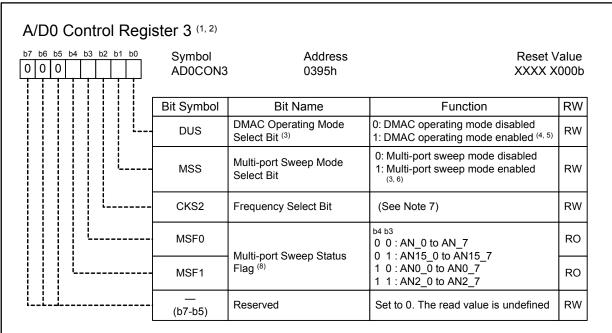
CKS2 Bit in the AD0CON3 Register	CKS0 Bit in the AD0CON0 Register	CKS1 Bit in the AD0CON1 Register	φAD
	1 0	0	fAD divided by 4
0		1	fAD divided by 3
		0	fAD divided by 2
		1	fAD
1		0	fAD divided by 8
1		1	fAD divided by 6

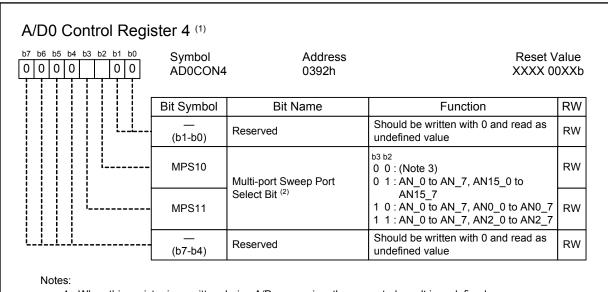
Figure 19.2 AD0CON0 Register

Notes:

- 1. When this register is rewritten during A/D conversion, the converted result is undefined.
- 2. This bit setting is enabled in single sweep mode, repeat sweep mode 0, repeat sweep mode 1, multi-port single sweep mode, or multi-port repeat sweep mode 0.
- 3. Select a port from AN, AN0, AN2, or AN15 by using bits APS1 and APS0 in the AD0CON2 register.
- 4. These pins are commonly used in A/D conversion when the MD2 bit is set to 1.
- 5. Set bits SCAN1 and SCAN0 to 11b in multi-port single sweep mode or multi-port repeat sweep mode 0.
- 6. When the MSS bit in the AD0CON3 register is 1 (multi-port sweep mode enabled), set the MD2 bit to 0.
- 7. Refer to the note on the CKS0 bit in the AD0CON0 register.
- 8. This bit controls the reference voltage to the A/D converter. It does not affect VREF performance of the D/A converter.
- 9. Do not set the VCUT bit to 0 during A/D conversion.
- 10. When the VCUT bit is switched from 0 to 1, wait at least 1 µs before starting A/D conversion.
- 11.Bits OPA1 and OPA0 can be set to 01b or 10b only in one-shot mode or repeat mode. Set them to 00b or 11b in other modes.
- 12.Set bits OPA1 and OPA0 to 00b when the MSS bit in the AD0CON3 register is 1 (multi-port sweep mode enabled).

Figure 19.3 AD0CON1 Register


Figure 19.4 AD0CON2 Register

Notes:

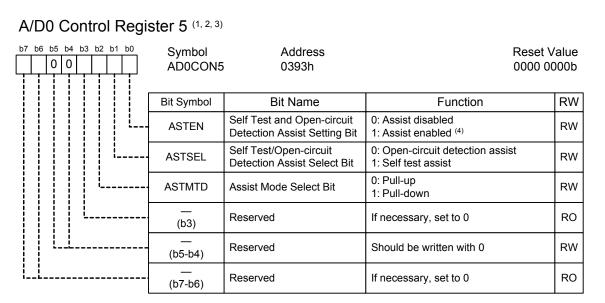
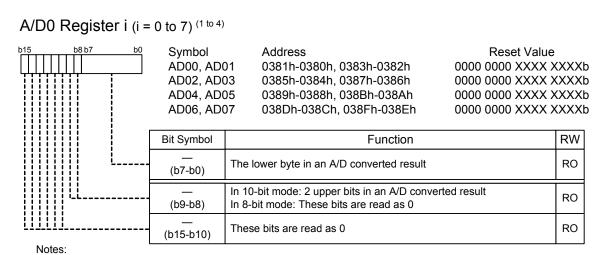

- 1. When this register is rewritten during A/D conversion, the converted result is undefined.
- 2. This register may be read incorrectly during A/D conversion. It should be read or written after the A/D converter stops operating.
- 3. To set the MSS bit to 1, the DUS bit should be also set to 1.
- 4. When the DUS bit is set to 1, all A/D converted results are stored into the AD00 register.
- 5. Configure DMAC when it is used to transfer converted results.
- 6. To set the MSS bit to 1:
 - Set the MD2 bit in the AD0CON1 register to 0 (mode other than repeat sweep mode 1).
 - Set bits APS1 and APS0 in the AD0CON2 register to 01b (AN15_0 to AN15_7).
 - Set bits OPA1 and OPA0 in the AD0CON1 register to 00b (no use of ANEX0 or ANEX1).
- 7. Refer to the note on the CKS0 bit in the AD0CON0 register.
- 8. This bit setting is enabled when the MSS bit is set to 1. The read value is undefined when the MSS bit is set to 0.

Figure 19.5 AD0CON3 Register

- 1. When this register is rewritten during A/D conversion, the converted result is undefined.
- 2. Bits MPS11 and MPS10 can be set to 10b or 11b in single-chip mode only.
- 3. When the MSS bit in the AD0CON3 register is 0 (multi-port sweep mode disabled), set bits MSP11 and MPS10 to 00b. When it is 1 (multi-port sweep mode enabled), set them to any value other than 00b.


Figure 19.6 AD0CON4 Register

Notes:

- 1. When this register is rewritten during A/D conversion, the converted result is undefined.
- 2. An 8-bit read access to this register should be performed.
- 3. Appropriate evaluation for each system should be performed since A/D converted result for open-circuit detection varies with external circuits.
- 4. To use the self test assist or open-circuit detection assist, set the SMP bit in the AD0CON2 register to 1 (with sample and hold function).

Figure 19.7 AD0CON5 Register

- 1. If this register is read by a program while the DMAC is configured to transfer converted results, the value is undefined.
- 2. The register value written while the A/D converter stops operating is undefined.
- 3. Only the AD00 register is available when the DUS bit in the AD0CON3 register is 1 (DMAC operating mode enabled). Other registers are undefined.
- 4. When a converted result is transferred by DMAC at 10-bit mode, the DMAC should be set for a 16-bit transfer.

Figure 19.8 Registers AD00 to AD07

19.1 Mode Descriptions

19.1.1 One-shot Mode

In one-shot mode, the analog voltage applied to a selected pin is converted into a digital code only once. Table 19.2 lists specifications of one-shot mode.

Table 19.2 One-shot Mode Specifications

Item	Specification
Function	Converts the analog voltage applied to a pin into a digital code only once. The
	pin is selected by setting bits CH2 to CH0 in the AD0CON0 register, bits OPA1 and OPA0 in the AD0CON1 register, and bits APS1 and APS0 in the AD0CON2
	register
Start conditions	When the TRG bit in the AD0CON0 register is 0 (software trigger)
Ctart corrainers	The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by
	a program.
	When the TRG bit is 1 (external trigger or hardware trigger)
	Set TRG0 in the AD0CON2 register to select external trigger request source.
	• When 0 is selected,
	an input signal at the ADTRG pin switches from high to low after the ADST bit
	is set to 1 by a program.
	When 1 is selected, generation of a timer B2 interrupt request which has passed through the
	circuit to set the interrupt generating frequency in the three-phase motor
	control timers after the ADST bit is set to 1 by a program.
Stop conditions	A/D conversion is completed (the ADST bit is set to 0 when the software)
	trigger is selected)
	The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request	When A/D conversion is completed, an interrupt request is generated
generation timing	
Input pin to be selected	One pin is selected from among AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to
	AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1
Reading A/D converted	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode
result	disabled) Read the AD0j register corresponding to the selected pin (j = 0 to 7)
	When the DUS bit is 1 (DMAC operating mode enabled)
	Configure the DMAC (refer to 13. "DMAC").
	Then the A/D converted result is stored in the AD00 register after the
	conversion is completed. The DMAC transfers the converted result from the
	AD00 register to a given memory space.
	Do not read the AD00 register by a program

19.1.2 Repeat Mode

In repeat mode, the analog voltage applied to a selected pin is repeatedly converted into a digital code. Table 19.3 lists specifications of repeat mode.

Table 19.3 Repeat Mode Specifications

Item	Specification
Function	Converts the analog voltage input to a pin into a digital code repeatedly. The pin is selected by setting bits CH2 to CH0 in the AD0CON0 register, bits OPA1 and OPA0 in the AD0CON1 register, and bits APS1 and APS0 in the AD0CON2 register
Start conditions	 When the TRG bit in the AD0CON0 register is 0 (software trigger) The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a program. When the TRG bit is 1 (external trigger or hardware trigger) Set TRG0 in the AD0CON2 register to select external trigger request source. When 0 is selected, an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program. When 1 is selected, generation of a timer B2 interrupt request which has passed through the circuit to set the interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.
Stop conditions	The ADST bit is set to 0 (A/D conversion stopped) by a program
Interrupt request generation timing	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode disabled), no interrupt request is generated. When the DUS bit is 1 (DMAC operating mode enabled), each time A/D conversion is completed, an interrupt request is generated
Analog voltage input pins	One pin is selected from among AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1
Reading A/D converted result	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode disabled) Read the AD0j register corresponding to the selected pin (j = 0 to 7) When the DUS bit is 1 (DMAC operating mode enabled) • When the converted result is transferred by DMAC Configure the DMAC (refer to 13. "DMAC"). Then the A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to a given memory space. Do not read the AD00 register by a program • When the converted result is transferred by a program Read the AD00 register after the IR bit in the AD0IC register becomes 1. Set the IR bit back to 0

19.1.3 Single Sweep Mode

In single sweep mode, the analog voltage applied to selected pins is converted one-by-one into a digital code. Table 19.4 lists specifications of single sweep mode.

Table 19.4 Single Sweep Mode Specifications

Specification	
Converts the analog voltage input to a set of pins into a digital code one-by-one.	
The pins are selected by setting bits SCAN1 and SCAN0 in the AD0CON1	
register and bits APS1 and APS0 in the AD0CON2 register	
When the TRG bit in the AD0CON0 register is 0 (software trigger)	
The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a program.	
When the TRG bit is 1 (external trigger or hardware trigger)	
Set TRG0 in the AD0CON2 register to select external trigger request source. • When 0 is selected,	
 an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program. When 1 is selected, 	
generation of a timer B2 interrupt request which has passed through the circuit to set the interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.	
 A/D conversion is completed (the ADST bit is set to 0 when the software trigger is selected) The ADST bit is set to 0 (A/D conversion stopped) by a program 	
When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode	
disabled) when a sweep is completed, an interrupt request is generated.	
When the DUS bit is 1 (DMAC operating mode enabled), each time A/D	
conversion is completed, an interrupt request is generated	
Selected from a group of 2 pins (ANi 0 and ANi 1), 4 pins (ANi 0 to ANi 3), 6	
pins (ANi_0 to ANi_5), or 8 pins (ANi_0 to ANi_7) (i = no value, 0, 2, 15)	
When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode	
disabled)	
Read the AD0j register corresponding to the selected pin (j = 0 to 7)	
When the DUS bit is 1 (DMAC operating mode enabled)	
Configure the DMAC (refer to 13. "DMAC").	
Then the A/D converted result is stored in the AD00 register after the	
conversion is completed. The DMAC transfers the converted result from the	
AD00 register to a given memory space.	
Do not read the AD00 register by a program	

19.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, the analog voltage applied to selected pins is repeatedly converted into a digital code. Table 19.5 lists specifications of repeat sweep mode 0.

Table 19.5 Repeat Sweep Mode 0 Specifications

Item	Specification			
Function	Converts the analog voltage input to a set of pins into a digital code repeatedly.			
	The pins are selected by setting bits SCAN1 and SCAN0 in the AD0CON1			
	register and APS1 and APS0 in the AD0CON2 register			
Start conditions	When the TRG bit in the AD0CON0 register is 0 (software trigger)			
	The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by			
	a program.			
	When the TRG bit is 1 (external trigger or hardware trigger)			
	Set TRG0 in the AD0CON2 register to select external trigger request source.			
	When 0 is selected,			
	an input signal at the ADTRG pin switches from high to low after the ADST bit			
	is set to 1 by a program.			
	When 1 is selected,			
	generation of a timer B2 interrupt request which has passed through the			
	circuit to set the interrupt generating frequency in the three-phase motor			
	control timers after the ADST bit is set to 1 by a program.			
Stop conditions	The ADST bit is set to 0 (A/D conversion stopped) by a program			
Interrupt request	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode			
generation timing	disabled), no interrupt request is generated.			
	When the DUS bit is 1 (DMAC operating mode enabled), each time A/D			
	conversion is completed, an interrupt request is generated			
Analog voltage input	Selected from a group of 2 pins (ANi_0 and ANi_1), 4 pins (ANi_0 to ANi_3), 6			
pins	pins (ANi_0 to ANi_5), or 8 pins (ANi_0 to ANi_7) (i = no value, 0, 2, 15)			
Reading A/D converted	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode			
result	disabled)			
	Read the AD0j register corresponding to the selected pin (j = 0 to 7)			
	When the DUS bit is 1 (DMAC operating mode enabled)			
	When the converted result is transferred by DMAC			
	Configure the DMAC (refer to 13. "DMAC").			
	Then the A/D converted result is stored in the AD00 register after the			
	conversion is completed. The DMAC transfers the converted result from the			
	AD00 register to a given memory space.			
	Do not read the AD00 register by a program			
	When the converted result is transferred by a program			
	Read the AD00 register after the IR bit in the AD0IC register becomes 1. Set			
	the IR bit back to 0			

19.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, the analog voltage applied to eight selected pins including one to four prioritized pins is repeatedly converted into a digital code. Table 19.6 lists specifications of repeat sweep mode 1.

Table 19.6 Repeat Sweep Mode 1 Specifications

Item	Specification		
Function	The analog voltage applied to eight selected pins including one to four prioritized		
	pins is repeatedly converted into a digital code. The prioritized pins are selected		
	by setting bits SCAN1 and SCAN0 in the AD0CON1 register and bits APS1 and		
	APS0 in the AD0CON2 register		
	For example, when AN_0 is selected, the A/D conversion is performed in the		
	following order: AN_0→AN_1→AN_0→AN_2→AN_0→AN_3•••		
Start conditions	When the TRG bit in the AD0CON0 register is 0 (software trigger)		
	The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a		
	program.		
	When the TRG bit is 1 (external trigger or hardware trigger)		
	Set TRG0 in the AD0CON2 register to select external trigger request source.		
	When 0 is selected,		
	an input signal at the ADTRG pin switches from high to low after the ADST bit		
	is set to 1 by a program. Retrigger is invalid.		
	• When 1 is selected,		
	generation of a timer B2 interrupt request which has passed through the circuit		
	to set the interrupt generating frequency in the three-phase motor control		
	timers after the ADST bit is set to 1 by a program.		
Stop conditions	The ADST bit is set to 0 (A/D conversion stopped) by a program		
Interrupt request	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode		
generation timing	disabled), no interrupt request is generated.		
	When the DUS bit is 1 (DMAC operating mode enabled), each time A/D		
	conversion is completed, an interrupt request is generated		
Analog voltage input	8 (ANi_0 to ANi_7) (i = no value, 0, 2, 15)		
pins			
Prioritized pin(s)	Selected from a group of 1 pin (ANi_0), 2 pins (ANi_0 and ANi_1), 3 pins (ANi_0		
	to ANi_2), or 4 pins (ANi_0 to ANi_3)		
Reading A/D converted	When the DUS bit in the AD0CON3 register is 0 (DMAC operating mode		
result	disabled)		
	Read the AD0j register corresponding to the selected pin (j = 0 to 7)		
	When the DUS bit is 1 (DMAC operating mode enabled)		
	When the converted result is transferred by DMAC		
	Configure the DMAC (refer to 13. "DMAC").		
	Then the A/D converted result is stored in the AD00 register after the		
	conversion is completed. The DMAC transfers the converted result from the		
	AD00 register to a given memory space.		
	Do not read the AD00 register by a program		
	When the converted result is transferred by a program		
	Read the AD00 register after the IR bit in the AD0IC register becomes 1. Set		
	the IR bit back to 0		

19.1.6 Multi-port Single Sweep Mode

In multi-port single sweep mode, the analog voltage applied to 16 selected pins is converted one-byone into a digital code. The DUS bit in the AD0CON3 register should be set to 1 (DMAC operating mode enabled). Table 19.7 lists specifications of multi-port single sweep mode.

Table 19.7 Multi-port Single Sweep Mode Specifications

Item	Specification		
Function	Converts the analog voltage input to a set of 16 selected pins into a digital code		
	one-by-one in the following order: AN_0 to AN_7→ANi_0 to ANi_7 (i = 0, 2, 15)		
	The 16 pins are selected by setting bits MPS11 and MPS10 in the AD0CON4		
	register		
	For example, when bits MPS11 and MPS10 are set to 10b (AN_0 to AN_7,		
	AN0_0 to AN0_7), the analog voltage is converted into a digital code in the		
	following order:		
	$AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow AN_0 \rightarrow \cdots \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow AN_9 \rightarrow AN_$		
	AN0_6→AN0_7		
Start conditions	When the TRG bit in the AD0CON0 register is 0 (software trigger)		
	The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a		
	program.		
	When the TRG bit is 1 (external trigger or hardware trigger)		
	Set TRG0 in the AD0CON2 register to select external trigger request source.		
	• When 0 is selected,		
	an input signal at the ADTRG pin switches from high to low after the ADST bit		
	is set to 1 by a program.		
	• When 1 is selected,		
	generation of a timer B2 interrupt request which has passed through the circuit		
	to set the interrupt generating frequency in the three-phase motor control		
	timers after the ADST bit is set to 1 by a program.		
Stop conditions	A/D conversion is completed (the ADST bit is set to 0 when the software trigger)		
	is selected)		
	The ADST bit is set to 0 (A/D conversion stopped) by a program		
Interrupt request	Every time A/D conversion is completed (set the DUS bit to 1)		
generation timing			
Analog voltage input	A combination of pin group is selected from AN_0 to AN_7→AN15_0 to AN15_7,		
pins	AN_0 to AN_7→AN0_0 to AN0_7, or AN_0 to AN_7→AN2_0 to AN2_7		
Reading A/D converted	Set the DUS bit to 1 and configure the DMAC (refer to 13. "DMAC").		
result	Then the A/D converted result is stored in the AD00 register after the conversion		
	is completed. The DMAC transfers the converted result from the AD00 register to		
	a given memory space.		
	Do not read the AD00 register by a program		

19.1.7 Multi-port Repeat Sweep Mode 0

In multi-port repeat sweep mode 0, the analog voltage applied to 16 selected pins is repeatedly converted into a digital code. The DUS bit in the AD0CON3 register should be set to 1 (DMAC operating mode enabled). Table 19.8 lists specifications of multi-port repeat sweep mode 0.

Table 19.8 Multi-port Repeat Sweep Mode 0 Specifications

Item	Specification		
Function	Converts the analog voltage input to a set of 16 selected pins into a digital code repeatedly in the following order: AN_0 to AN_7→ANi_0 to ANi_7 (i = 0, 2, 15) The 16 pins are selected by setting bits MPS11 and MPS10 in the AD0CON4 register For example, when bits MPS11 and MPS10 are set to 10b (AN_0 to AN_7, AN0_0 to AN0_7),the analog voltage is converted into a digital code repeatedly in the following order:		
	AN_0→AN_1→AN_2→AN_3→AN_4→AN_5→AN_6→AN_7→AN0_0→•••→ AN0_6→AN0_7		
Start conditions	When the TRG bit in the AD0CON0 register is 0 (software trigger) The ADST bit in the AD0CON0 register is set to 1 (A/D conversion started) by a program.		
	When the TRG bit is 1 (external trigger or hardware trigger) Set TRG0 in the AD0CON2 register to select external trigger request source. • When 0 is selected,		
	 an input signal at the ADTRG pin switches from high to low after the ADST bit is set to 1 by a program. • When 1 is selected, 		
	generation of a timer B2 interrupt request which has passed through the circuit to set the interrupt generating frequency in the three-phase motor control timers after the ADST bit is set to 1 by a program.		
Stop conditions	The ADST bit is set to 0 (A/D conversion stopped) by a program		
Interrupt request generation timing	Every time A/D conversion is completed (set the DUS bit to 1)		
Analog voltage input	A combination of pin group is selected from AN_0 to AN_7→AN15_0 to AN15_7,		
pins	AN_0 to AN_7→AN0_0 to AN0_7, or AN_0 to AN_7→AN2_0 to AN2_7		
Reading A/D converted	Set the DUS bit to 1 and configure the DMAC (refer to 13. "DMAC").		
result	Then the A/D converted result is stored in the AD00 register after the conversion is completed. The DMAC transfers the converted result from the AD00 register to a given memory space.		
	Do not read the AD00 register by a program		

19.2 Functions

19.2.1 Resolution Selection

Resolution is selected by setting the BITS bit in the AD0CON1 register. When the BITS bit is set to 1 (10-bit precision), the A/D converted result is stored into bits 9 to 0 in the AD0i register (i = 0 to 7). When the BITS bit is set to 0 (8-bit precision), the result is stored into bits 7 to 0 in the AD0i register.

19.2.2 Sample and Hold Function

This function improves the conversion rate per pin to 28 ϕ AD cycles at 8-bit resolution and 33 ϕ AD cycles for 10-bit resolution. This function is available in all operating modes and is enabled by setting the SMP bit in the AD0CON2 register to 1 (with sample and hold function). Start A/D conversion after setting the SMP bit.

19.2.3 Trigger Selection

A trigger to start A/D conversion is specified by the combination of TRG bit in the AD0CON0 register and TRG0 in the AD0CON2 register. Table 19.9 lists the settings of the trigger selection.

Table 19.9	Trigger Sele	ction Settings
-------------------	--------------	----------------

Bit and Setting		Trigger	
AD0CON0 register	AD0CON2 register	ingger	
TRG = 0	_	Software trigger The ADST bit in the AD0CON0 register is set to 1	
TRG = 1 (1, 2)	TRG0 = 0	External trigger Falling edge of a signal applied to the ADTRG pin	
	TRG0 = 1	Hardware trigger Generation of a timer B2 interrupt request which has passed through the circuit to set the interrupt generating frequency in the three-phase motor control timers	

Notes:

- 1. A/D conversion starts when a trigger is generated while the ADST bit is 1 (A/D conversion started).
- 2. When an external trigger or a hardware trigger is generated during A/D conversion, the A/D converter aborts the operation in progress. Then, it restarts the operation.

19.2.4 DMAC Operating Mode

DMAC operating mode can be used in all operating modes. DMAC operating mode is highly recommended when the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0. When the DUS bit in the AD0CON3 register is set to 1 (DMAC operating mode enabled), all A/D converted results are stored in the AD00 register. The DMAC transfers the data from the AD00 register to a given memory space every time A/D conversion is completed at a pin. 8-bit DMA transfer should be selected for 8-bit resolution. For 10-bit resolution, 16-bit DMA transfer should be selected. Refer to 13. "DMAC" for details.

19.2.5 Function-extended Analog Input Pins

In one-shot mode and repeat mode, pins ANEX0 and ANEX1 can be used as analog input pins by setting bits OPA1 and OPA0 in the AD0CON1 register (refer to Table 19.10). The A/D converted results of pins ANEX0 and ANEX1 are stored into registers AD00 and AD01, respectively. However, when the DUS bit in the AD0CON3 register is set to 1 (DMAC operating mode enabled), all results are stored into the AD00 register.

To use function-extended analog input pins, bits APS1 and APS0 in the AD0CON2 register should be set to 00b (AN0 to AN7, ANEX0, ANEX1 function as analog input ports) and the MSS bit in the AD0CON3 register to 0 (multi-port sweep mode disabled).

AD0CON1 Register		ANEX0	ANEX1
OPA1	OPA0	- AINEAU AINEAT	
0	0	Not used	Not used
0	1	Analog input	Not used
1	0	Not used	Analog input
1	1	Output to an external op-amp	Input from an external op-amp

Table 19.10 Function-extended Analog Input Pin Settings

19.2.6 External Operating Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog inputs can be amplified by one external op-amp using function-extended analog input pins ANEX0 and ANEX1.

When bits OPA1 and OPA0 in the AD0CON1 register are 11b (external op-amp connected), the voltage applied to pins AN0 to AN7 is output from the ANEX0 pin. This output signal should be amplified by an external op-amp and applied to the ANEX1 pin.

The analog voltage applied to the ANEX1 pin is converted into a digital code. The converted result is stored in the corresponding AD0i register (i = 0 to 7). The conversion rate varies with the response of the external op-amp. Note that the ANEX0 pin should not be connected to the ANEX1 pin directly.

To use external op-amp connection mode, set bits APS1 and APS0 in the AD0CON2 register to 00b. Figure 19.9 shows an example of an external op-amp connection.

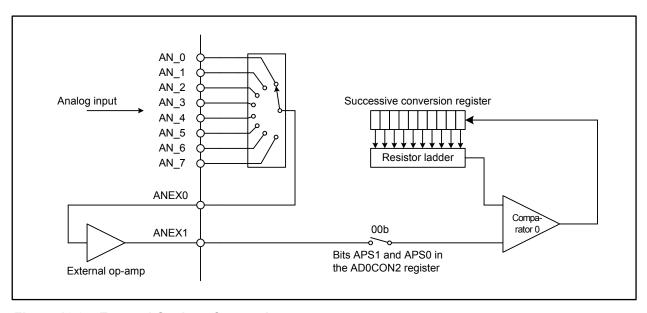


Figure 19.9 External Op-Amp Connection

19.2.7 Self Test/Open-circuit Detection Assist

This function enables the MCU to detect open-circuit in analog input pins. It also enables it to perform a self test.

Figure 19.10 shows a block diagram of open-circuit detection assist circuit.

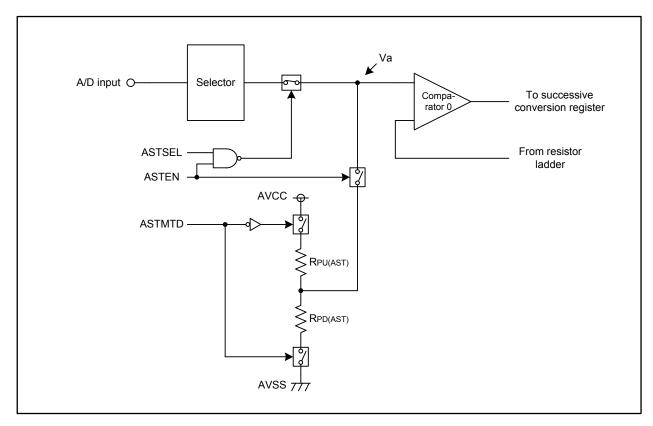


Figure 19.10 Open-circuit Detection Assist Circuit

To detect open-circuit, the ASTSEL bit in the AD0CON5 register should be set to 0 (open-circuit detection assist). Va in Figure 19.10 above is a voltage with a value between AVCC and the A/D applied voltage in the following bit settings: the ASTEN bit is 1 (assist enabled), the ASTSEL bit is 0, and the ASTMTD bit is 0 (pull-up). If the A/D input pin is open, Va is almost equal to AVCC. When the ASTEN bit is 1, the ASTSEL bit is 0, and the ASTMTD bit is 1 (pull-down), Va is between AVSS and the A/D applied voltage. If the A/D input pin is open, Va is almost AVSS. That is, the A/D input pin is considered open if the result value of A/D conversion is almost the maximum/minimum voltage.

To enable the self test function, the ASTSEL bit in the AD0CON5 register should be set to 1 (self test assist). Va is almost equal to AVCC in the bit settings as the ASTEN bit is 1, the ASTSEL bit is 1, and the ASTMTD bit is 0. When the ASTEN bit is 1, the ASTSEL bit is 1, and the ASTMTD bit is 1, Va is almost AVSS. That is, if the result value of A/D conversion is almost the maximum/minimum voltage in each bit setting, the A/D converter is considered to be functioning normally.

19.2.8 Power Saving

When the A/D converter is not in use, power consumption can be reduced by setting the VCUT bit in the AD0CON1 to 0 (VREF disconnected). With this bit setting, the reference voltage input pin (VREF) can be disconnected from the resistor ladder, which enables the power supply from the VREF to the resistor ladder to stop.

To use the A/D converter, set the VCUT bit to 1 (VREF connected) and wait at least 1 µs before setting the ADST bit in the AD0CON0 register to 1 (A/D conversion started). Bits ADST and VCUT should not be set to 1 simultaneously. The VCUT bit should not be set to 0 during A/D conversion.

The VCUT bit does not affect VREF performance of the D/A converter (refer to Figure 19.11).

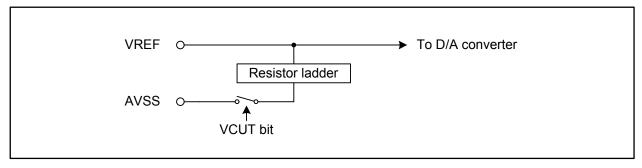


Figure 19.11 Power Supply by VCUT Bit

19.2.9 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

Figure 19.12 shows an analog input pin and external sensor equivalent circuit.

To perform A/D conversion correctly, the internal capacitor (C) charging, shown in Figure 19.12, should be completed within the specified period. This period, called the sampling time, is 2 ϕ AD cycles for conversion without the sample and hold function and 3 ϕ AD cycles for conversion with this function.

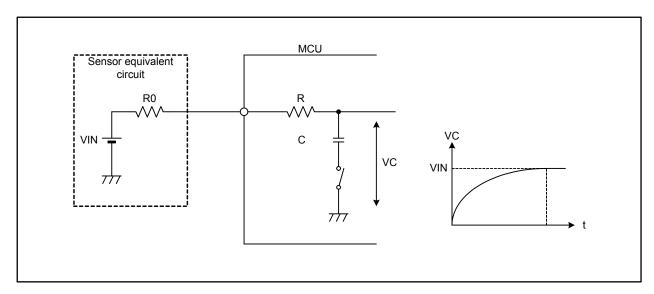


Figure 19.12 Analog Input Pin and External Sensor Equivalent Circuitry

The voltage between pins (VC) is expressed as follows:

$$VC = VIN \left\{ 1 - e^{-\frac{t}{C(R0 + R)}} \right\}$$

When t = T and the precision (error) is x or less,

$$VC = VIN - \frac{x}{y}VIN = VIN\left(1 - \frac{x}{y}\right)$$

Thus, output impedance of the sensor equivalent circuit (R0) is determined by the following formulas:

$$e^{\frac{T}{C(R0+R)}} = \frac{x}{y}$$
$$-\frac{T}{C(R0+R)} = \ln \frac{x}{y}$$
$$R0 = -\frac{T}{C\ln \frac{x}{y}} - R$$

where:

T[s] = Sampling time

 $R0[\Omega]$ = Output impedance of the sensor equivalent circuit

VC = Potential difference between edges of capacitor C

 $R[\Omega]$ = Internal resistance of the MCU

x[LSB] = Precision (error) of the A/D converter

y[step] = Resolution of the A/D converter (1024 steps at 10-bit mode, 256 steps at 8-bit mode)

When $\phi AD = 10$ MHz, the A/D conversion mode is 10-bit resolution with the sample and hold function, the output impedance (R0) with the precision (error) of 0.1 LSB or less is determined by the following formula:

Using T = 0.3 μ s, R = 2.0 $k\Omega$ (reference value), C = 6.5 pF (reference value), x = 0.1, y = 1024,

$$R0 = -\frac{0.3 \times 10^{-6}}{6.5 \times 10^{-12} \times 10^{-12}} - 2.0 \times 10^{3}$$
$$= 2998$$

Thus, the allowable output impedance of the sensor equivalent circuit (R0), making the precision (error) of 0.1 LSB or less, should be less than 3 k Ω .

The actual error, however, is the value of absolute precision added to the 0.1 LSB mentioned above.

19.3 Notes on A/D Converter

19.3.1 Notes on Designing Boards

• Three capacitors should be placed between the AVSS pin and pins such as AVCC, VREF, and analog inputs (AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, and AN15_0 to AN15_7) to avoid erroneous operations caused by noise or latchup, and to reduce conversion errors. Figure 19.13 shows an example of pin configuration for A/D converter.

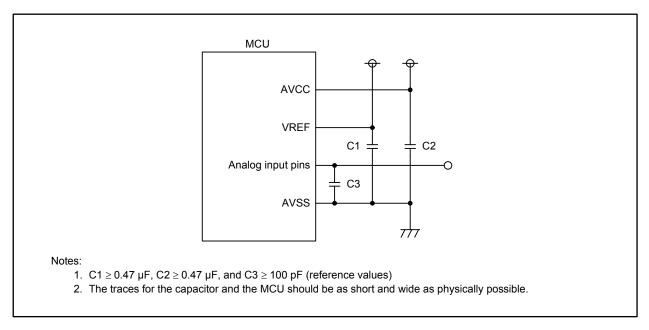


Figure 19.13 Pin Configuration for the A/D Converter

- Do not use AN_4 to AN_7 for analog input if the key input interrupt is to be used. Otherwise, a key input interrupt request occurs when the A/D input voltage becomes VIL or lower.
- When AVCC = VREF = VCC, A/D input voltage for pins AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.

19.3.2 Notes on Programming

 The following registers should be written while A/D conversion is stopped. That is, before a trigger occurs: AD0CON0 (except the ADST bit), AD0CON1, AD0CON2, AD0CON3, AD0CON4, and AD0CON5.

- When the VCUT bit in the AD0CON1 register is changed from 0 (VREF connected) to 1 (VREF disconnected), wait for at least 1 µs before starting A/D conversion. When not performing A/D conversion, set the VCUT bit to 0 to reduce power consumption.
- Set the port direction bit for the pin to be used as an analog input pin to 0 (input). Set the ASEL bit of the corresponding port function select register to 1 (port is used as A/D input).
- When the TRG bit in the AD0CON0 register is 1 (external trigger or hardware trigger), set the corresponding port direction bit (PD9_7 bit) for the ADTRG pin to 0 (input).
- The ϕ AD frequency should be 16 MHz or lower when VCC is 4.2 to 5.5 V, and 10 MHz or lower when VCC is 3.0 to 4.2 V. It should be 1 MHz or higher when the sample and hold function is enabled. If not, it should be 250 kHz or higher.
- When A/D operating mode (bits MD1 and MD0 in the AD0CON0 register or the MD2 bit in the AD0CON1 register) has been changed, reselect analog input pins by setting bits CH2 to CH0 in the AD0CON0 register or bits SCAN1 and SCAN0 in the AD0CON1 register.
- If the AD0i register is read when the A/D converted result is stored to the register, the stored value may have an error (i = 0 to 7). Read the AD0i register after A/D conversion is completed. In one-shot mode or single sweep mode, read the AD0i register after the IR bit in the AD0IC register becomes 1 (interrupt requested). In repeat mode, repeat sweep mode 0, or repeat sweep mode 1, an interrupt request can be generated each time A/D conversion is completed when the DUS bit in the AD0CON3 register is 1 (DMAC operating mode enabled). Similar to the other modes above, read the AD00 register after the IR bit in the AD0IC register becomes 1 (interrupt requested).
- When an A/D conversion is halted by setting the ADST bit in the AD0CON0 register to 0, the converted result is undefined. In addition, the unconverted AD0i register may also become undefined. Consequently, the AD0i register should not be used just after A/D conversion is halted.
- External triggers cannot be used in DMAC operating mode. When the DMAC is configured to transfer converted results, do not read the AD00 register by a program.
- While in single sweep mode, if A/D conversion is halted by setting the ADST bit in the AD0CON0 register to 0 (A/D conversion is stopped), an interrupt request may be generated even though the sweep is not completed. To halt A/D conversion, disable interrupts before setting the ADST bit to 0.

R32C/116A Group 20. D/A Converter

20. D/A Converter

The MCU has two separate 8-bit R-2R resistor ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi register (i = 0, 1). The DAiE bit in the DACON register determines whether the D/A conversion result is output or not. Set the DAiE bit to 1 (output enabled) to output the converted value. This bit setting disables a pull-up resistor for the corresponding port.

Analog voltage to be output (V) is calculated based on the value (n) set in the DAi register (n is a decimal number).

$$V = \frac{VREF \times n}{256} \qquad \text{(n = 0 to 255)}$$

VREF: reference voltage

Table 20.1 lists specifications of the D/A converter. Figure 20.1 shows a block diagram of the D/A converter. Figures 20.2 and 20.3 show registers associated with the D/A converter. Figure 20.4 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to 00h and the DAiE bit to 0 (output disabled).

Table 20.1 D/A Converter Specifications

Item	Specification
D/A conversion method	R-2R resistor ladder
Resolution	8 bits
Analog output pins	2 channels

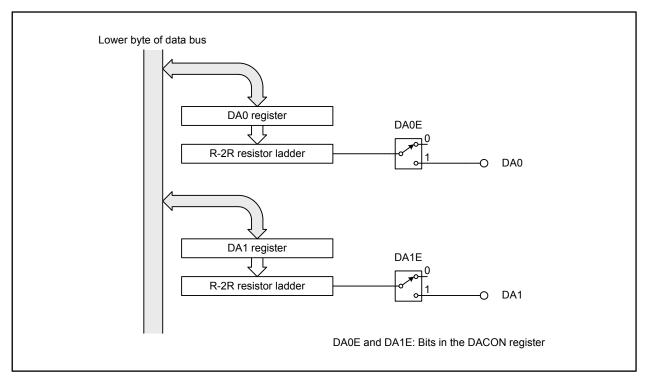


Figure 20.1 D/A Converter Block Diagram

R32C/116A Group 20. D/A Converter

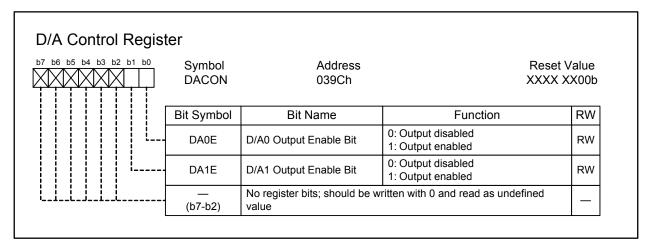


Figure 20.2 DACON Register

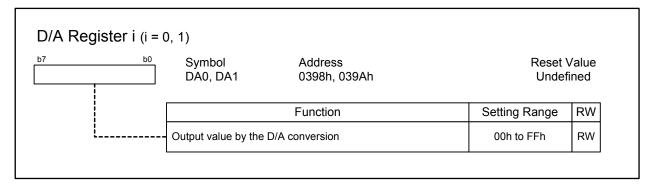


Figure 20.3 Registers DA0 and DA1

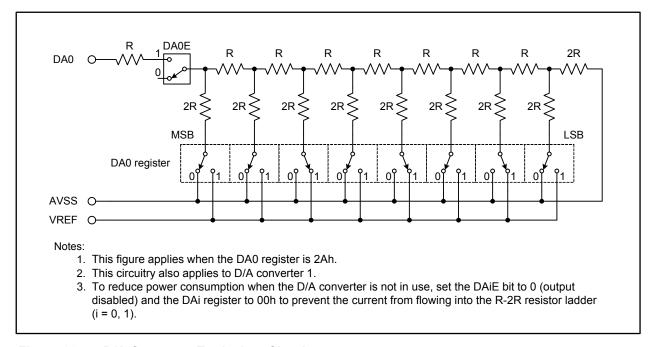


Figure 20.4 D/A Converter Equivalent Circuitry

R32C/116A Group 21. CRC Calculator

21. CRC Calculator

The Cyclic Redundancy Check (CRC) calculator is used for detecting errors in data blocks. A generator polynomial of CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$) generates the CRC.

The CRC is a 16-bit code generated for a given set of blocks of 8-bit data. It is set in the CRCD register every time 1-byte data is written to the CRCIN register after a default value is set to the CRCD register.

Figure 21.1 shows a block diagram of the CRC calculator. Figures 21.2 and 21.3 show registers associated with the CRC. Figure 21.4 shows an example of the CRC calculation.

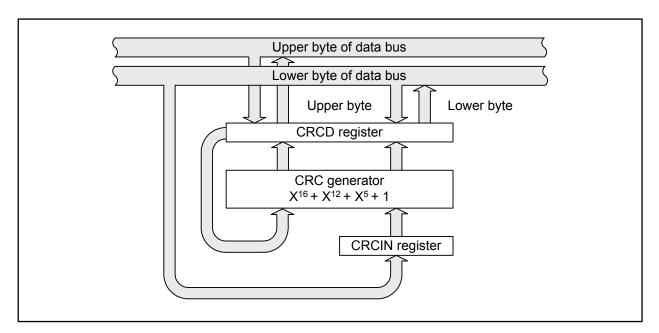


Figure 21.1 CRC Calculator Block Diagram

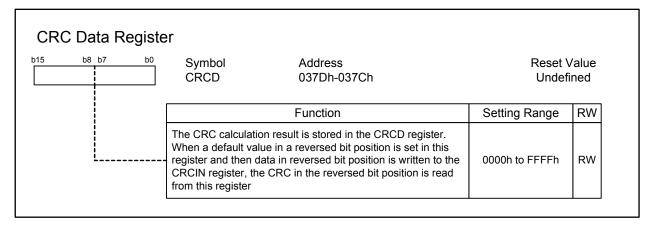


Figure 21.2 CRCD Register

R32C/116A Group 21. CRC Calculator

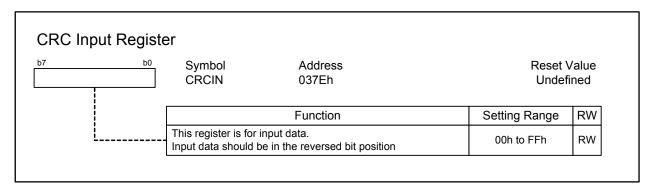


Figure 21.3 CRCIN Register

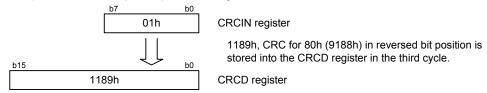
R32C/116A Group 21. CRC Calculator

CRC Calculation and Setting Procedure to Generate CRC for 80C4h

CRC Calculation for R32C

CRC: a remainder of the division as follows: reversed-bit-position value in the CRCIN register generator polynominal

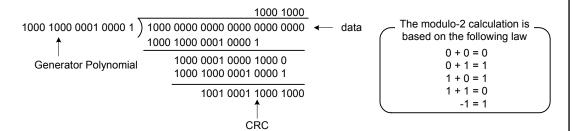
Generator Polynomial: X¹⁶ + X¹² + X⁵ + 1(1 0001 0000 0010 0001b)


Setting Procedure

(1) Reverse the bit position of 80C4h in 1-byte units by a program 80h to 01h, C4h to 23h

(2) Set 0000h (default value in reversed bit position) in CRCD register

(3) Set 01h (80h in reversed bit position) in CRCIN register



(4) Set 23h (C4h in reversed bit position) in CRCIN register

Details of the CRC Calculation

As shown in (3) above, add 1000 0000 0000 0000 0000 0000 as 80h (1000 0000b) plus 16 digits to 0000 0000 0000 0000 0000 0000 b as the default value of the CRCD register, 0000h plus eight digits to perform the modulo-2 division.

 $0001\ 0001\ 1000\ 1001b\ (1189h)$, the reversed-bit-position value of remainder 1001 0001 1000 1000b (9188h) can be read from the CRCD register.

When continuing on to (4) above, add 1100 0100 0000 0000 0000 as C4h (1100 0100b) plus 16 digits to 1001 0001 1000 1000 0000 0000b as the remainder of (3) left in the CRCD register plus eight digits to perform the modulo-2 division.

0000 1010 0100 0001b (0A41h), the reversed-bit-position value of remainder 1000 0010 0101 0000b (8250h) can be read from the CRCD register.

Figure 21.4 CRC Calculation

22. X-Y Conversion

X-Y conversion rotates a 16 × 16-bit matrix data 90 degrees or reverses the bit position of 16-bit data.

X-Y conversion is set using the XYC register shown in Figure 22.1.

Data is written to the write-only XiR registers and converted data is read from the read-only YjR register (i = 0 to 15; j = 0 to 15). These registers are allocated to the same address. Figures 22.2 and 22.3 show registers XiR and YjR, respectively. A write/read access to registers XiR and YjR should be performed in 16-bit units from an even address. 8-bit access operation results are undefined.

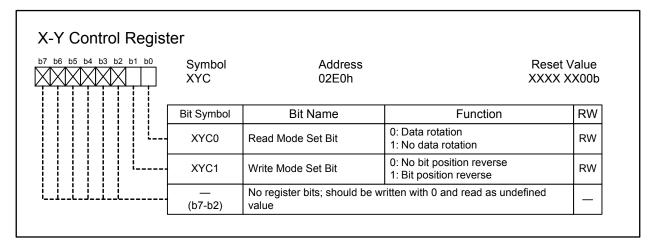


Figure 22.1 XYC Register

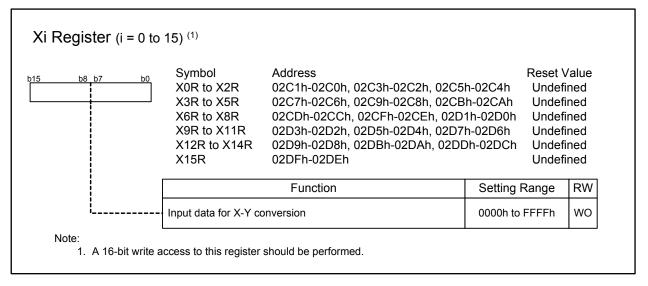


Figure 22.2 Registers X0R to X15R

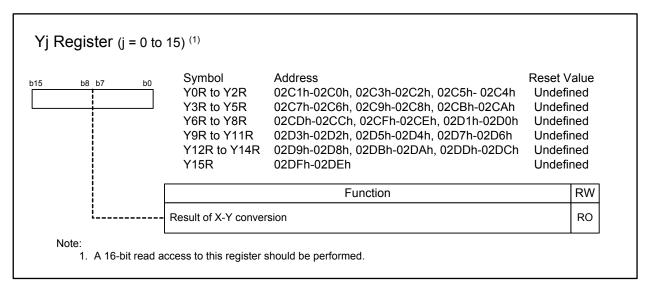


Figure 22.3 Registers Y0R to Y15R

22.1 Data Conversion When Reading

Set the XYC0 bit in the XYC register to select a read mode for the YjR register. When the XYC0 bit is 0 (data rotation), bit j in the corresponding registers X0R to X15R is automatically read upon reading the YjR register (j = 0 to 15).

More concretely, upon reading bit i (i = 0 to 15) in the Y0R register, the data of bit 0 in the XiR register is read. That is, the read data of bit 0 in the Y15R register means the data of bit 15 in the X0R register and the data of bit 15 in the Y0R register is identical to that of bit 0 in the X15R register.

Figure 22.4 shows the conversion table when the XYC0 bit is 0 and Figure 22.5 shows an example of X-Y conversion.

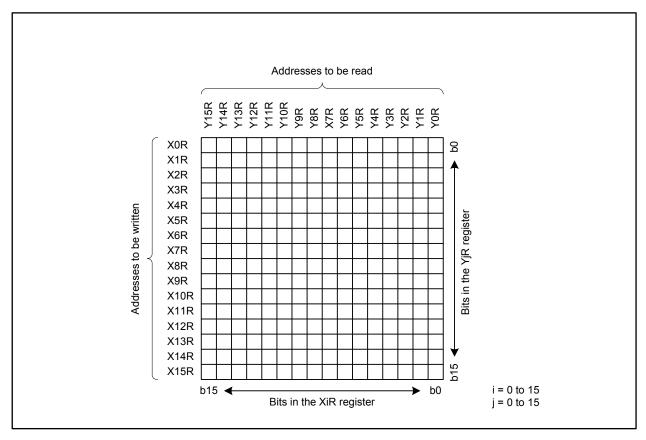


Figure 22.4 Conversion Table (XYC0 Bit is 0)

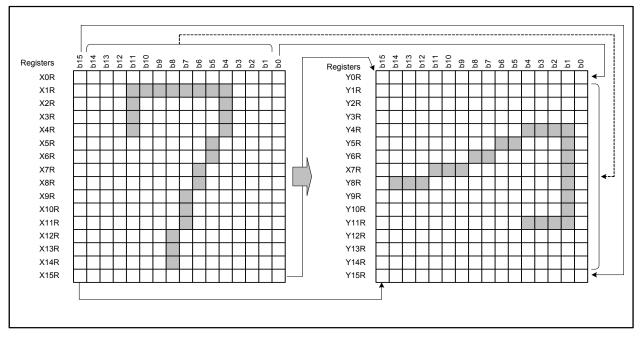


Figure 22.5 X-Y Conversion

When the XYC0 bit is set to 1 (no data rotation), the data of each bit in the YjR register is identical to that written in the XiR register. Figure 22.6 shows the conversion table when the XYC0 bit is set to 1.

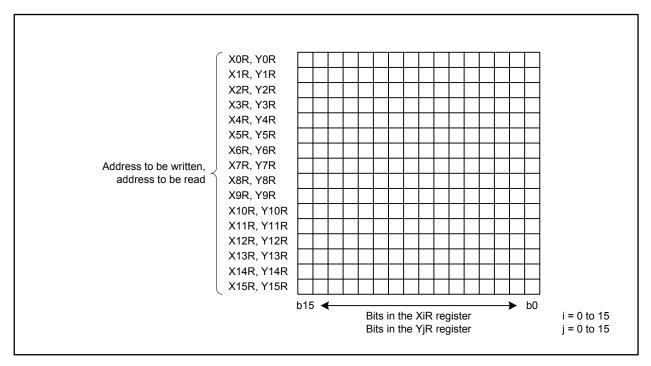


Figure 22.6 Conversion Table (XYC0 Bit is 1)

22.2 Data Conversion When Writing

Set the XYC1 bit in the XYC register to select a write mode for the XiR register.

When the XYC1 bit is set to 0 (no bit position reverse), the data is written in order. When it is set to 1 (bit position reverse), the data is written in reversed order. Figure 22.7 shows the conversion table when the XYC1 bit is set to 1.

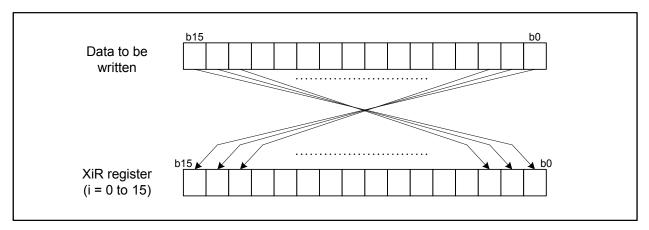


Figure 22.7 Conversion Table (XYC1 Bit is 1)

23. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generation, variable character length synchronous serial interface, and IEBus.

It consists of three groups each of which has one free-running 16-bit base timer and eight 16-bit registers for time measurement or waveform generation.

Table 23.1 lists the functions and channels of the intelligent I/O.

Table 23.1 Intelligent I/O Functions and Channels

	Functions	Group 0	Group 1	Group 2
Time	Digital filter	8 channels	8 channels	
measurement (1)	Prescaler	2 channels	2 channels	Not available
	Gating	2 channels	2 channels	
Waveform	Single-phase waveform output mode	8 channels	8 channels	8 channels
generation (1)	Inverted waveform output mode	8 channels	8 channels	8 channels
	SR waveform output mode	8 channels	8 channels	8 channels
	Bit modulation PWM mode			8 channels
	RTP mode	Not available	Not available	8 channels
	Parallel RTP mode	1		8 channels
Serial interface	Variable character length synchronous			
	serial interface mode	Not available	Not available	Available
	IEBus mode (optional (2))			

Notes:

- 1. The time measurement and waveform generation functions share a pin.
- 2. Contact a Renesas Electronics sales office to use the optional features.

Each channel can be individually assigned for time measurement or waveform generation function.

Figures 23.1 to 23.3 show block diagrams of the intelligent I/O.

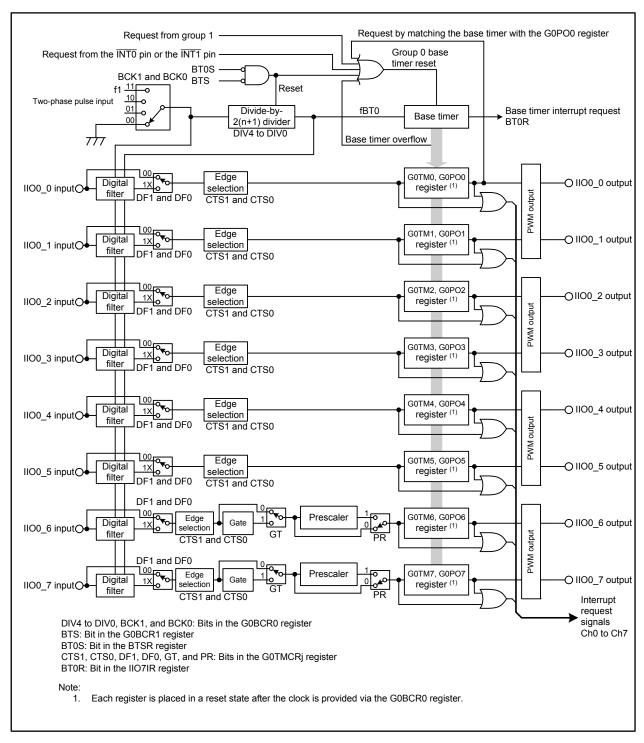


Figure 23.1 Intelligent I/O Group 0 Block Diagram (j = 0 to 7)

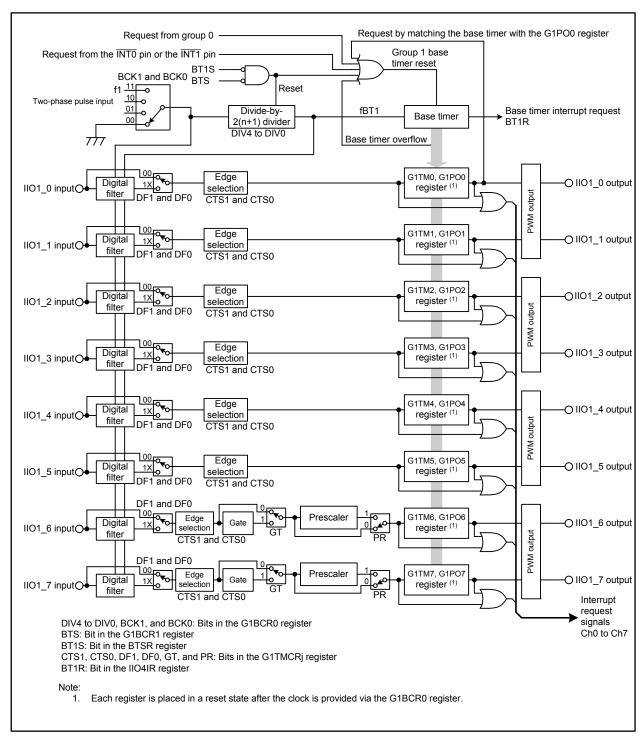


Figure 23.2 Intelligent I/O Group 1 Block Diagram (j = 0 to 7)

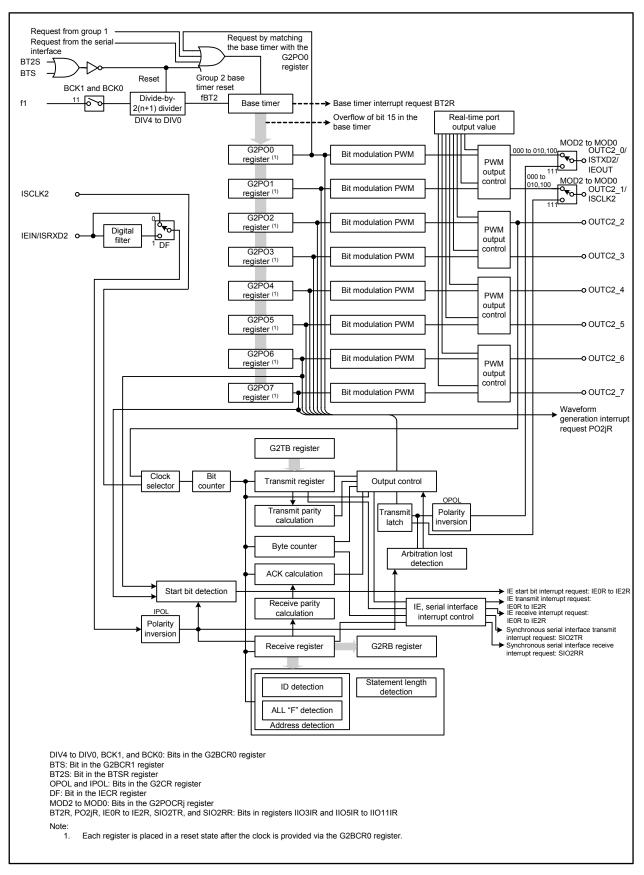


Figure 23.3 Intelligent I/O Group 2 Block Diagram (j = 0 to 7)

Figures 23.4 to 23.17 show registers associated with the intelligent I/O base timer, time measurement, and waveform generation (for registers associated with the serial interface, refer to Figures 23.33 to 23.40).

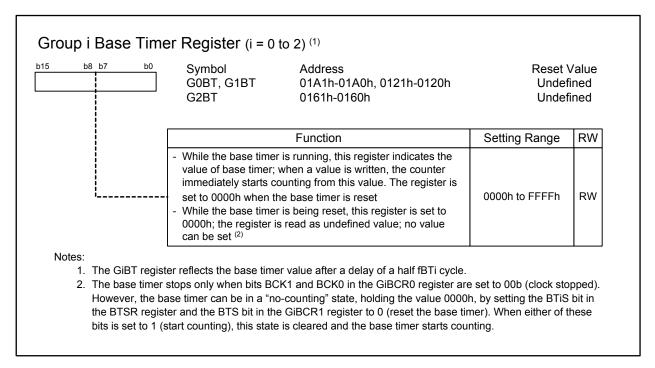
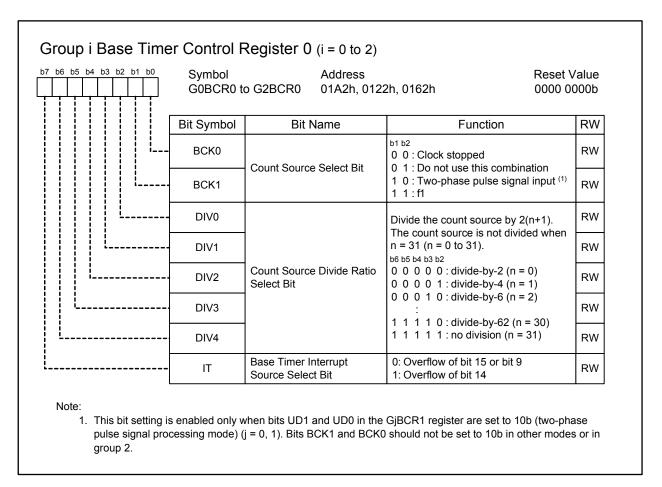
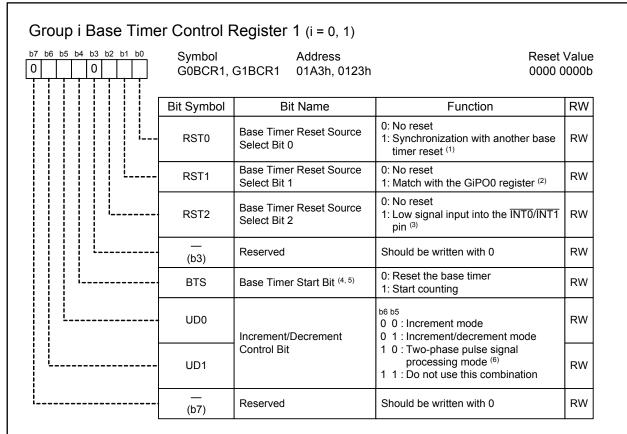
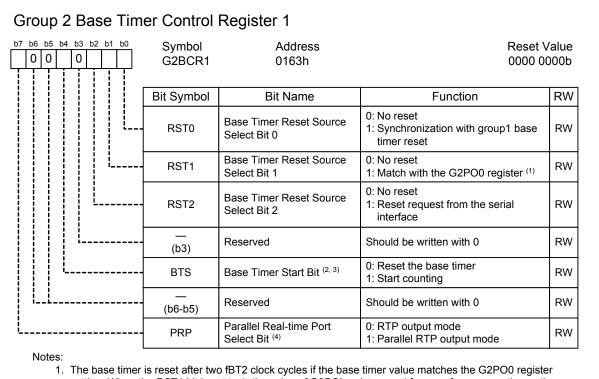


Figure 23.4 Registers G0BT to G2BT


Figure 23.5 Registers G0BCR0 to G2BCR0

Notes:

- 1. The group 0 base timer is reset by synchronizing with the reset of group 1 base timer, and vice versa.
- 2. The base timer is reset after two fBTi clock cycles when the base timer value matches the GiPO0 register setting. When the RST1 bit is 1, the value of the GiPOj register used for waveform generation should be smaller than that of the GiPO0 register (j = 1 to 7).
- 3. The base timer is reset by an input of low signal to the external interrupt input pin selected for the UDiZ signal by the IFS2 register.
- 4. To start base timer group 0 and 1 individually, the BTS bit should be set to 1 after setting the BTkS bit in the BTSR register to 0 (reset the base timer) (k = 0, 1).
- 5. To start the base timers of multiple groups simultaneously, the BTSR register should be used. The BTS bit should be set to 0.
- 6. In two-phase pulse signal processing mode, the base timer is not reset, even if the RST1 bit is 1, if the timer counter decrements after two clock cycles when the base timer value matches the GiPO0 register.

Figure 23.6 Registers G0BCR1 and G1BCR1

- The base timer is reset after two fBT2 clock cycles if the base timer value matches the G2PO0 register setting. When the RST1 bit is set to 1, the value of G2POj register used for waveform generation or the serial interface should be smaller than that of the G2PO0 register (j = 1 to 7).
- 2. To start the group 2 base timer, the BTS bit should be set to 1 after setting the BT2S bit in the BTSR register to 0 (reset the base timer).
- 3. To start the base timers of multiple groups simultaneously, the BTSR register should be used. The BTS bit should be set to 0.
- 4. This bit setting is enabled when the RTP bit in the G2POCRi register is set to 1 (real-time port used).

Figure 23.7 G2BCR1 Register

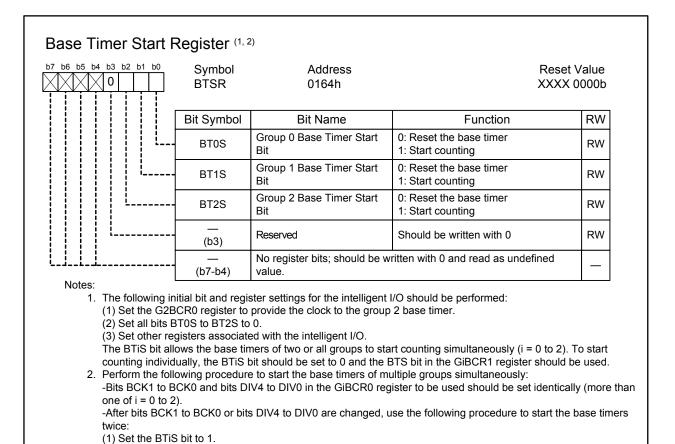


Figure 23.8 BTSR Register

(2) Set the BTiS bit to 0 after one fBTi clock cycle.

(3) Set the BTiS bit to 1 again after one additional fBTi clock cycle.

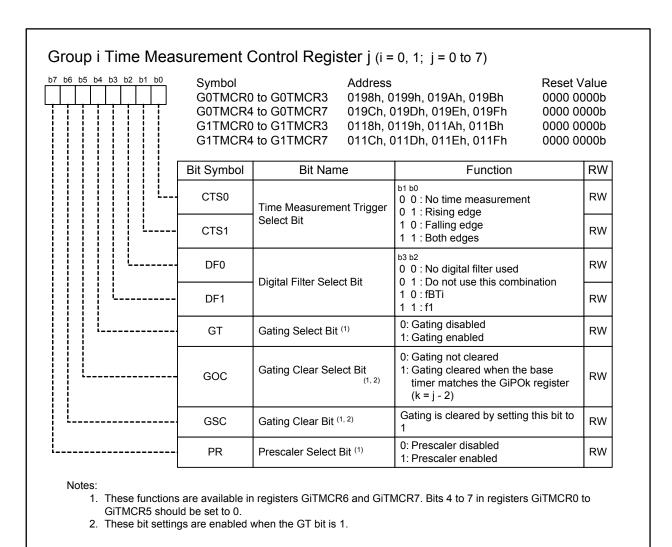


Figure 23.9 Registers G0TMCR0 to G0TMCR7 and G1TMCR0 to G1TMCR7

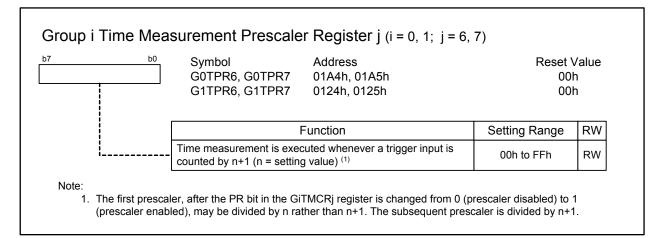


Figure 23.10 Registers G0TPR6, G0TPR7, G1TPR6, and G1TPR7

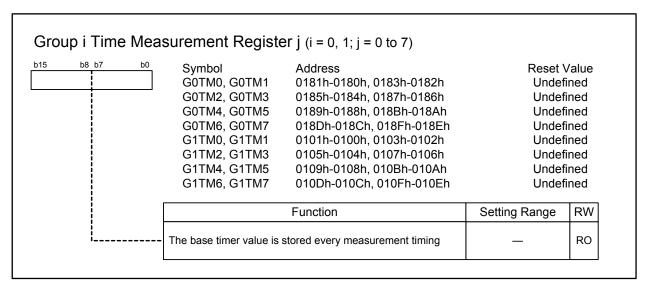
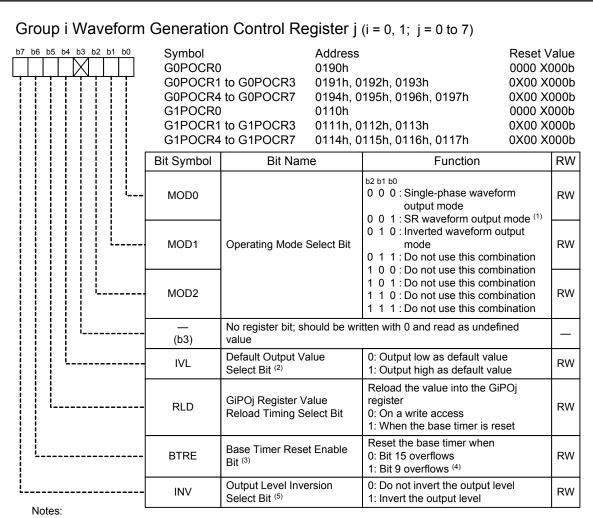
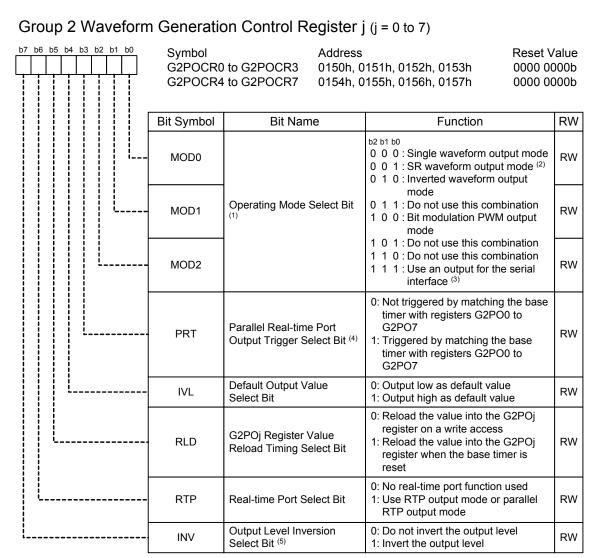




Figure 23.11 Registers G0TM0 to G0TM7 and G1TM0 to G1TM7

- This bit setting is enabled only for even channels. In SR waveform output mode, the corresponding odd channel (the next channel after an even channel) setting is ignored. Waveforms are only output from even channels.
- 2. The setting value is output by a write operation to the IVL bit when the FSCj bit in the GiFS register is 0 (select the waveform generation) and the IFEj bit in the GiFE register is 1 (enable the channel j function).
- 3. This bit is available only in the GiPOCR0 register. Set bit 6 in registers GiPOCR1 to GiPOCR7 to 0.
- 4. To set the BTRE bit to 1, set bits BCK1 and BCK0 in the GiBCR0 register to 11b (f1) and bits UD1 and UD0 in the GiBCR1 register to 00b (increment mode).
- 5. The output level inversion is the final step in the waveform generation process. When the INV bit is 1, high is output by setting the IVL bit to 0, and vice versa.

Figure 23.12 Registers G0POCR0 to G0POCR7 and G1POCR0 to G1POCR7

Notes:

- 1. When the RTP bit is set to 1, the settings of bits MOD2 to MOD0 are disabled.
- 2. This bit setting is enabled only for even channels. In SR waveform output mode, the corresponding odd channel (the next channel after an even channel) setting is ignored. Waveforms are only output from even channels.
- 3. This bit setting is enabled only for channels 0 and 1 of group 2. To use the ISTXD2 or IEOUT pin as an output, set bits MOD2 to MOD0 in the G2POCR0 register to 111b. To use the ISCLK2 pin, set the same bits in the G2POCR1 register to 111b. This bit setting should only be performed with channels 0 and 1.
- 4. This bit setting is enabled when the RTP bit is 1 and the PRP bit in the G2BCR1 register is 1 (parallel RTP output mode).
- 5. The output level inversion is the final step in the waveform generation process. When the INV bit is 1, high is output by setting the IVL bit to 0, and vice versa.

Figure 23.13 Registers G2POCR0 to G2POCR7

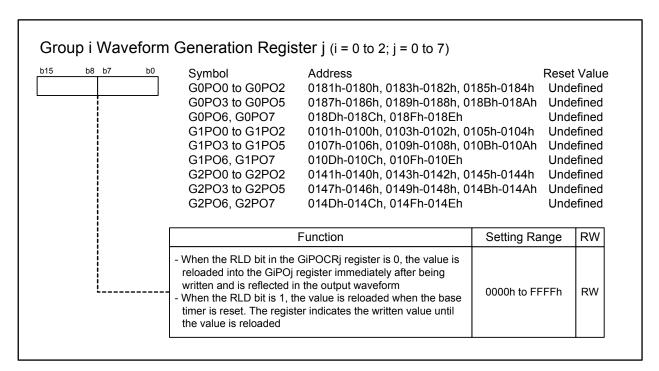


Figure 23.14 Registers G0PO0 to G0PO7, G1PO0 to G1PO7, and G2PO0 to G2PO7

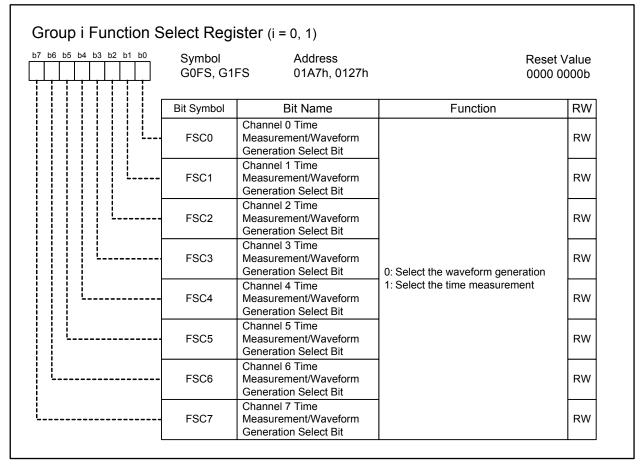


Figure 23.15 Registers G0FS and G1FS

Figure 23.16 Registers G0FE to G2FE

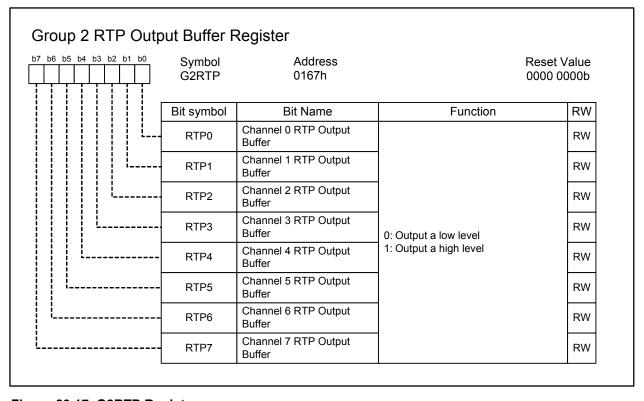


Figure 23.17 G2RTP Register

23.1 Base Timer for Groups 0 to 2

The base timer is a free-running counter that counts an internally generated count source. Table 23.2 lists specifications of the base timer. Figures 23.4 to 23.17 show registers associated with the base timer. Figure 23.18 shows a block diagram of the base timer. Figures 23.19, 23.20, and 23.21 show operation examples of the base timer for groups 0 and 1 in increment mode, increment/decrement mode, and two-phase pulse signal processing mode, respectively.

Table 23.2 Base Timer Specifications (i = 0 to 2)

Item	Specification
Count source (fBTi)	f1 divided by 2(n+1) for groups 0 to 2, two-phase pulse input divided by
	2(n+1) for groups 0 and 1
	n: setting value using bits DIV4 to DIV0 in the GiBCR0 register
	n = 0 to 31; however no division when n = 31
Count operations	Increment
	Increment/decrement
	Two-phase pulse signal processing
Count start conditions	To start each base timer individually,
	The BTS bit in the GiBCR1 register is 1 (start counting)
	To start the base timers of multiple groups simultaneously,
	The BTiS bit in the BTSR register is 1 (start counting)
Count stop condition	The BTiS bit in the BTSR register and the BTS bit in the GiBCR1 register are
	0 (reset the base timer)
Reset conditions	The base timer value matches the GiPO0 register setting
	• An input of low signal into the external interrupt pin (INTO or INT1) as
	follows:
	for group 0: selected using bits IFS23 and IFS22 in the IFS2 register
	for group 1: selected using bits IFS27 and IFS26 in the IFS2 register
	• The overflow of bit 15 or bit 9 in the base timer
	• The base timer reset request from the communication functions (group 2)
Reset value	0000h
Interrupt request	When the BTiR bit in the interrupt request register becomes 1 (interrupt
menaperoquoot	requested) by the overflow of bit 9, 14, or 15 in the base timer (refer to Figure
	11.12)
Read from base timer	• The GiBT register indicates a counter value while the base timer is running
rtoda irom baco amor	The GiBT register is undefined while the base timer is being reset
Write to base timer	When a value is written while the base timer is running, the timer counter
Trinto to baco timo	immediately starts counting from this value. No value can be written while the
	base timer is being reset
Other functions	Increment/decrement mode for groups 0 and 1
	The base timer starts counting when the BTS or BTiS bit is set to 1. When
	the base timer reaches FFFFh, it starts decrementing. When the RST1 bit
	in the GiBCR1 register is 1 (the base timer is reset by matching with the
	GiPO0 register), the timer counter starts decrementing two counts after the
	base timer value matches the GiPO0 register setting. When the timer
	counter reaches 0000h, it starts incrementing again (refer to Figure 23.20).
	• Two-phase pulse signal processing mode for groups 0 and 1
	Two-phase pulse signals at pins UDiA and UDiB are counted (refer to
	Figure 23.21).
	i iguie 25.21).
	UDIA TOTAL
	UDIB
	The timer counter increments The timer counter decrements on all edges on all edges

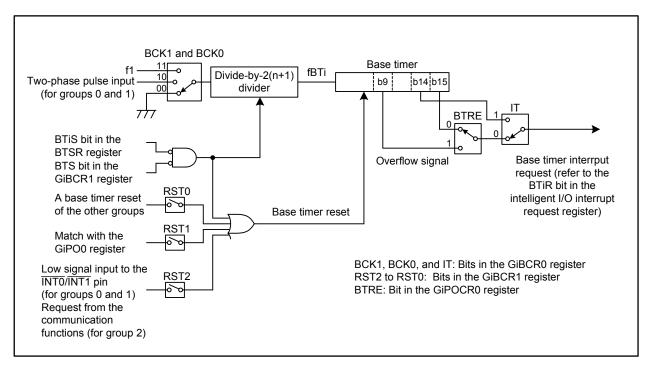


Figure 23.18 Base Timer Block Diagram (i = 0 to 2)

Table 23.3 Base Timer Associated Register Settings (Common Settings for Time Measurement, Waveform Generation, and Serial Interface) (i = 0 to 2)

Register	Bits	Function
G2BCR0	_	Provide an operating clock to the BTSR register. Set to 0111 1111b
BTSR	_	Set to 0000 0000b
GiBCR0	BCK1 and BCK0	Select a count source
	DIV4 to DIV0	Select a count source divide ratio
	IT	Select a base timer interrupt source
GiBCR1	RST2 to RST0	Select a timing for base timer reset
	BTS	Use this bit when each base timer individually starts counting
	UD1 and UD0	Select a count mode in groups 0 and 1
GiPOCR0	BTRE	Select a source for base timer reset
GiBT	_	Read or write the base timer value

The following register settings are required to set the RST1 bit to 1 (the base timer is reset by matching with the GiPO0 register).

	• ,	
GiPOCR0	MOD2 to MOD0	Set to 000b (single-phase waveform output mode)
GiPO0	_	Set the reset cycle
GiFS	FSC0	Set the bit to 0 (select the waveform generation)
GiFE	IFE0	Set the bit to 1 (channel operation starts)

Bit configurations and functions vary by group.

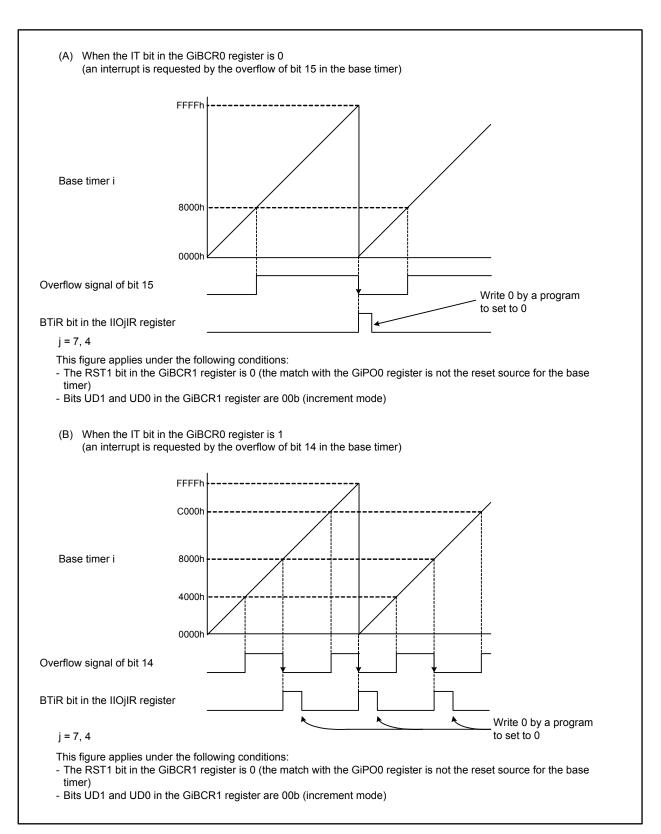


Figure 23.19 Base Timer Increment Mode (i = 0, 1) (for Groups 0 and 1)

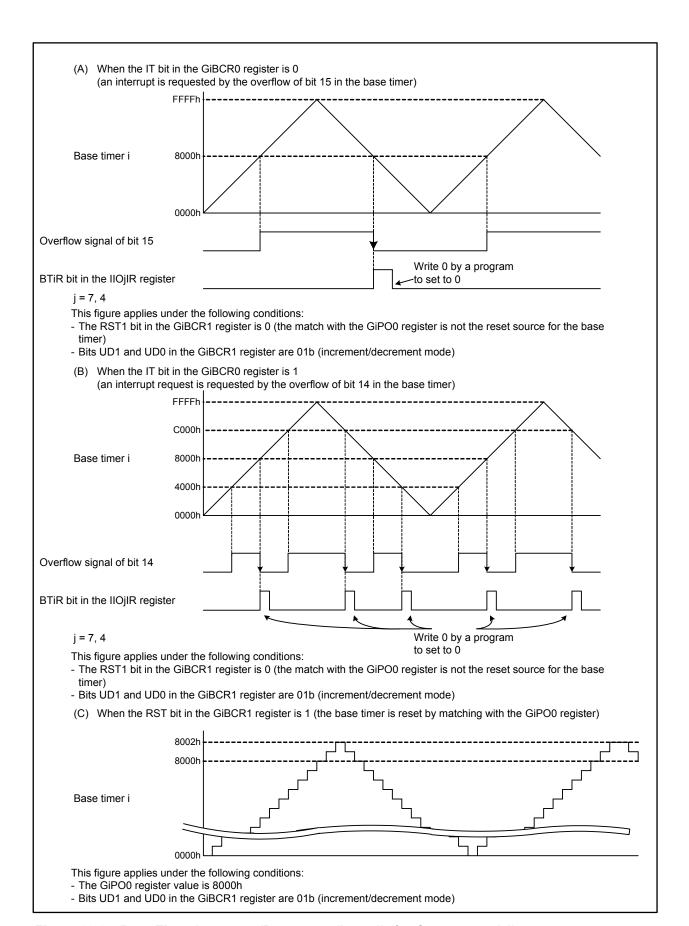


Figure 23.20 Base Timer Increment/Decrement (i = 0, 1) (for Groups 0 and 1)

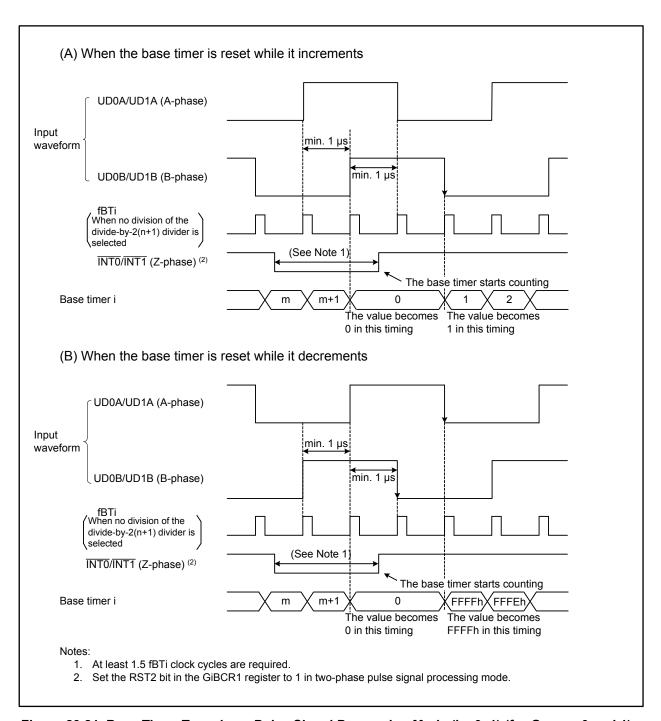


Figure 23.21 Base Timer Two-phase Pulse Signal Processing Mode (i = 0, 1) (for Groups 0 and 1)

23.2 Time Measurement (for Groups 0 and 1)

Every time an external trigger is input, the base timer value is stored into the GiTMj register (i = 0, 1; j = 0 to 7). Table 23.4 lists specifications of the time measurement and Table 23.5 lists its register settings. Figures 23.22 and 23.23 show operation examples of the time measurement and Figure 23.24 shows operation examples with the prescaler or gate function.

Table 23.4 Time Measurement Specifications (i = 0, 1; j = 0 to 7)

Item	Specification
Time measurement	Group 0: Channels 0 to 7
channels	Group 1: Channels 0 to 7
Trigger input polarity	Rising edge, falling edge, or both edges of the IIOi_j pin
Time measurement	The IFEj bit in the GiFE register is 1 (enable the channel j function) while the FSCj
start condition	bit in the GiFS register is 1 (select the time measurement)
Time measurement	The IFEj bit is 0 (disable the channel j function)
stop condition	
Time measurement	Without the prescaler: every time a trigger is input
timing	• With the prescaler for channels 6 and 7: every [GiTPRk register value + 1] times a trigger is input (k = 6, 7)
Interrupt request	When the TMijR bit in the interrupt request register becomes 1 (interrupt
	requested) (refer to Figure 11.12)
IIOi_j input pin	Trigger input
function	
Other functions	Digital filter
	The digital filter determines a trigger input level every f1 or fBTi cycle and passes
	the signals holding the same level during three sequential cycles
	Prescaler for channels 6 and 7 The second of the sec
	Time measurement is executed every [GiTPRk register value + 1] times a trigger is input
	Gating for channels 6 and 7
	This function disables any trigger input to be accepted after the time measurement by the first trigger input. However, the trigger input can be
	accepted again if any of following conditions are met while the GOC bit in the
	GiTMCRk register is 1 (the gating is cleared when the base timer matches the GiPOp register) ($p = 4$, 5; $p = 4$ when $k = 6$; $p = 5$ when $k = 7$):
	 The base timer value matches the GiPOp register setting
	The GSC bit in the GiTMCRk register is 1

Table 23.5 Time Measurement (for Groups 0 and 1) Associated Register Settings (i = 0, 1; j = 0 to 7; k = 6, 7)

Register	Bits	Function
GiTMCRj	CTS1 and CTS0	Select a time measurement trigger
	DF1 and DF0	Select a digital filter
	GT, GOC, GSC	Select if the gating is used
	PR	Select if the prescaler is used
GiTPRk	_	Set the prescaler value
GiFS	FSCj	Set the bit to 1 (select the time measurement)
GiFE	IFEj	Set the bit to 1 (enable the channel j function)

Bit configurations and functions vary with channels and groups.

Registers associated with the time measurement should be set after setting the base timer-associated registers.

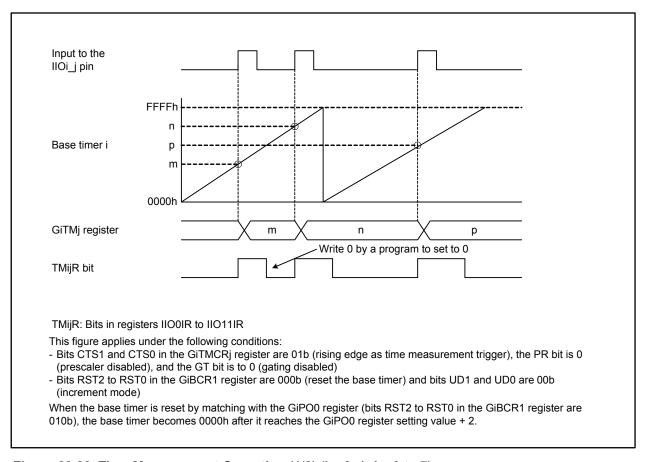


Figure 23.22 Time Measurement Operation (1/2) (i = 0, 1; j = 0 to 7)

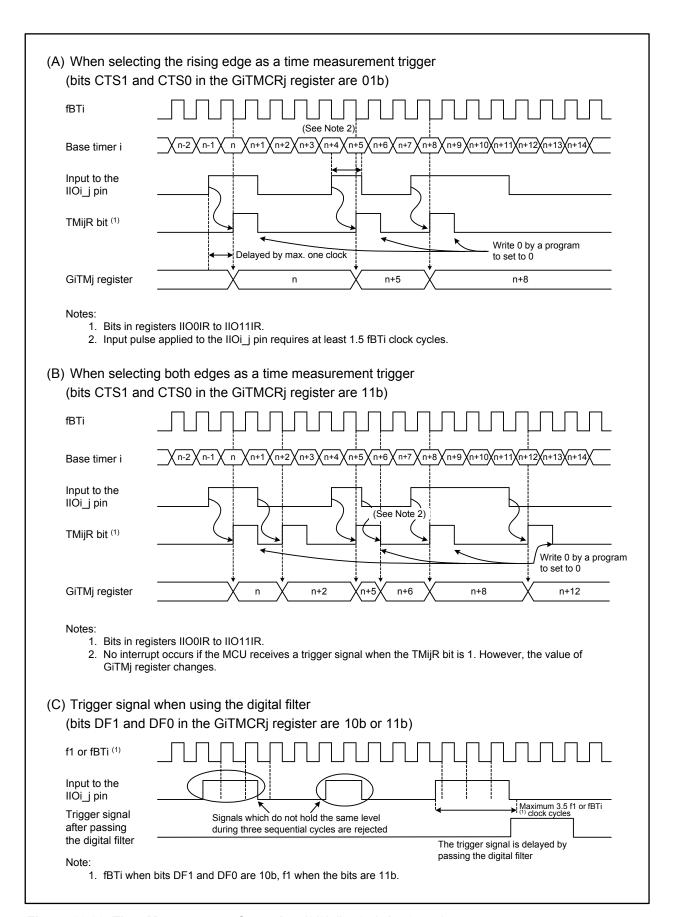


Figure 23.23 Time Measurement Operation (2/2) (i = 0, 1; j = 0 to 7)

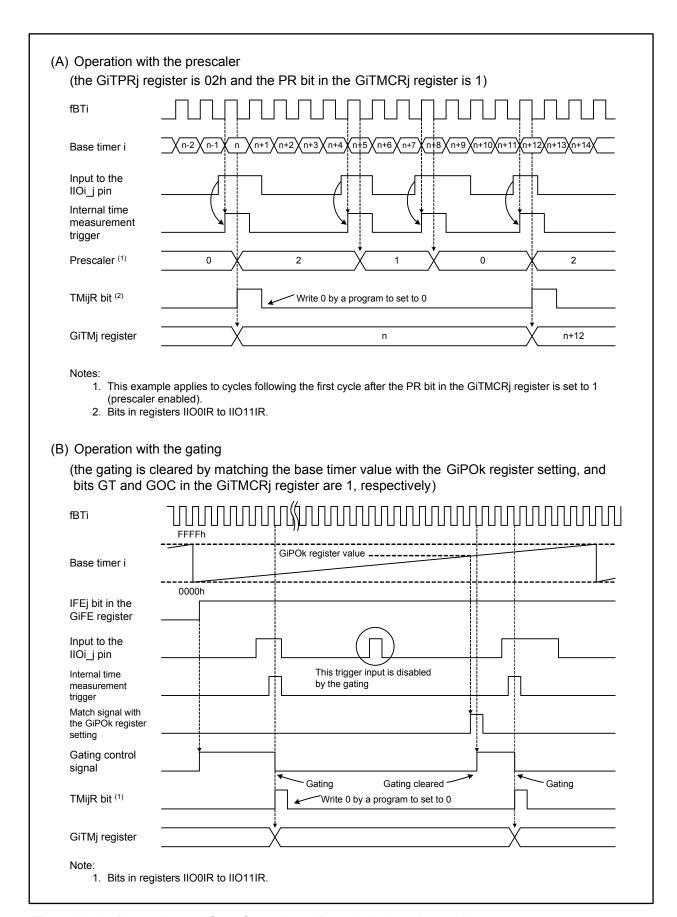


Figure 23.24 Prescaler and Gate Operations (i = 0, 1; j = 6, 7; k = 4, 5)

23.3 Waveform Generation for Groups 0 to 2

Waveforms are generated when the base timer value matches the GiPOj register setting (i = 0 to 2; j = 0 to 7).

Waveform generation has the following six modes:

- Single-phase waveform output mode for groups 0 to 2
- Inverted waveform output mode for groups 0 to 2
- Set/reset waveform output (SR waveform output) mode for groups 0 to 2
- Bit modulation PWM output mode for group 2
- Real-time port output (RTP output) mode for group 2
- Parallel real-time port output (parallel RTP output) mode for group 2

Table 23.6 lists registers associated with the waveform generation.

Table 23.6 Waveform Generation Associated Register Settings (i = 0 to 2; j = 0 to 7)

Register	Bits	Function
GiPOCRj	MOD2 to MOD0	Select a waveform output mode
	PRT ⁽¹⁾	Set the bit to 1 to use parallel RTP output mode
	IVL	Select a default value
	RLD	Select a timing to reload the value into the GiPOj register
	RTP (1)	Set the bit to 1 to use RTP output mode or parallel RTP output mode. The settings of bits MOD2 to MOD0 are disabled when this bit is set to 1
	INV	Select if output level is inverted
G2BCR1	PRP	Set the bit to 1 to use parallel RTP output mode
GiPOj	_	Set the timing to invert output waveform level
GiFS	FSCj	Set the bit to 0 (select the waveform generation) for groups 0 and 1 only
GiFE	IFEj	Set the bit to 1 (enable the channel j function)
G2RTP	RTP0 to RTP7	Set the RTP output value in RTP output mode or parallel RTP output mode

Bit configurations and functions vary with channels and groups.

Registers associated with the waveform generation should be set after setting the base timer-associated registers.

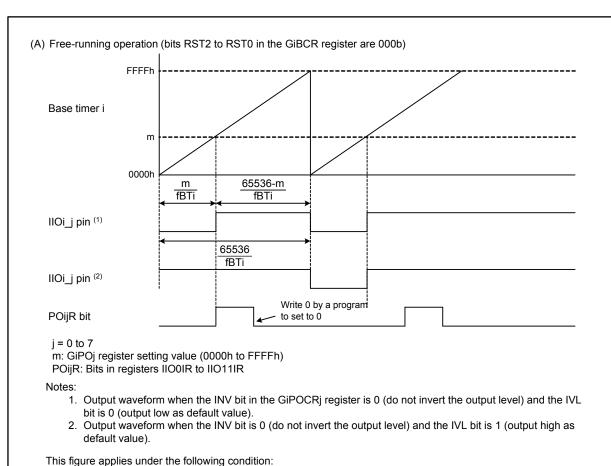
Note:

1. This bit is available in the G2POCRj register only. Neither the G0POCRj nor G1POCRj register has it.

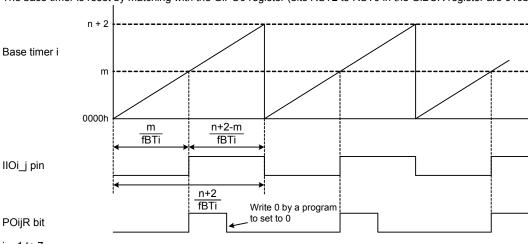
23.3.1 Single-phase Waveform Output Mode (for Groups 0 to 2)

The output level at the IIOi_j pin (or OUTC2_j pin for group 2) becomes high when the base timer value matches the GiPOj register (i = 0 to 2; j = 0 to 7). It switches to low when the base timer reaches 0000h. If the IVL bit in the GiPOCRj register is set to 1 (output high as default value), a high level output is provided when a waveform output starts. If the INV bit is set to 1 (invert the output level), a waveform with an inverted level is output. Refer to Figure 23.25 for details on single-phase waveform mode operation.

Table 23.7 lists specifications of single-phase waveform output mode.


Table 23.7 Single-phase Waveform Output Mode Specifications (i = 0 to 2)

Item	Specification	
Output waveform (1)	 Free-running operation are 000b) 	(when bits RST2 to RST0 in the GiBCR1 register
	Cycle:	$\frac{65536}{fBTi}$
	Low level width:	$\frac{m}{fBTi}$
	High level width:	$\frac{65536 - m}{fBTi}$
	• The base timer is reset	g value (j = 0 to 7), 0000h to FFFFh by matching the base timer value with the GiPO0 its RST2 to RST0 are 010b)
	Cycle:	$\frac{n+2}{fBTi}$
	Low level width:	$\frac{m}{fBTi}$
	High level width:	$\frac{n+2-m}{fBTi}$
		g value (j = 1 to 7), 0000h to FFFFh
	_	g value, 0001h to FFFDh
	If $m \ge n + 2$, the output	
Waveform output start condition (2)	The IFEj bit in the GiFE re	egister is 1 (enable the channel j function) (j = 0 to 7)
Waveform output stop condition	The IFEj bit is 0 (disable t	the channel j function)
Interrupt request	When the POijR bit in the	intelligent I/O interrupt request register becomes 1
	1	natching the base timer value with the GiPOj register
	setting (refer to Figure 11	.12)
IIOi_j output pin (or	Pulse signal output	
OUTC2_j pin for group 2)		
function	D ()	
Other functions	Default value setting	
		s the starting waveform output level
	Output level inversion This function inverte the	المراجع والمراجع المراجع المراجع المراجع المراجع والمراجع والمراع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
		e waveform output level and outputs the inverted
Notes:		n (or OUTC2_j pin for group 2)


Notes:

- 1. When the INV bit in the GiPOCRj register is 1 (invert the output level), the high and low widths are inverted.
- 2. To use channels shared by time measurement and waveform generation, set the FSCj bit in the GiFS register to 0 (select the waveform generation).

- Bits UD1 and UD0 in the GiBCR1 register are 00b (increment mode)
- (B) The base timer is reset by matching with the GiPO0 register (bits RST2 to RST0 in the GiBCR register are 010b)

j = 1 to 7

m: GiPOj register setting value (0000h to FFFFh)

n: GiPO0 register setting value (0001h to FFFDh)

POijR: Bits in registers IIO0IR to IIO11IR

This figure applies under the following conditions:

- The IVL bit in the GiPOCRj register is 0 (output low as default value) and the INV bit is 0 (do not invert the output level)
- Bits UD1 and UD0 in the GiBCR1 register are 00b (increment mode)
- m < n + 2

Figure 23.25 Single-phase Waveform Output Mode Operation (i = 0 to 2)

23.3.2 Inverted Waveform Output Mode for Groups 0 to 2

The output level at the IIOi_j pin (or OUTC2_j pin for group 2) is inverted every time the base timer value matches the GiPOj register setting (i = 0 to 2; j = 0 to 7).

Table 23.8 lists specifications of the inverted waveform output mode. Figure 23.26 shows an example of the inverted waveform output mode operation.

Table 23.8 Inverted Waveform Output Mode Specifications (i = 0 to 2)

Item	Specification	
Output waveform	• Free-running operation (when bits RST2 to RST0 in the GiBCR1 register are 000b)	
	Cycle: $\frac{65536 \times 2}{fBTi}$	
	High or low level width: $\frac{65536}{fBTi}$	
	 m: GiPOj register setting value (j = 0 to 7), 0000h to FFFFh The base timer is reset by matching the base timer value with the GiPO0 register setting (when bits RST2 to RST0 are 010b) 	
	Cycle: $\frac{2(n+2)}{fBTi}$	
	High or low level width: $\frac{n+2}{fBTi}$	
	n: GiPO0 register setting value, 0001h to FFFDhGiPOj register setting value (j = 1 to 7), 0000h to FFFFh	
	If the GiPOj register setting $\geq n+2$, the output level is not inverted	
Waveform output start condition ⁽¹⁾	The IFEj bit in the GiFE register is 1 (enable the channel j function) (j = 0 to 7)	
Waveform output stop condition	The IFEj bit is 0 (disable the channel j function)	
Interrupt request	When the POijR bit in the intelligent I/O interrupt request register becomes 1 (interrupt requested) by matching the base timer value with the GiPOj register setting (refer to Figure 11.12)	
IIOi_j output pin (or OUTC2_j pin for group 2) function	Pulse signal output	
Other functions	 Default value setting This function determines the starting waveform output level Output level inversion This function inverts the waveform output level and outputs the inverted 	
	signal from the IIOi_j pin (or OUTC2_j pin for group 2)	

Note:

1. To use channels shared by time measurement and waveform generation, set the FSCj bit in the GiFS register to 0 (select the waveform generation).

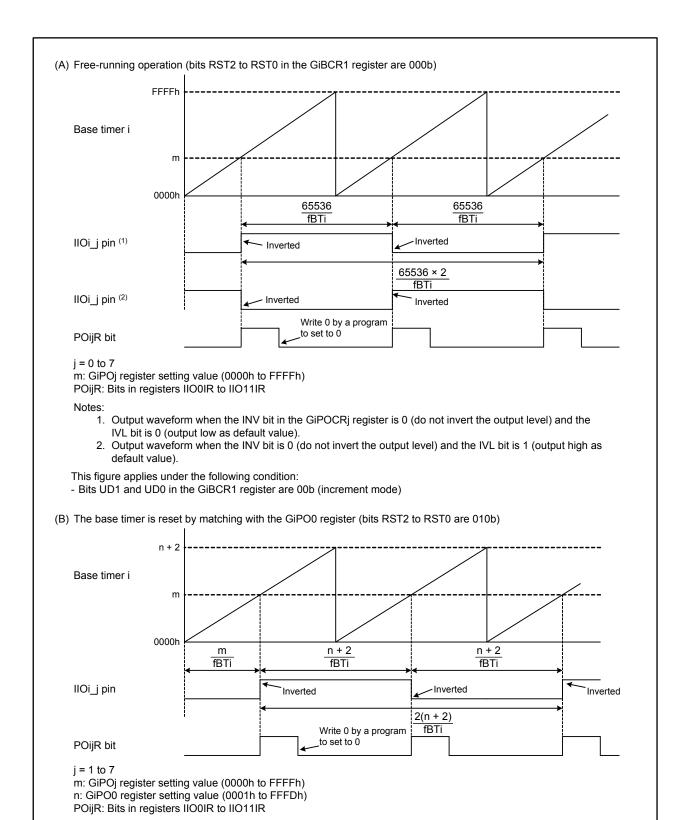


Figure 23.26 Inverted Waveform Output Mode Operation (i = 0 to 2)

- Bits UD1 and UD0 in the GiBCR1 register are 00b (increment mode)

This figure applies under the following conditions:

- The IVL bit in the GiPOCRj register is 0 (output low as default value) and the INV bit is 0 (do not invert the output level)

- m < n + 2

23.3.3 Set/Reset Waveform Output Mode (SR Waveform Output Mode) for Groups 0 to 2

The output level at the IIOi_j pin (or OUTC2_j pin for group 2) becomes high when the base timer value matches the GiPOj register setting (i = 0 to 2; j = 0, 2, 4, 6). It becomes low when the base timer value matches the GiPOk register setting or the base timer reaches 0000h (k = j + 1). When the IVL bit in the GiPOCRj register is set to 1 (output high as default value), a high output level is provided when a waveform output starts (j = 0 to 7). When the INV bit is set to 1 (invert the output level), a waveform with inverted level is output. Refer to Figure 23.27 for details on SR waveform mode operation. Tables 23.9 and 23.10 list specifications of SR waveform output mode.

Table 23.9 SR Waveform Output Mode Specifications (i = 0 to 2) (1/2)

Item		Specification
Output waveform (1)	• Free-running operation are 000b) (A) $m < n$	n (when bits RST2 to RST0 in the GiBCR1 register
	High level width:	$\frac{n-m}{fBTi}$
	Low level width:	$\frac{m}{fBTi}$ (See Note 2) + $\frac{65536 - n}{fBTi}$ (See Note 3)
	(B) $m \ge n$	
	High level width:	$\frac{65536 - m}{fBTi}$
	Low level width:	$\frac{m}{fBTi}$
	, ,	ing value (j = 0, 2, 4, 6), 0000h to FFFFh ing value (k = j + 1), 0000h to FFFFh
	• The base timer is rese RST2 to RST0 are 01 (A) $m < n < p + 2$	et by matching with the GiPO0 register (when bits 0b) ⁽⁴⁾
	High level width:	$\frac{n+m}{fBTi}$
	Low width:	$\frac{m}{fBTi}$ (See Note 2) + $\frac{p+2-n}{fBTi}$ (See Note 3)
	(B) m	
	High level width:	$\frac{p+2-m}{fBTi}$
	Low level width:	$\frac{m}{fBTi}$
	m: GiPOj register sett	evel is fixed to low ing value, 0001h to FFFDh ing value (j = 2, 4, 6), 0000h to FFFFh ing value (k = j + 1), 0000h to FFFFh

Notes:

- 1. When the INV bit in the GiPOCRj register is 1 (invert the output level), the high and low widths are inverted.
- 2. Output period from a base timer reset until when the output level becomes high.
- 3. Output period from when the output level becomes low until the next base timer reset.
- 4. When the GiPO0 register resets the base timer, channel 0 and channel 1 SR waveform generation functions are not available.

Table 23.10 SR Waveform Output Mode Specifications (i = 0 to 2) (2/2)

Item	Specification
Waveform output start	The IFEq bit in the GiFE register is 1 (enable the channel q function) (q = 0 to
condition (1)	7)
Waveform output stop	The IFEq bit is 0 (disable the channel q function)
condition	
Interrupt request	When the POijR bit in the intelligent I/O interrupt request register becomes 1
	(interrupt requested) by matching the base timer value with the GiPOj register
	setting.
	When the POikR bit becomes 1 (interrupt requested) by matching the base
	timer value with the GiPOk register setting (refer to Figure 11.12)
IIOi_j output pin (or	Pulse signal output
OUTC2_j pin for group 2)	
function	
Other functions	Default value setting
	This function determines the starting waveform output level
	Output level inversion
	This function inverts the waveform output level and outputs the inverted
	signal from the IIOi_j pin (or OUTC2_j pin for group 2)

Note:

1. To use channels shared by time measurement and waveform generation, set the FSCj bit in the GiFS register to 0 (select the waveform generation).

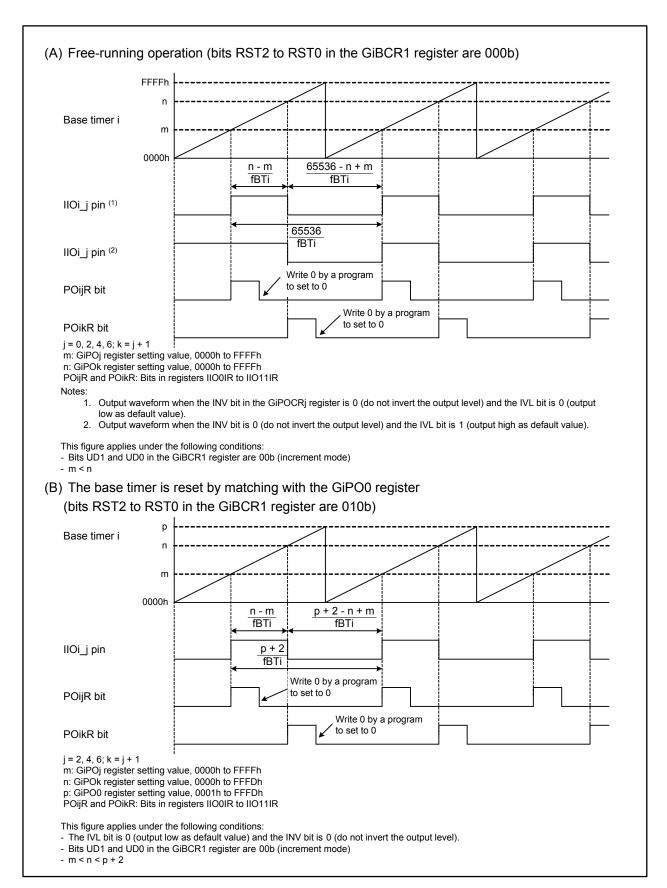


Figure 23.27 SR Waveform Output Mode Operation (i = 0 to 2)

23.3.4 Bit Modulation PWM Output Mode (for Group 2)

In bit modulation PWM output mode, a PWM output has 16-bit resolution.

Pulses are repeatedly output in a period of 1024 consecutive periods of span t. The period of span t is

 $\frac{64}{fBT^2}$. The 6 upper bits in the G2POj register determine the base low width (j = 0 to 7). The 10 lower

bits determine the number of span t, within a period, in which the low width is extended by the minimum resolution bit width, that is, one clock cycle.

When the INV bit is set to 1 (invert the output level), the waveform with an inverted level is output.

Table 23.11 lists specifications of bit modulation PWM output mode. Table 23.12 lists the number of modulated spans and span ts to be extended with the minimum resolution bit width. Figure 23.28 shows an example of bit modulation PWM output mode operation.

Table 23.11 Bit Modulation PWM Output Mode Specifications (j = 0 to 7)

Item	Specification	
Output waveform (1,2)	PWM-repeated period T: $\frac{65536}{fBT2} \left(= \frac{64}{fBT2} \times 1024 \right)$	
	Period of span t: $\frac{64}{fBT2}$	
	Low width: $\frac{n+1}{fBT2}$ of m spans	
	$\frac{n}{fBT2}$ of $(1024 - m)$ spans	
	Mean low width: $\frac{1}{fBT2} \times \left(n + \frac{m}{1024}\right)$	
	n: G2POj register setting value (6 upper bits), 00h to 3Fhm: G2POj register setting value (10 lower bits), 000h to 3FFh	
Waveform output start condition	The IFEj bit in the G2FE register is 1 (enable the channel j function)	
Waveform output stop condition	The IFEj bit is 0 (disable the channel j function)	
Interrupt request	When the PO2jR bit in the interrupt request register becomes 1 (interrupt requested) by matching the 6 lower bits of the base timer value with the 6 upper bits of the G2POj register setting (refer to Figure 11.12)	
OUTC2_j pin function	Pulse signal output pin	
Other functions	 Default value setting This function determines the starting waveform output level Output level inversion This function inverts the waveform output level and outputs the inverted signal from the OUTC2_j pin 	

Notes:

- 1. Bits RST2 and RST0 in the G2BCR1 register should be set to 000b to use bit modulation PWM output mode.
- 2. When the INV bit in the G2POCRj register is set to 1 (invert the output level), the high and low widths are inverted.

Table 23.12 Number of Modulated Spans and Span t Extended Minimum Resolution Bit Width

Modulated Spans	Span ts to be Extended with Minimum Resolution Bit Width
00 0000 0000b	none
00 0000 0001b	t512
00 0000 0010b	t256 and t768
00 0000 0100b	t128, t384, t640, and t896
00 0000 1000b	t64, t192, t320, t448, t576, t704, t832, and t960
:	:
10 0000 0000b	t1, t3, t5, t7, ••• t1019, t1021, and t1023

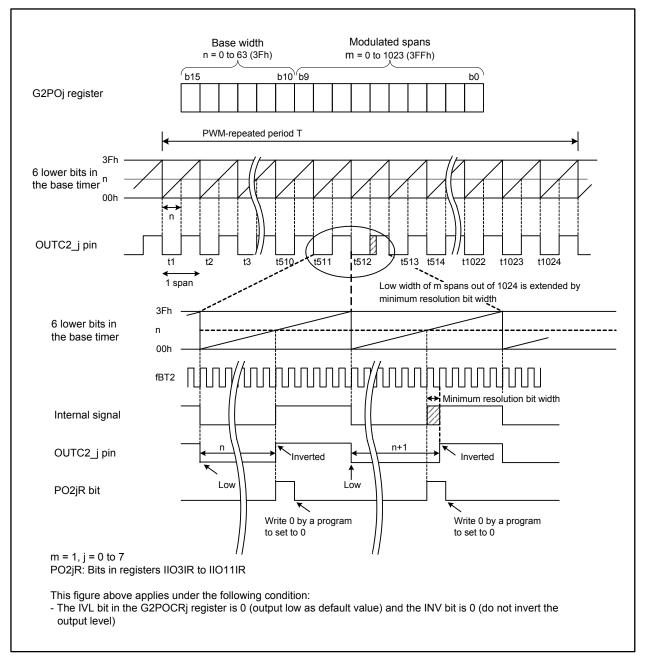


Figure 23.28 Bit Modulation PWM Output Mode Operation

23.3.5 Real-time Port Output Mode (RTP Output Mode) (for Group 2)

The OUTC2_j pin outputs the G2RTP register setting value in 1-bit units when the base timer value matches the G2POj register setting (j = 0 to 7). Table 23.13 lists specifications of RTP output mode. Figure 23.29 shows a block diagram of RTP output and Figure 23.30 shows an example of RTP output mode operation.

Table 23.13 RTP Output Mode Specifications (j = 0 to 7)

Item	Specification
Waveform output start condition	The IFEj bit in the G2FE register is 1 (enable the channel j function)
Waveform output stop condition	The IFEj bit is 0 (disable the channel j function)
Interrupt request	When the PO2jR bit in the interrupt request register becomes 1 (interrupt requested) by matching the base timer value with the G2POj register setting (0000h to FFFFh ⁽¹⁾) (refer to Figure 11.12)
OUTC2_j pin function	RTP output pin
Other functions	Default value setting This function determines the starting waveform output level Output level inversion This function inverts the waveform output level and outputs the inverted signal from the OUTC2_j pin

Note:

 The G2PO0 register should be set to between 0001h and FFFDh to set the base timer value to 0000h (bits RST2 to RST0 are set to 010b) when the base timer value matches the G2PO0 register setting.

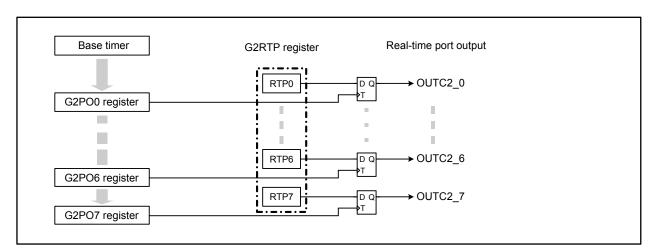
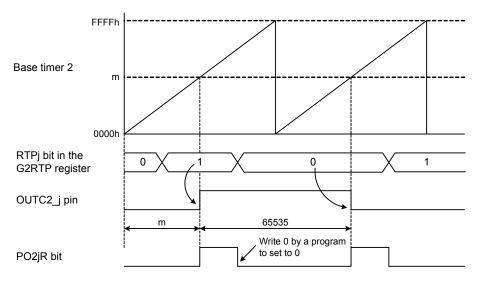
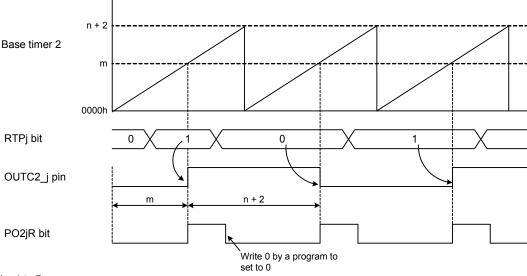



Figure 23.29 RTP Output Block Diagram



j = 0 to 7

m: G2POj register setting value, 0000h to FFFFh PO2jR: Bits in registers IIO03R to IIO11IR

This figure applies under the following conditions:

- The IVL bit in the G2POCRj register is 0 (output low as default value) and the INV bit is 0 (do not invert the output level).
- (B) The base timer is reset by matching the base timer value with the G2PO0 register setting (bits RST2 to RST0 are 010b)

j = 1 to 7

m: G2POj register setting value, 0000h to FFFFh n: G2POj register setting value, 0001h to FFFDh PO2jR: Bits in registers IIO03R to IIO11IR

This figure applies under the following conditions:

- The IVL bit in the G2POCRj register is 0 (output low as default value) and the INV bit is 0 (do not invert the output level).
- m < n + 2

Figure 23.30 RTP Output Mode Operation

23.3.6 Parallel Real-time Port Output Mode (RTP Output Mode) (for Group 2)

The OUTC2_j pin outputs all the G2RTP register setting values in 1-byte units when the base timer value matches the G2POj register setting (j = 0 to 7). Table 23.14 lists specifications of parallel RTP output mode. Figure 23.7 shows the G2BCR1 register. Figure 23.31 shows a block diagram of parallel RTP output and Figure 23.32 shows an example of parallel RTP output mode operation.

Table 23.14 Parallel RTP Output Mode Specifications (j = 0 to 7)

Item	Specification	
Waveform output start condition	The IFEj bit in the G2FE register is 1 (enable the channel j function)	
Waveform output stop Condition	The IFEj bit is 0 (disable the channel j function)	
Interrupt request	The PO2jR bit in the interrupt request register becomes 1 (interrupt requested) when the base timer value matches the G2POj register setting (0000h to FFFFh ⁽¹⁾) (refer to Figure 11.12)	
OUTC2_j pin function	RTP output pin	
Other functions	Default value setting This function determines the starting waveform output level Output level inversion This function inverts the waveform output level and outputs the inverted signal from the OUTC2_j pin	

Note:

 The G2PO0 register should be set to between 0001h and FFFDh to set the base timer value to 0000h (bits RST2 to RST0 are set to 010b) when the base timer value matches the G2PO0 register setting.

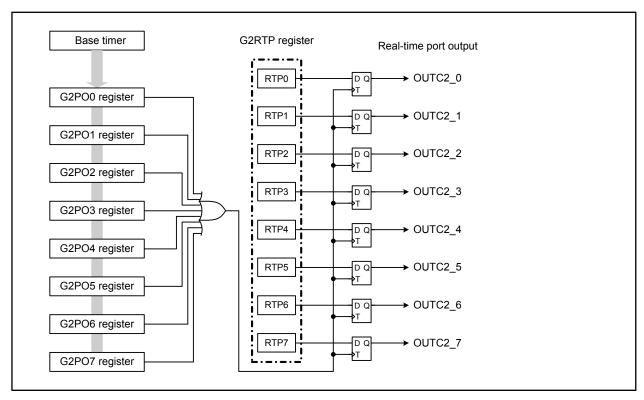


Figure 23.31 Parallel RTP Output Mode Block Diagram

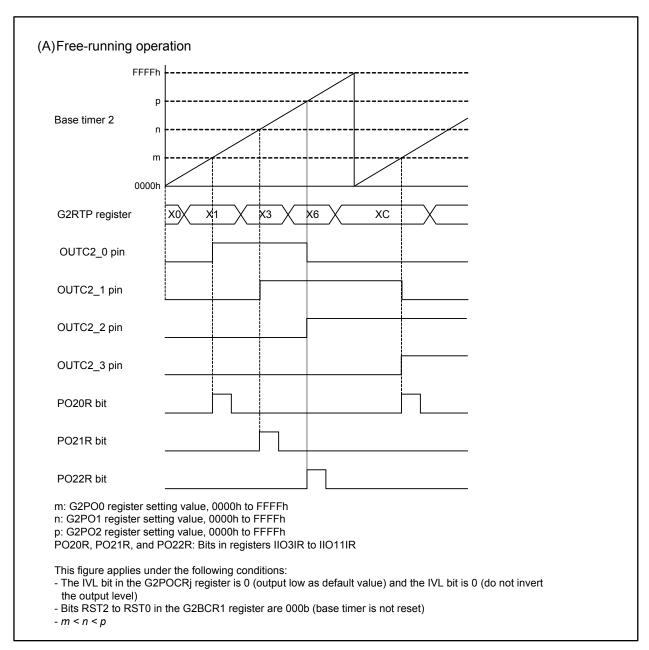


Figure 23.32 Parallel RTP Output Mode Operation

23.4 Group 2 Serial Interface

Two 8-bit shift registers and waveform generation enable the serial interface function. In group 2 of the intelligent I/O, the variable synchronous serial interface and IEBus (optional ⁽¹⁾) are available. Figures 23.33 to 23.40 show associated registers.

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

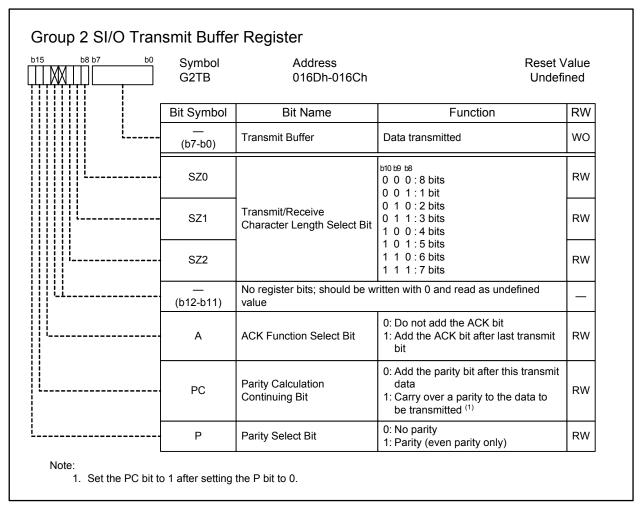


Figure 23.33 G2TB Register

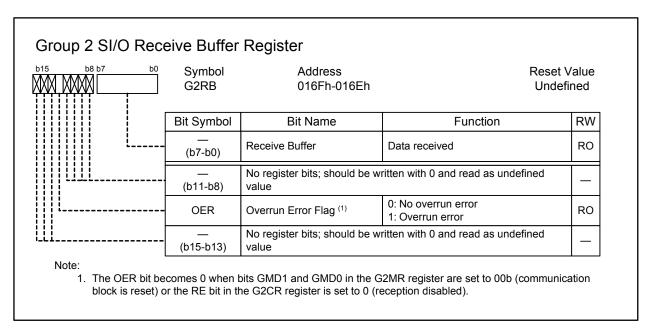


Figure 23.34 G2RB Register

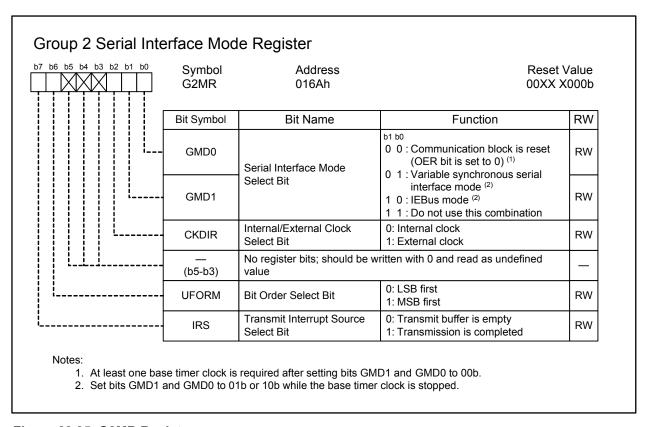


Figure 23.35 G2MR Register

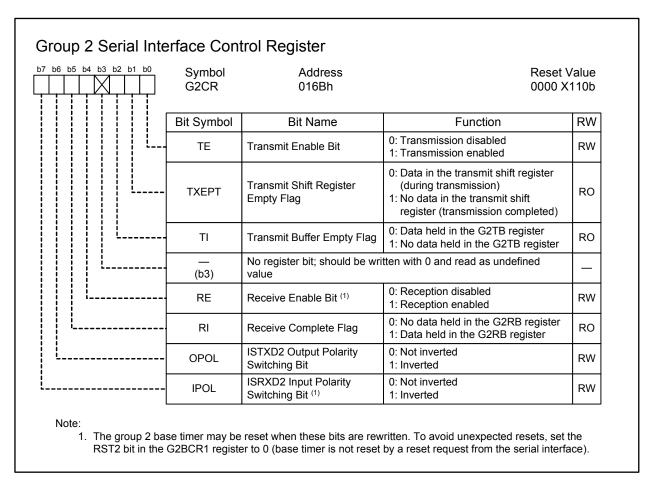


Figure 23.36 G2CR Register

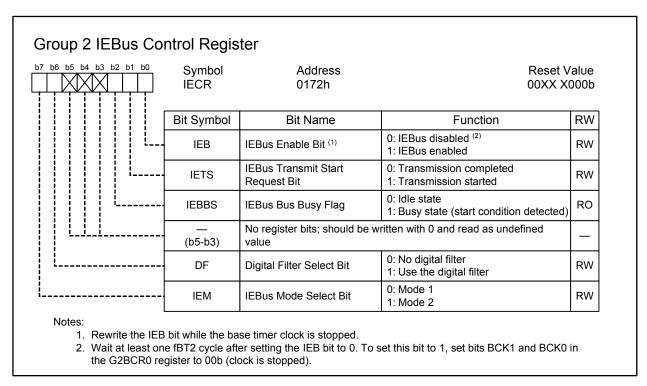


Figure 23.37 IECR Register

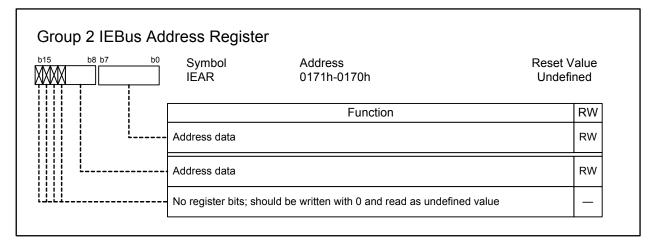


Figure 23.38 IEAR Register

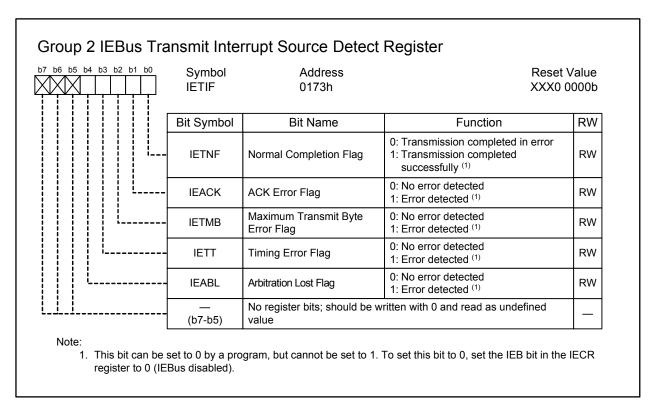


Figure 23.39 IETIF Register

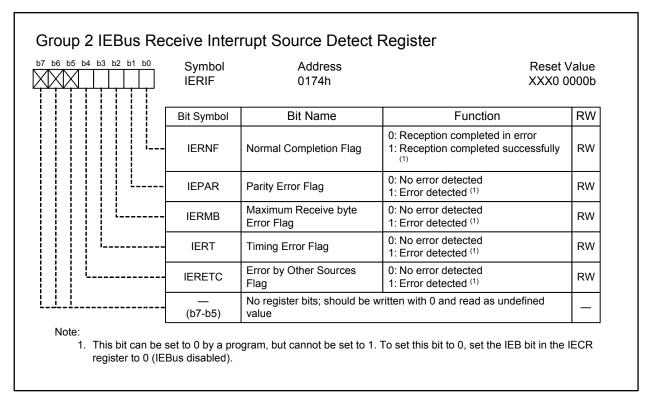


Figure 23.40 IERIF Register

23.4.1 Variable Synchronous Serial Interface Mode (for Group 2)

This mode allows data transmission/reception synchronized with the transmit/receive clock. The character length is selectable from 1 to 8 bits. Table 23.15 lists specifications of the group 2 variable synchronous serial interface mode and Table 23.16 lists its settings. Figure 23.41 shows an operation example of data transmission/reception.

Table 23.15 Group 2 Variable Synchronous Serial Interface Mode Specifications

Item	Specification		
Data format	1- to 8-bit character length		
Transmit/receive clock	The CKDIR bit in the G2MR register is 0 (internal clock selected):		
	fBT2		
	$\frac{fBT2}{2(n+2)}$		
	n: G2PO0 register setting value, 0000h to FFFFh (1)		
	The bit rate is set using the G2PO0 register. The clock is generated in the		
	inverted waveform output mode of the channel 2 waveform generation		
	• The CKDIR bit is 1 (external clock selected): input into the ISCLK2 pin (2)		
Transmit start conditions	The conditions for starting data transmission are as follows:		
	• The TE bit in the G2CR register is 1 (transmission enabled)		
	• The TI bit in the G2CR register is 0 (data held in the G2TB register)		
Receive start conditions	The conditions for starting data reception are as follows:		
	• The RE bit in the G2CR register is 1 (reception enabled)		
	• The TE bit in the G2CR register is 1 (transmission enabled)		
	• The TI bit in the G2CR register is 0 (data held in the G2TB register)		
Interrupt request	In transmit interrupt, either of the following conditions is selected to set the		
	SIO2TR bit in the IIO6IR register to 1 (interrupt requested) (refer to Figure		
	11.12):		
	• The IRS bit in the G2MR register is 0 (transmit buffer in the G2TB register is		
	empty):		
	when data is transferred from the G2TB register to the transmit shift register		
	(when the transmission has started)		
	The IRS bit is 1 (transmission is completed):		
	when data transmission from the transmit shift register is completed		
	In receive interrupt,		
	When data is transferred from the receive shift register to the G2RB register		
	(when the reception is completed), the SIO2PR bit in the IIO5IR register is		
	set to 1 (interrupt requested) (refer to Figure 11.12)		
Error detection	Overrun error (3)		
	This error occurs when the last bit of the next data has been received before		
	reading the G2RB register		
Other functions	Bit order selection		
	LSB first or MSB first		
	ISTXD2 and ISRXD2 I/O polarity		
	Output levels from the ISTXD2 pin and input levels to the ISRXD2 pin can		
	be inverted		
	Character length for data transmission/reception		
	1- to 8-bit character length		

Notes:

- 1. When using the serial interface, set a value greater than or equal to 1 to the G2PO0 register.
- 2. The highest transmit/receive clock frequency should be fBT2 divided by 20.
- 3. If an overrun error occurs, the G2RB register is undefined.

Table 23.16 Register Settings in Group 2 Variable Synchronous Serial Interface Mode

Register	Bits	Function		
G2BCR0	BCK1 and BCK0	Set the bits to 11b		
	DIV4 to DIV0	Select a divide ratio of count source		
	IT	Set the bit to 0		
G2BCR1	7 to 0	Set the bits to 0001 0010b		
G2POCR0	7 to 0	Set the bits to 0000 0111b		
G2POCR1	7 to 0	Set the bits to 0000 0111b		
G2POCR2	7 to 0	Set the bits to 0000 0010b		
G2PO0	15 to 0	Set a comparative value for waveform generation		
		$\frac{fBT2}{2 \times (\text{setting value} + 2)} = \text{transmit/receive clock frequency}$		
G2PO2	15 to 0	Set to a value smaller than that in the G2PO0 register setting		
G2FE	IFE2 to IFE0	Set the bits to 111b		
G2MR	GMD1 and GMD0	Set the bits to 01b		
	CKDIR	Select either the internal clock or the external clock		
	UFORM	Select either LSB first or MSB first		
	IRS	Select a source for transmit interrupt		
G2CR	TE	Set the bit to 1 to enable data transmission/reception		
	TXEPT	Transmit shift register empty flag		
	TI	Transmit buffer empty flag		
	RE	Set the bit to 1 to enable data reception		
	RI	Receive complete flag		
	OPOL	Select if the output level at the ISTXD2 pin is inverted (usually set the bit to 0)		
	IPOL	Select if the input level at the ISRXD2 pin is inverted (usually set the bit to 0)		
G2TB	15 to 0	Set the data to be transmitted/received and its character length		
G2RB	15 to 0	Store received data and error flag		

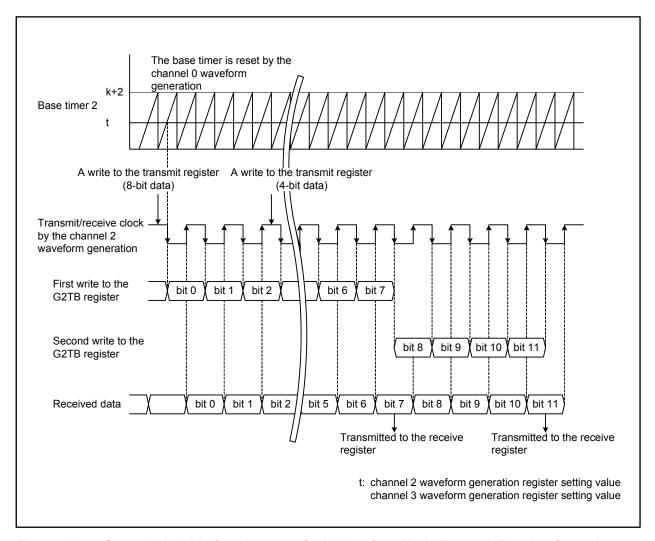


Figure 23.41 Group 2 Variable Synchronous Serial Interface Mode Transmit/Receive Operation

24. Multi-master I²C-bus Interface

The multi-master I^2C -bus interface (MMI2C) is capable of serial, bi-directional data transfer in the I^2C -bus data transmit and receive format. It contains an arbitration lost detector and a clock synchronization function. Table 24.1 lists specifications of the multi-master I^2C -bus interface. Table 24.2 lists detectors of the multi-master I^2C -bus interface. Figure 24.1 shows a block diagram of the multi-master I^2C -bus interface.

Table 24.1 Multi-master I²C-bus Interface Specifications

Item	Specification		
Data format	Compliant with the I ² C-bus specification • 7-bit addressing format • Fast-mode • Standard-mode		
Master/Slave device	Selectable		
I/O pins	Serial data line: MSDA (SDA) Serial clock line: MSCL (SCL)		
Transmit/Receive clock	16.1 to 400 kbps (ϕ IIC = 4 MHz) ϕ IIC: I ² C-bus system clock		
Transmit/Receive modes	Compliant with the I ² C-bus specification • Master-transmit mode • Master-receive mode • Slave-transmit mode • Slave-receive mode		
Interrupt request sources	 Six I²C-bus interface interrupts: Successful transmit, successful receive, slave address match detection, general call address detection, STOP condition detection, and timeout detection Two I²C-bus line interrupts: Rising or falling edge of pins MSDA and MSCL 		
Other functions	Timeout detector This function detects that the MSCL pin level is held high for longer than the specified time while the bus is busy Free data format selector This function selects the free data format to generate an interrupt request, regardless of the slave address value, when the first byte is received		

Table 24.2 Detectors of Multi-master I²C-bus Interface

Item	Specification		
Slave address match detector	In slave-receive mode, this detects whether the address sent from the master device matches the slave address. When they match, an ACK is automatically sent. When they do not, a NACK is automatically sent and communication is stopped		
General call address detector	This detects a general call address when in slave-receive mode		
Arbitration lost detector	This detects an arbitration lost and stops MSDA output immediately when detected		
Bus busy detector	This detects that the bus is busy, and sets/resets the BBSY bit		

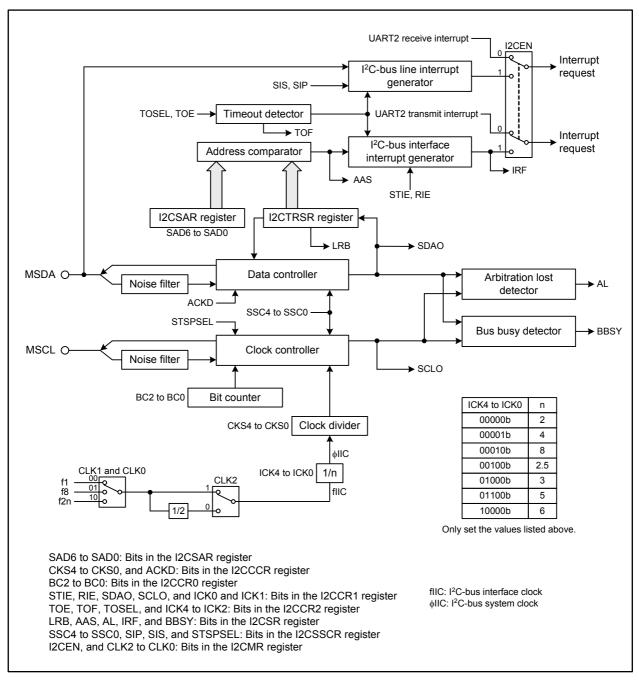


Figure 24.1 Multi-master I²C-bus Interface Block Diagram

24.1 Multi-master I²C-bus Interface-associated Registers

24.1.1 I²C-bus Transmit/Receive Shift Register (I2CTRSR)

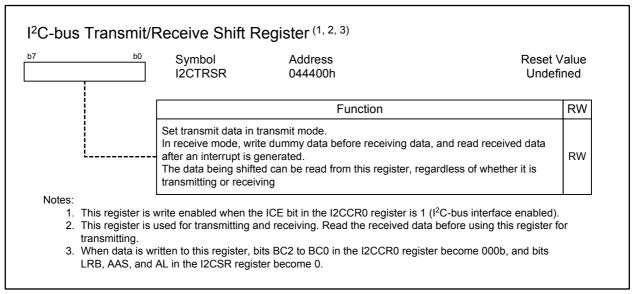


Figure 24.2 I2CTRSR Register

The I2CTRSR register is an 8-bit shift register where received data is stored and transmit data is written. When transmit data is written to this register, the data is synchronized with the SCL clock and shifted out in descending order from bit 7. Every time a bit is shifted out, the data is shifted to the left by 1 bit. During a receive operation, the data is synchronized with the SCL clock and stored in order starting from bit 0. 1 bit of data is shifted (to the left) for every bit that is input. Figure 24.3 shows the timing when the received data is stored to the I2CTRSR register.

The I2CTRSR register is write enabled when the ICE bit in the I2CCR0 register is 1 (I²C-bus interface enabled). When the ICE bit is 1 and the MST bit in the I2CSR register is 1 (master mode), writing data to the I2CTRSR register resets the bit counter and the SCL clock is output.

Write to the I2CTRSR register when a START condition is generated or the MSCL pin is low. The register can always be read.

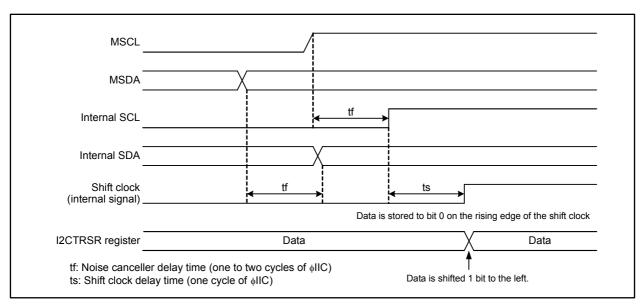


Figure 24.3 Received Data Storing Timing to the I2CTRSR Register

I²C-bus Slave Address Register b7 b6 b5 b4 b3 b2 b1 b0 Symbol Address Reset Value 0 **I**2CSAR 044402h 00h Bit Symbol Bit Name Function RW Should be written with 0 RW Reserved (b0) SAD0 RW The slave address must differ from SAD1 RW other slave addresses of slave SAD2 devices connected to the I2C-bus. RWIn slave mode, the device becomes a SAD3 Slave Address RW slave device when the upper 7 bits SAD4 sent in the first frame after the RW START condition match bits SAD6 to SAD5 RW SAD0 SAD6 RW

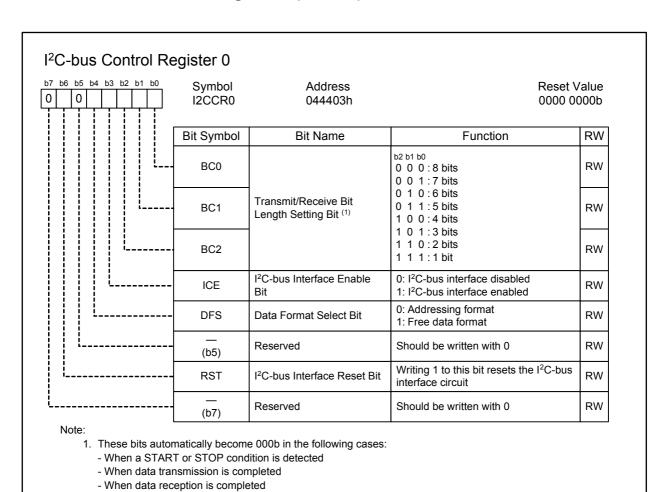

24.1.2 I²C-bus Slave Address Register (I2CSAR)

Figure 24.4 I2CSAR Register

The I2CSAR register stores a slave address to automatically recognize itself as a slave device. When the received address matches the slave address, the device operates as a slave device.

24.1.2.1 Bits SAD6 to SAD0

Bits SAD6 to SAD0 store a slave address. When the addressing format is enabled, the received 7-bit address and the slave address set in bits SAD6 to SAD0 are compared. When a match is detected, the device operates as a slave device.

24.1.3 I²C-bus Control Register 0 (I2CCR0)

Figure 24.5 I2CCR0 Register

The I2CCR0 register controls data communication format.

24.1.3.1 Bits BC2 to BC0

Bits BC2 to BC0 set the data bit length to be transmitted or received next. When data transmission or reception is completed for the data length (acknowledge clock pulse is included in the number when the ACKCLK bit in the I2CCCR register is 1) specified with bits BC2 to BC0, an I²C-bus interface interrupt request is generated. Consequently, bits BC2 to BC0 become 000b. Note that these bits also become 000b when a START condition is detected. Address data is transmitted or received in 8 bits regardless of their settings.

24.1.3.2 ICE Bit

The ICE bit enables the I²C-bus interface. Set this bit to 1 to enable the I²C-bus interface and 0 to disable it. When this bit is 0, pins MSDA and MSCL are fixed high (these pins are high-impedance when the corresponding NOD bits in registers P7_0S and P7_1S are 1), therefore the I²C-bus interface cannot be used.

When the ICE bit is set to 0, the following occurs:

- Bits ADZ, AAS, AL, BBSY, TRS, and MST in the I2CSR register become 0, and the IRF bit becomes 1.
- Writing to the I2CTRSR register is disabled.
- The I²C-bus system clock (φIIC) is stopped, and the internal counter and flags are reset.
- The TOF bit in the I2CCR2 register becomes 0 (timeout not detected).

24.1.3.3 DFS Bit

The DFS bit enables the automatic recognition of a slave address. When the DFS bit is set to 0, the addressing format is selected and the slave address is automatically recognized. In this setting, data is received only when a general call address is received or a slave address match is detected. When the DFS bit is set to 1, the free data format is selected. In this setting, the slave address is not recognized, so all data are received.

24.1.3.4 RST Bit

The RST bit resets the I²C-bus interface when a communication error occurs. When the ICE bit is set to 1 (I²C-bus interface enabled), writing 1 (reset) to the RST bit has the following effects on the I²C-bus interface:

- Bits ADZ, AAS, AL, BBSY, TRS, and MST in the I2CSR register become 0, and the IRF bit becomes 1.
- The TOF bit in the I2CCR2 register becomes 0 (timeout not detected).
- The internal counter and flags are reset.

When the RST bit is written with 1, the multi-master I²C-bus interface is reset within a maximum of 2.5 \(\phi IIC \) cycles. Consequently, the RST bit automatically becomes 0.

Figure 24.6 shows the timing when the I²C-bus interface is reset.

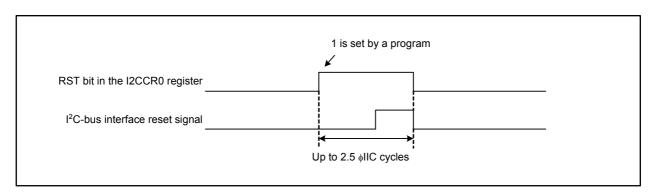


Figure 24.6 I²C-bus Interface Reset Timing

I²C-bus Clock Control Register b7 b6 b5 b4 b3 b2 b1 b0 Symbol Address Reset Value I2CCCR 044404h 0000 0000b RW Bit Symbol Bit Name **Function** CKS0 RW The transmit/receive clock frequency is given by ϕ IIC/8n [Hz] in Standard-CKS1 RW mode, or ϕ IIC/4n [Hz] in Fast-mode, Transmit/Receive Clock where n is a setting value. CKS2 RW Frequency Control Bit However, when 00101b is set in Fast-mode, the transmit/receive clock CKS3 RW frequency becomes ϕ IIC/2n [Hz]. Do CKS4 not set to 00000b to 00010b RW 0: Standard-mode **CLKMD** Clock Mode Select Bit RW 1: Fast-mode 0: ACK sent ACKD **ACK Data Bit** RW 1: NACK sent 0: ACK clock not generated **ACKCLK** ACK Clock Generating Bit RW 1: ACK clock generated

24.1.4 I²C-bus Clock Control Register (I2CCCR)

Figure 24.7 I2CCCR Register

The I2CCCR register controls ACK and sets SCL mode and SCL clock frequency. While data is being transmitted or received, only rewrite the ACKD bit.

24.1.4.1 Bits CKS4 to CKS0

Bits CKS4 to CKS0 set the SCL clock frequency. The SCL clock frequency varies as shown in Table 24.3, where n is a setting value of bits CKS4 to CKS0 (n = 3 to 31). Do not rewrite these bits while data is being transmitted or received.

	•	•		
Bits CKS4 to	SCL Frequency (When ϕ IIC = 4 MHz) ⁽¹⁾			
CKS0 Setting Value (n)	Standard-mode	Fast-mode		
0 to 2	Do not set (2)	Do not set (2)		
3	Do not set (3)	333 kHz (φIIC/4n)		
4	Do not set (3)	250 kHz (φIIC/4n)		
5	100 kHz (φIIC/8n)	400 kHz (φIIC/2n) ⁽⁴⁾		
6 to 31	83 to 16 kHz (φIIC/8n)	166 to 32 kHz (φIIC/4n)		

Table 24.3 I2CCCR Register Setting Values and SCL Frequencies

Notes:

- 1. The CKS value must be set so the SCL clock frequency is 100 kHz or less in Standard-mode or 400 kHz or less in Fast-mode. The high period of the SCL clock has a margin of error of +2 to -4 \(\phi \)IC in Standard-mode, and +2 to -2 \(\phi \)IC in Fast-mode. Note that if the high period is shortened, the low period is lengthened, so the frequency remains unchanged.
- 2. Do not set the CKS value to 0 to 2 regardless of the φIIC frequency.
- 3. When ϕ IIC is 4 MHz or higher, do not set the CKS value to 3 or 4. The SCL clock frequency will extend beyond the specified range.
- 4. The normal duty cycle of the SCL clock is 50%. When the CKS value is 5 in Fast-mode, it varies from 35% to 45%.

24.1.4.2 CLKMD Bit

Set the CLKMD bit to select the SCL mode. Set this bit to 0 to select Standard-mode and 1 for Fast-mode. To use the device under the Fast-mode I^2C -bus specification (up to 400 kbit/s), set ϕIIC to be 4 MHz or higher.

24.1.4.3 ACKD Bit

Set the ACKD bit to select the state of the MSDA pin with the ACK clock. When the ACKD bit is set to 0, the MSDA pin becomes low (acknowledged) by an ACK. When the ACKD bit is 1, the MSDA pin is held high with the ACK clock.

Table 24.4 lists the MSDA pin state with the ACK clock.

Table 24.4 MSDA Pin States with the ACK Clock

Received Content	DFS Bit	ACKD Bit	Slave Address	MSDA Pin State
Slave address	0	0	Match	Low (ACK)
			No match	High (NACK)
		1	_	High (NACK)
	1	0	_	Low (ACK)
		1	_	High (NACK)
Data	_	0	_	Low (ACK)
		1	_	High (NACK)

24.1.4.4 ACKCLK Bit

Set the ACKCLK bit to select whether or not to generate an ACK handshake. When this bit is 1 (ACK clock generated), an ACK clock pulse is generated after 1 byte of data is transmitted or received. When this bit is 0 (ACK clock not generated), the ACK clock is not generated after 1 byte of data is transmitted or received. In this case, the IR bit in the I2CIC register becomes 1 (I2C-bus interface interrupt requested) on the last falling edge of the clock for data transmission or reception.

I²C-bus START and STOP Conditions Control Register b7 b6 b5 b4 b3 b2 b1 b0 Symbol Address Reset Value **I2CSSCR** 044405h 0001 1010b RW Bit Symbol Bit Name Function SSC0 RW SSC₁ The conditions for detecting START RW START and STOP and STOP conditions (SCL open, SSC2 RW **Conditions Detection** set-up, and hold times) are set with Setting Bit SSC3 these bits RW SSC4 RW I²C-bus line Interrupt Pin 0: Falling edge SIP RW Edge Select Bit 1: Rising edge I²C-bus line Interrupt Pin 0: MSDA pin SIS RW Select Bit 1: MSCL pin START and STOP 0: Short mode **STSPSEL** Conditions Generating RW 1: Long mode Mode Select Bit

24.1.5 I²C-bus START and STOP Conditions Control Register (I2CSSCR)

Figure 24.8 I2CSSCR Register

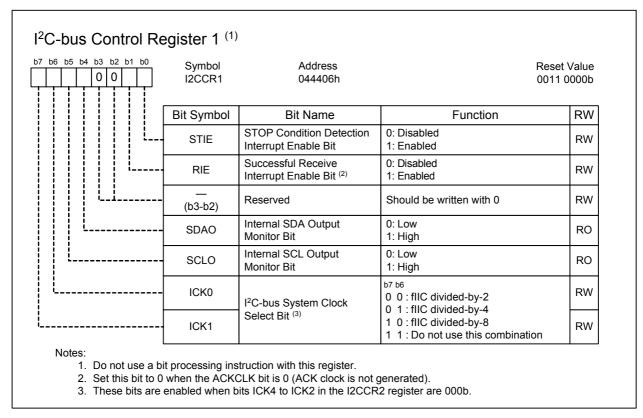
The I2CSSCR register controls the detection and generation of START and STOP conditions.

24.1.5.1 Bits SSC4 to SSC0

Bits SSC4 to SSC0 select the parameters for detecting the START and STOP conditions by setting the high period of SCL pin, set-up, and hold times. This parameter is set by referencing the I^2C -bus system clock (ϕ IIC). Therefore, it changes according to the XIN frequency and the setting of the I^2C -bus system clock select bits (i.e. bits ICK4 to ICK0 in registers I2CCR2 and I2CCR1). Do not set an odd number or 00000b to bits SSC4 to SSC0. Detection of START and STOP conditions starts immediately after setting the ICE bit in the I2CCR0 register to 1 (I^2C -bus interface enabled). Table 24.11 lists the recommended values for bits SSC4 to SSC0.

24.1.5.2 SIP Bit

Set the SIP bit to select which of the edges of MSCL or MSDA pin generates the I²C-bus line interrupt. Set this bit to 0 to select the falling edge, and 1 to select the rising edge.


24.1.5.3 SIS Bit

Set the SIS bit to select the input signal to be used as an I^2C -bus line interrupt source. To select the MSDA pin as an I^2C -bus line interrupt source, set this bit to 0. To select the MSCL pin, set this bit to 1.

24.1.5.4 STSPSEL Bit

Set the STSPSEL bit to select the set-up and hold times when START and STOP conditions are generated. Set this bit to 0 to select short mode and 1 to select long mode. The STSPSEL bit must be set to 1 (long mode) when the ϕ IIC frequency is higher than 4 MHz. Figure 24.16 shows the START condition generation timing. Table 24.9 lists the set-up and hold times when START and STOP conditions are generated.

24.1.6 I²C-bus Control Register 1 (I2CCR1)

Figure 24.9 I2CCR1 Register

The I2CCR1 register controls the I2C-bus interface.

24.1.6.1 STIE Bit

Set the STIE bit to enable an interrupt when detecting a STOP condition. When this bit is set to 1, the I²C-bus interface interrupt is generated when detecting a STOP condition. Consequently, the STOP bit in the I2CCR2 register becomes 1 (STOP condition detection interrupt requested) and the IR bit in the I2CIC register becomes 1 (I²C-bus interface interrupt requested).

24.1.6.2 RIE Bit

Set the RIE bit to enable an interrupt when receiving the last bit of data when the ACKCLK bit in the I2CCCR register is 1 (ACK clock generated). When the RIE bit is 1, the I²C-bus interface interrupt is generated when the last bit (the eighth falling edge of the SCL) of data is received.

The I²C-bus interface interrupt is generated at the ACK bit transmission (the ninth falling edge of the SCL) regardless of the RIE bit setting, therefore two I²C-bus interface interrupts are generated per data when the RIE bit is 1. The source of the interrupt can be identified by reading the RIE bit. The read value indicates the internal WAIT flag state. When the read value is 1, the last bit of data is the interrupt source. When the read value is 0, the ACK bit is the interrupt source.

Set the RIE bit to 0 when the ACKCLK bit in the I2CCCR register is 0 (ACK clock not generated). When the device is transmitting data or receiving a slave address, the I²C-bus interface interrupt is generated only by the ACK bit (the ninth falling edge of the SCL) regardless of the RIE bit setting. In both cases, the internal WAIT flag is 0.

Table 24.5 I²C-bus Interrupt Request Generation Timings and How to Resume Communication

I ² C-bus Interface Interrupt Generation Timing	Internal WAIT Flag	Resuming Transmission/Reception
Last bit of data (on eighth clock)	1	Write to the ACKD bit in the I2CCCR register
ACK bit (on ninth clock)	0	Write to the I2CTRSR register

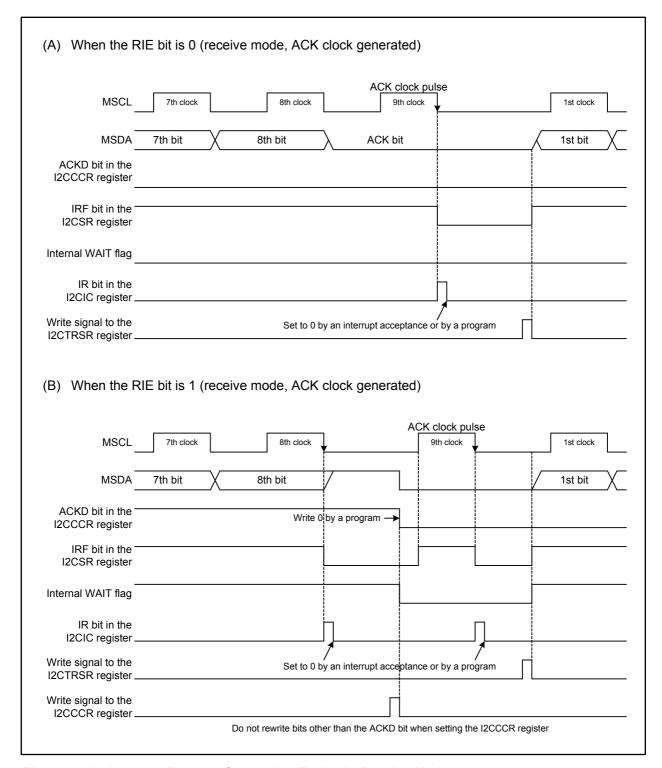


Figure 24.10 Interrupt Request Generation Timing in Receive Mode

24.1.6.3 Bits SDAO and SCLO

Bits SDAO and SCLO are read-only bits and used to monitor the logical values of the internal SDA output signal and internal SCL output signal, respectively. Only set these bits to 0. Note that the internal SDA and SCL output signals indicate output levels before being affected by external devices and do not indicate MSDA and MSCL pin states.

24.1.6.4 Bits ICK1 and ICK0

Set bits ICK1 and ICK0 to select the frequency of the I^2C -bus system clock (ϕ IIC). These bits are enabled when bits ICK4 to ICK2 in the I2CCR2 register are 000b. Rewrite these bits when the ICE bit in the I2CCR0 register is 0 (I^2C -bus interface disabled). The frequency of the I^2C -bus system clock (ϕ IIC) can be selected from fIIC divided-by-2, -4, and -8 by setting these bits. fIIC divided-by-2.5, -3, -5, and -6 are also available by setting bits ICK4 to ICK2 in the I2CCR2 register. However, bits ICK1 and ICK0 are disabled in this case.

Table 24.6 I²C-bus System Clock (♦IIC) Select Bit Settings

	I2CCR2 Register			Register	φIIC
ICK4 bit	ICK3 bit	ICK2 bit	ICK1 bit	ICK0 bit	Ψιιο
			0	0	fIIC divided-by-2
0	0	0	0 0	1	fIIC divided-by-4
			1	0	fIIC divided-by-8
0	0	1	0	0	fIIC divided-by-2.5
0	1	0	0	0	fIIC divided-by-3
0	1	1	0	0	fIIC divided-by-5
1	0	0	0	0	fIIC divided-by-6

Only set the values listed above.

I²C-bus Control Register 2 Symbol Address Reset Value 0 I2CCR2 044407h 0X00 0000b RW Bit Symbol Bit Name **Function** Timeout Detector Enable 0: Timeout detector disabled TOE RW 1: Timeout detector enabled 0: Timeout not detected TOF RO Timeout Detect Flag 1: Timeout detected **Timeout Detect Period** 0: Long TOSEL RW Select Bit 1: Short b5b4b3 ICK2 RW 0 0 0 : ϕ IIC = set by bits ICK1 and ICK0 in the I2CCR1 register I2C-bus System Clock 0 0 1: ϕ IIC = fIIC divided-by-2.5 ICK3 RW Select Bit 0 1 0 : ϕ IIC = fIIC divided-by-3 0 1 1: ϕ IIC = fIIC divided-by-5 1 0 0 : ϕ IIC = fIIC divided-by-6 ICK4 RW Only set the values listed above Reserved Should be written with 0 RW (b6)0: I2C-bus interface interrupt not STOP Condition Detect requested STOP Interrupt Request Monitor RW 1: I2C-bus interface interrupt Bit requested

24.1.7 I²C-bus Control Register 2 (I2CCR2)

Figure 24.11 I2CCR2 Register

The I2CCR2 register controls communication error detection. If the SCL clock stops during transmission or reception, each device connected to the bus is halted suspending communication. To avoid this, the multi-master I²C-bus interface supports a function to generate an I²C-bus interface interrupt when the SCL clock is held high for a specified period of time during transmission or reception.

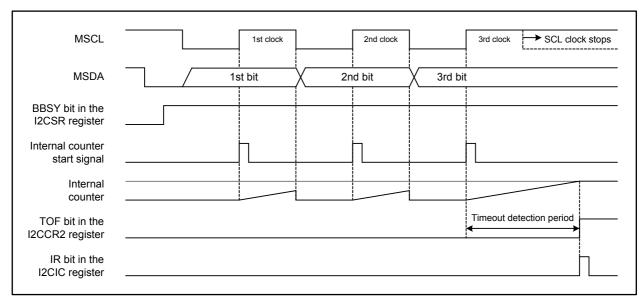


Figure 24.12 Timeout Detection Timing

24.1.7.1 TOE Bit

The TOE bit enables the timeout detector. When this bit is set to 1, the timeout detector is enabled, and when the SCL clock is held high for a specified period of time while the BBSY bit in the I2CSR register is 1 (bus is busy), an I²C-bus interface interrupt request is generated.

The timeout detection period is determined by 1) the internal counter that uses ϕ IIC as a count source, and 2) the TOSEL bit setting (selects the timeout detection period to be either long or short). Refer to 24.1.7.3 "TOSEL bit" for details.

When a timeout is detected, set the ICE bit in the I2CCR0 register to 0 (I²C-bus interface disabled) and initialize the I²C-bus interface.

24.1.7.2 TOF Bit

The TOF bit is a flag that indicates the state of a timeout detection. This bit is enabled when the TOE bit is 1. When the TOF bit becomes 1 (timeout detected), the IR bit in the I2CIC register becomes 1 (I²C-bus interface interrupt requested) simultaneously.

24.1.7.3 TOSEL Bit

The TOSEL bit selects a long or short length for a timeout detection period. This bit is enabled when the TOE bit is 1 (timeout detector enabled). Set this bit to 0 to select the long timeout period. In this setting, the internal counter functions as a 16-bit counter. Set this bit to 1 to select the short timeout period. In this setting, the internal counter functions as a 14-bit counter.

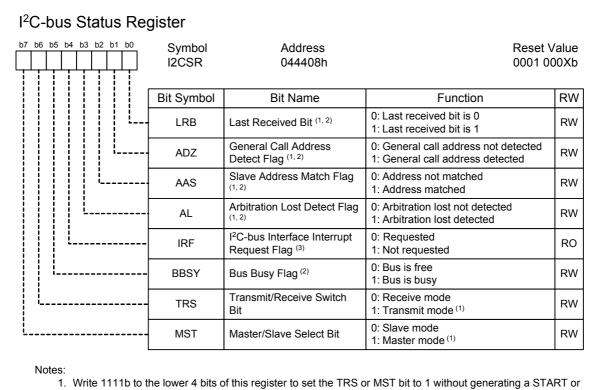
The internal counter increments using the I^2C -bus system clock (ϕIIC) as a count source. Table 24.7 lists timeout detection periods.

Table 24.7 Example Timeout Detection Periods

φПС	Long Timeout Detection Period (TOSEL = 0)	Short Timeout Detection Period (TOSEL = 1)
4 MHz	16.4 ms	4.1 ms
2 MHz	32.8 ms	8.2 ms
1 MHz	65.6 ms	16.4 ms

24.1.7.4 Bits ICK4 to ICK2

Set bits ICK4 to ICK2 to select the frequency of the I²C-bus system clock (ϕ IIC). Rewrite these bits when the ICE bit in the I2CCR0 register is 0 (I²C-bus interface disabled).


The frequency of the I^2C -bus system clock (ϕIIC) can be selected from fIIC divided-by-2.5, -3, -5, and -6. When bits ICK4 to ICK2 are set to 000b, fIIC divided-by-2, -4, and -8 can also be selected by setting bits ICK1 and ICK0 in the I2CCR1 register. Refer to Table 24.6.

24.1.7.5 STOP Bit

The STOP bit monitors the STOP condition detection interrupt. When the I²C-bus interface interrupt is generated by the detection of a STOP condition, the STOP bit becomes 1. This bit is enabled when the STIE bit in the I2CCR1 register is 1 (STOP condition detection interrupt is enabled). This bit is set to 0 by a program. Writing 1 to this bit has no effect.

24.1.8 I²C-bus Status Register (I2CSR)

- STOP condition.
- 2. These bits are read-only when using them to check the status.
- 3. This bit is read-only. Only set this bit to 0.

Figure 24.13 I2CSR Register

The I2CSR register monitors the state of the I2C-bus interface. Write to this register only when using the functions listed in Table 24.8, and only set the values that are listed. Note that the lower 6 bits are not rewritten even when values from Table 24.8 are written to.

I2CSR Register Settings and Functions Table 24.8

	Values Written to the I2CSR Register							Function			
MST	TRS	BBSY	IRF	AL	AAS	ADZ	LRB	Function			
0	0							Select slave-receive mode			
0	1	X	0	1	1	1	1	1	Select slave-transmit mode		
1	0	^	U	'			'	Select master-receive mode			
1	1										Select master-transmit mode
1	1	0	0	0	0	0	0	Select master-transmit mode and set the device to be on STOP condition standby.			
'		1	0	J			Č	Select master-transmit mode and set the device to be on START condition standby.			

24.1.8.1 LRB Bit

The LRB bit stores the data of the last received bit. It is used to check whether an ACK is received. When the ACKCLK bit in the I2CCCR register is 1 (ACK clock generated), the LRB bit becomes 0 when the ACK is received, and 1 when the ACK is not received. When the ACKCLK bit is 0 (ACK clock not generated), the last bit of data is stored to the LRB bit. When a value is written to the I2CTRSR register, the LRB bit becomes 0.

24.1.8.2 ADZ Bit

The ADZ bit is a flag that indicates that the general call address was received. When the DFS bit in the I2CCR0 register is 0 (addressing format) in slave-receive mode, the ADZ bit becomes 1 when the general call address is received.

The ADZ bit becomes 0 in any of the following cases:

- When a STOP or START condition is detected
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)

24.1.8.3 AAS Bit

The AAS bit is a flag that indicates whether the received address matches its own slave address. The AAS bit becomes 1 when the received address matches its own slave address in bits SAD6 to SAD0 in the I2CSAR register, when the DFS bit in the I2CCR0 register is 0 (addressing format) in slave-receive mode, or when the received address is the general call address.

The AAS bit becomes 0 in any of the following cases:

- When data is written to the I2CTRSR register
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)

24.1.8.4 AL Bit

The AL bit is a flag that indicates arbitration lost detection. In master transmit mode, if the MSDA pin is changed to low by another device, then the AL bit becomes 1. Consequently, the TRS bit in the I2CSR register becomes 0 (receive mode), and then the MST bit becomes 0 (slave mode) at the end of the byte in which an arbitration lost is detected.

The AL bit becomes 0 in any of the following cases:

- When data is written to the I2CTRSR register
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)

24.1.8.5 IRF Bit

Set the IRF bit to generate the I²C-bus interface interrupt request signal. When the I²C-bus interface interrupt source is generated, first the IRF bit becomes 0, then the I²C-bus interface interrupt is generated on the falling edge of the IRF bit. Refer to Figure 24.10 for the timing.

The IRF bit becomes 0 in any of the following cases:

- When 1-byte data transmission is completed (including when an arbitration lost is detected)
- When 1-byte data reception is completed
- · When the slave address is matched in addressing format in slave-receive mode
- When the general call address is received in addressing format in slave-receive mode
- When address data reception is completed in free data format in slave-receive mode

The IRF bit becomes 1 in any of the following cases:

- · When data is written to the I2CTRSR register
- When data is written to the I2CCCR register (the RIE bit is 1, internal WAIT flag is 1)
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)

24.1.8.6 BBSY Bit

The BBSY bit is a flag that indicates the availability of the I²C-bus. The BBSY bit becomes 1 when a START condition is detected, and 0 when a STOP condition is detected. When the BBSY bit is 0, the I²C-bus is not in use, and is available for the device to generate a START condition.

The detection of a START or STOP condition is dependent on the setting of bits SSC4 to SSC0 in the I2CSSCR register.

The BBSY bit becomes 0 in any of the following cases:

- · When a STOP condition is detected
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)

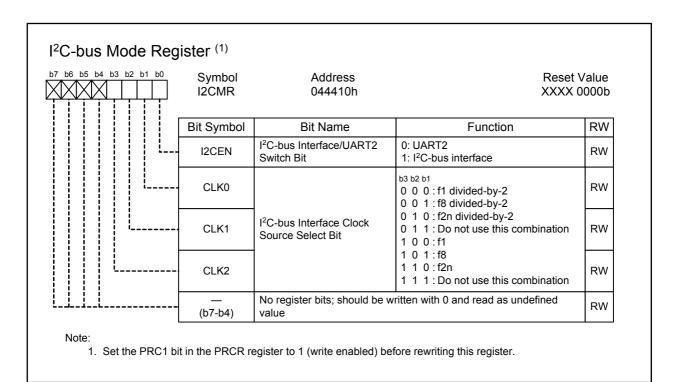
24.1.8.7 TRS Bit

The TRS bit determines the direction of data communication. When this bit is set to 0, the device enters receive mode and waits for data to be sent from another device. When this bit is set to 1, the device enters transmit mode and transmits data and address to the SDA line synchronized with the SCL clock.

The TRS bit automatically becomes 1 (transmit mode) when the received address matches its own slave address and the received R/\overline{W} bit is 1 (data requested) in addressing format in slave-receive mode

The TRS bit becomes 0 in any of the following cases:

- When this bit is set to 0
- · When an arbitration lost is detected
- When a STOP condition is detected
- When the START condition redundancy prevention function is activated
- · When a START condition is detected in slave mode
- · When a NACK is received in slave mode
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I2C-bus interface reset)


24.1.8.8 MST Bit

Set the MST bit to select master or slave mode. To enter slave mode, set this bit to 0. Communication is initiated in synchronization with the SCL clock generated by the master device. Set this bit to 1 to enter master mode. The device generates the SCL clock to initiate communication.

The MST bit becomes 0 in any of the following cases:

- When the MST bit is set to 0
- When an arbitration lost is detected, and transmission of the corresponding byte is completed
- When a STOP condition is detected.
- · When a START condition is detected
- When the START condition redundancy prevention function is enabled
- When the ICE bit in the I2CCR0 register is set to 0 (I2C-bus interface disabled)
- When the RST bit in the I2CCR0 register is written with 1 (I²C-bus interface reset)

24.1.9 I²C-bus Mode Register (I2CMR)

Figure 24.14 I2CMR Register

The I2CMR register selects signals for the I²C-bus interface and the clock source. Set the PRC1 bit in the PRCR register to 1 (write enabled) before rewriting this register.

24.1.9.1 I2CEN Bit

The I2CEN bit switches between signals for UART2 and the I^2C -bus interface. Set this bit to 1 to use the following signals: MSDA, MSCL, the I^2C -bus interface interrupt, and the I^2C -bus line interrupt. When this bit is set to 0, signals for UART2 are enabled.

24.1.9.2 Bits CLK2 to CLK0

Bits CLK2 to CLK0 select the clock source for the I²C-bus interface clock (fIIC). It is selected from f1 divided-by-2, f8 divided-by-2, f2n divided-by-2, f1, f8, or f2n.

The clock source selected for the I^2C -bus interface (fIIC) is used as the clock source for the I^2C -bus system clock (ϕ IIC).

24.2 Generating a START Condition

To enter a START condition standby state, write E0h to the I2CSR register while the ICE bit in the I2CCR0 register is 1 (I^2 C-bus interface enabled) and the BBSY bit in the I2CSR register is 0 (bus is free). When in standby, write a slave address to the I2CTRSR register to generate a START condition. Consequently, the bit counter becomes 000b, 1 byte of the SCL clock is output, and the slave address is transmitted. Figure 24.15 shows how to generate a START condition.

Note that after a STOP condition is generated, writing to the I2CSR register is disabled for 1.5 cycles of ϕ IIC after the BBSY bit becomes 0. To generate a START condition immediately after generating a STOP condition, first write E0h to the I2CSR register, then confirm that bits TRS and MST in the I2CSR register are 1. After that, write a slave address to the I2CTRSR register.

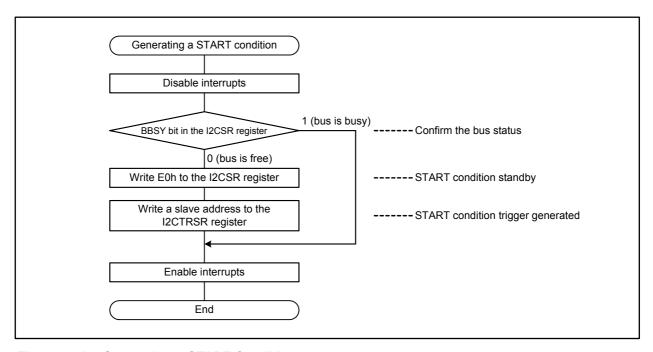


Figure 24.15 Generating a START Condition

The timing to generate a START condition differs between Standard-mode and Fast-mode. Figure 24.16 shows START condition generation timing. Table 24.9 lists the set-up and hold times when a START or STOP condition is generated.

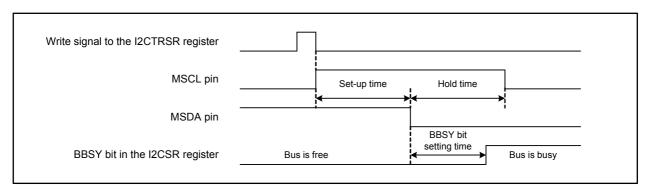


Figure 24.16 START Condition Generation Timing

Table 24.9 Set-up and Hold Times When Generating a START or STOP Condition

Parameter	SCL Mode	Short Mode (STSPSEL = 0)	Long Mode (STSPSEL = 1)
Set-up time	Standard-mode (CLKMD = 0)	5.0 µs (20)	13.0 µs (52)
Set-up time	Fast-mode (CLKMD = 1)	2.5 µs (10)	6.5 µs (26)
Hold time	Standard-mode (CLKMD = 0)	5.0 µs (20)	13.0 µs (52)
i ioia time	Fast-mode (CLKMD = 1)	2.5 µs (10)	6.5 µs (26)

CLKMD: Bit in the I2CCCR register STSPSEL: Bit in the I2CSSCR register Number of ϕ IIC cycles in parentheses.

24.3 Generating a STOP Condition

To enter a STOP condition standby state, write C0h to the I2CSR register while the ICE bit in the I2CCR0 register is 1 (I²C-bus interface enabled). Consequently, the MSDA pin becomes low. When in a standby state, write dummy data to the I2CTRSR register to generate a STOP condition. Figure 24.17 shows how to generate a STOP condition.

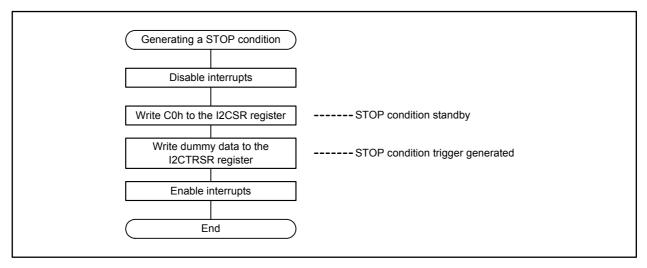


Figure 24.17 Generating a STOP Condition

The timing for generating a STOP condition differs between Standard-mode and Fast-mode. Figure 24.18 shows STOP condition generating timing. Table 24.9 lists the set-up and hold times when a START or STOP condition is generated.

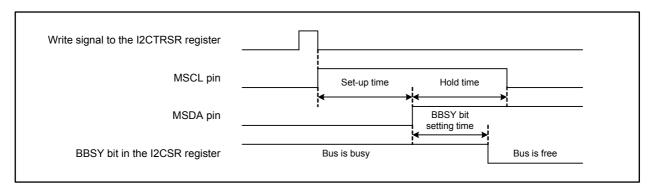


Figure 24.18 STOP Condition Generating Timing

Do not write the I2CSR or I2CTRSR register during the period after the standby setting until the BBSY bit in the I2CSR register becomes 0. Doing so may cause a failure of a successful STOP condition generation.

Furthermore, after the standby setting, the internal SCL output becomes low in the following case: after the MSCL pin becomes high and when it becomes low before the BBSY bit becomes 0. In this case, low output from the MSCL pin is stopped (clock line released) by generating a STOP condition, by setting the ICE bit in the I2CCR0 register to 0 (I²C-bus interface disabled), or by setting the RST bit to 1 (I²C-bus interface reset)

24.4 START Condition Redundancy Prevention Function

A START condition is generated when the bus is free (confirmed with the BBSY bit in the I2CSR register). However, before a START condition is generated, if a different master device generates another START condition, the BBSY bit may become 1. In this case, the START condition redundancy prevention function terminates the generation of its own START condition.

The START condition redundancy prevention functions as follows:

- The START condition standby setting is disabled (exits standby state)
- Writing to the I2CTRSR register is disabled (generation of the START condition trigger is disabled)
- Bits MST and TRS in the I2CSR register become 0 (enters slave-receive mode)
- The AL bit in the I2CSR register becomes 1 (arbitration lost is detected)

Figure 24.19 shows the operation of the START condition redundancy prevention function.

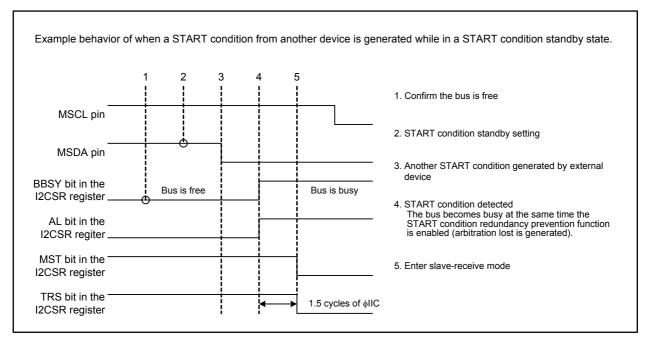


Figure 24.19 Example Operation of the START Condition Redundancy Prevention Function

The START condition redundancy prevention function is enabled from the falling edge of an SDA line in a START condition until the slave address is completely received. This means, when registers I2CSR and I2CTRSR are written during this period, then the START condition redundancy prevention function is enabled. Figure 24.20 shows the duration.

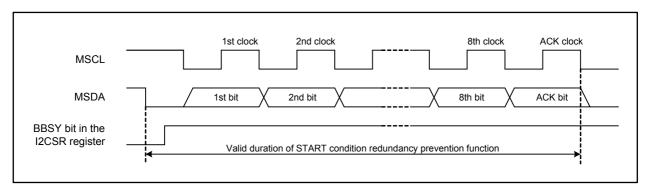


Figure 24.20 Enabled Duration of the START Condition Redundancy Prevention Function

24.5 Detecting START and STOP Conditions

Figure 24.21 shows START condition detection, Figure 24.22 shows STOP condition detection, and Table 24.10 lists the parameters for detecting START and STOP conditions. The parameters to detect START and STOP conditions are set with bits SSC4 to SSC0 in the I2CSSCR register. These parameters are detectable only when the input signals of pins MSCL and MSDA meet all the conditions of the high period of MSCL pin, set-up, and hold times in Table 24.10.

The BBSY bit in the I2CSR register becomes 1 when a START condition is detected, and 0 when a STOP condition is detected. The timing for setting the BBSY bit differs between Standard-mode and Fast-mode. Refer to Table 24.11 for BBSY bit setting time. Table 24.11 lists the recommended settings for bits SSC4 to SSC0 in Standard-mode.

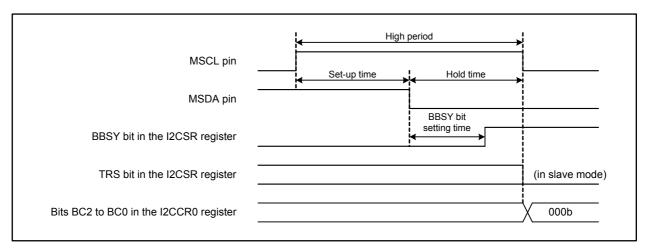


Figure 24.21 Detecting a START Condition

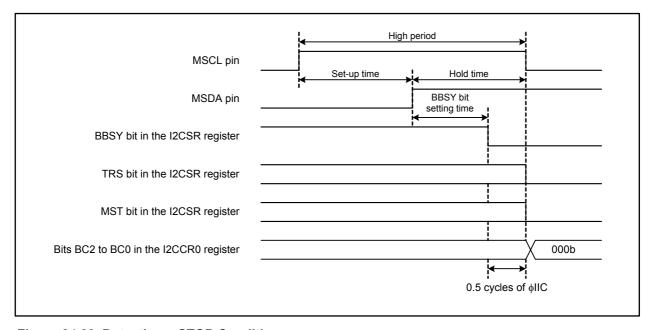


Figure 24.22 Detecting a STOP Condition

Table 24.10 Parameters for Detecting START and STOP Conditions

Parameter	Standard-mode	Fast-mode
High period of MSCL pin	SSC value + 1 cycle (6.25 µs)	4 cycles (1.0 μs)
Set-up time	$\frac{\text{SSC value}}{2}$ + 1 cycle < 4.0 µs (3.25 µs)	2 cycles (0.5 μs)
Hold time	$\frac{\text{SSC value}}{2}$ cycles < 4.0 µs (3.0 µs)	2 cycles (0.5 μs)
BBSY bit set/reset time	$\frac{\text{SSC value - 1}}{2} + 2 \text{ cycles } (3.375 \mu\text{s})$	3.5 cycles (0.875 µs)

SSC value: Setting value of bits SSC4 to SSC0 in the I2CSSCR register. Do not set these bits to 0 or an odd number.

Example times of when ϕ IIC = 4 MHz and the I2CSSCR register = 18h are in parentheses.

Table 24.11 Recommended Values for Bits SSC4 to SSC0 in Standard-mode

	SSC	Parameters for De	STOP Conditions		
φIIC	Recom mended Value	High period of MSCL pin	Set-up time	Hold time	BBSY Bit Set/Reset Time
5 MHz	30	6.2 µs (31)	3.2 µs (16)	3.0 µs (15)	4.125 µs (16.5)
4 MHz	26	6.75 µs (27)	3.5 µs (14)	3.25 µs (13)	3.625 µs (14.5)
4 1011 12	24	6.25 µs (25)	3.25 µs (13)	3.0 µs (12)	3.375 µs (13.5)
2 MHz	12	6.5 µs (13)	3.5 µs (7)	3.0 µs (6)	3.75 µs (7.5)
2 1011 12	10	5.5 µs (11)	3.0 µs (6)	2.5 µs (5)	3.25 µs (6.5)
1 MHz	4	5.0 µs (5)	3.0 µs (3)	2.0 µs (2)	3.5 µs (3.5)

Number of ϕ IIC cycles in parentheses.

SSC recommended values: Decimal value of bits SSC4 to SSC0 in the I2CSSCR register.

24.6 Data Transmission and Reception

Examples of the data transmission and reception format for master-transmission or slave-reception in a 7-bit address format are shown in section 24.6.1 "Master Transmission" and 24.6.2 "Slave Reception". These examples assume communication starts after initialization using the parameters set in Table 24.12.

Table 24.12 Example of Initial Settings

Register	Setting Value	Parameter	Initial Setting
I2CSAR	02h	Slave address	1
I2CCCR		SCL frequency	100 kHz (φIIC = 4 MHz)
	85h	Clock mode	Standard-mode
		ACK clock generation	ACK clock generated
I2CCR2	00h	Timeout Detector	Disabled
I2CCR1		STOP condition detection interrupt	Enabled
	13h	Successful data receive interrupt	Enabled
		φIIC	fIIC divided-by-2
I2CSR	0Fh	Communication mode	Slave-receive mode
I2CSSCR		SSC value (see Table 24.11)	24
	98h	START and STOP conditions generation mode	Long mode
I2CCR0		Number of bits to be transmitted or received	8 bits
	08h	I ² C-bus interface	Enabled (communication
	0011		enabled)
		Data format	Addressing format
I2CMR	09h	I ² C-bus interface/UART2	I ² C-bus interface selected
	0311	I ² C-bus interface clock source	fIIC = f2n

24.6.1 Master Transmission

The operation and procedures of master transmission are described in this section. Figure 24.23 shows an example of master transmission operation. For (A) to (C) in the figure, see A to C in the descriptions and procedures below. (1) to (3) show the program's instructions. Arrows indicate that the procedure is performed by the MCU automatically.

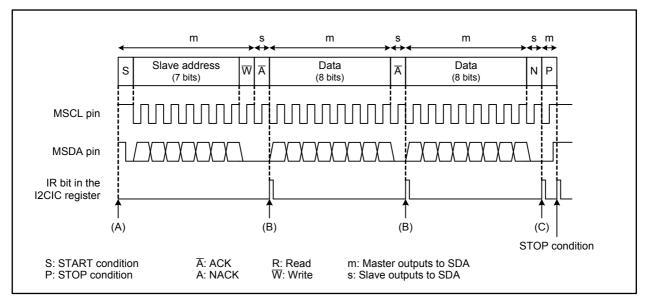


Figure 24.23 Example Operation of Master Transmission

- A. Transmitting a slave address
 - (1) Confirm the BBSY bit in the I2CSR register is 0 (bus is free)
 - (2) Write E0h to the I2CSR register
 - → The device enters the START condition standby state
 - (3) Write an address of a receiver (slave address) to the upper 7 bits of the I2CTRSR register
 - → A START condition is generated
 - → The slave address is sent
- B. Transmitting data (processed in the I²C-bus interrupt routine)
 - (1) Write transmit data to the I2CTRSR register
 - → Data is sent

To send multiple bytes of data, write them to the I2CTRSR register in succession

- C. Completing master transmission (processed in the I²C-bus interrupt routine)
 - (1) Write C0h to the I2CSR register
 - → The device enters the STOP condition standby state
 - (2) Write dummy data to the I2CTRSR register
 - → A STOP condition is generated

In addition to the case where transmission is completed, procedure (C) is required when no ACK from the slave device is received (when a NACK is received as shown in Figure 24.23).

24.6.2 Slave Reception

The operation and procedures of slave reception are described in this section. Figure 24.24 shows an example of slave reception operation. For (A) to (D) in the figure, see A to D in the descriptions and procedures below. (1) to (3) show the program's instructions. Arrows indicate that the procedure is performed by the MCU automatically.

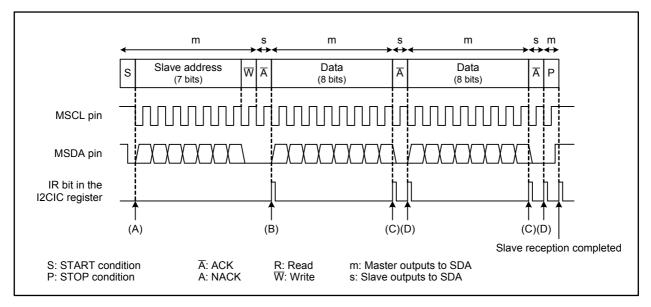


Figure 24.24 Example Operation of Slave Reception

- A. Receiving a slave address (performed by the MCU automatically)
 - → A START condition is detected
 - → A slave address is received
 - ightarrow An ACK is sent and the I2C-bus interface interrupt is generated in either of the following cases
 - -When the general call address is received (the ADZ bit in the I2CSR register is 1)
 - -When an address match is detected (the AAS bit in the I2CSR register is 1)
- B. Starting slave reception (processed in the I²C-bus interrupt routine)
 - (1) Check the I2CSR register value. When the TRS bit is 0, start the slave reception.
 - (2) Write dummy data to the I2CTRSR register
 - → Data reception starts
- C. Completing slave reception (processed in the I²C-bus interrupt routine)
 - (1) Read the received data from the I2CTRSR register
 - (2) Set the ACKD bit in the register to 1 (NACK) when the data is the last received data
 - (3) Set the ACKD bit in the register to 0 (ACK) when the data is not the last received data
 - → An ACK or NACK is sent and an I²C-bus interface interrupt is generated
- D. Completing ACK transmission (processed in the I²C-bus interrupt routine)
 - (1) Write dummy data to the I2CTRSR register
 - → If the data is the last received data, a STOP condition is detected
 - → If not, data reception restarts

24.7 Notes on Using Multi-master I²C-bus Interface

24.7.1 Accessing Multi-master I²C-bus Interface-associated Registers

Notes on writing to and reading I²C-bus interface-associated registers.

• I2CTRSR register

Do not write to this register during data transmission or reception. Doing so resets the transmit/receive counter and the register is unable to perform normal data transmission or reception.

• I2CCR0 register

This register becomes 000b when a START condition is detected or 1 byte of data transmission or reception is completed. Do not write to or read this register at these two timings. Doing so may change the register value to an unexpected value. Figures 24.26 and 24.27 show the bit counter reset timings.

· I2CCCR register

Do not rewrite bits other than the ACKD bit during transmission or reception. Otherwise the I²C-bus clock circuit is reset and a normal transmission or reception will not be performed as a result.

• I2CCR1 register

Rewrite bits ICK4 to ICK0 only when the ICE bit in the I2CCR0 register is 0 (I²C-bus interface disabled). When the I2CCR1 register is read, the internal WAIT flag status is read from this register. Therefore, do not use a bit processing instruction (read-modify-write instruction) with this register.

• I2CSR register

Do not use a bit processing instruction (read-modify-write instruction) since the value of each bit in the I2CSR register changes depending on the communication state. Also, do not access this register when MST bit or TRS bit, which select the communication mode, changes. Doing so may change the register value to an unexpected value. Figures 24.25 to 24.27 show the timing of bits MST and TRS to change.

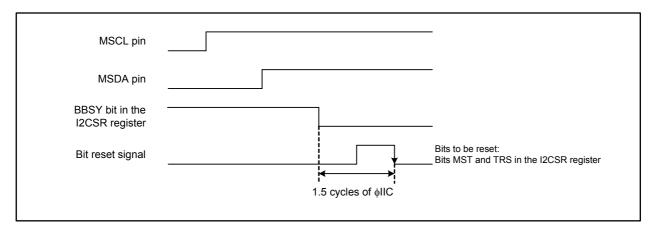


Figure 24.25 Bit Resetting Timing (when a STOP condition is detected)

Figure 24.26 Bit Resetting Timing (when a START condition is detected)

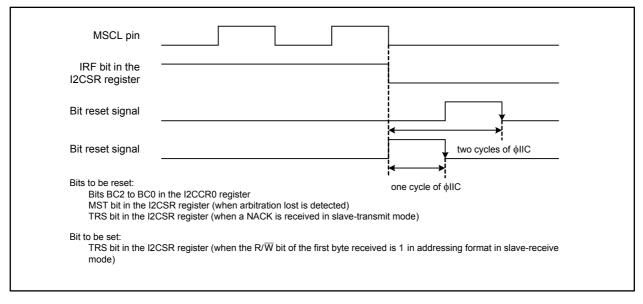


Figure 24.27 Bit Setting/Resetting Timing (when data transmission/reception is completed)

24.7.2 Generating a Repeated START condition

Use the following steps to generate a repeated START condition after transmitting 1-byte of data:

- (1) Write E0h (the START condition standby state, and the MSDA pin is high) to the I2CSR register
- (2) Wait until the MSDA pin becomes high
- (3) Write a slave address to the I2CTRSR register to generate a START condition trigger Figure 24.28 shows the repeated START condition generating timing.

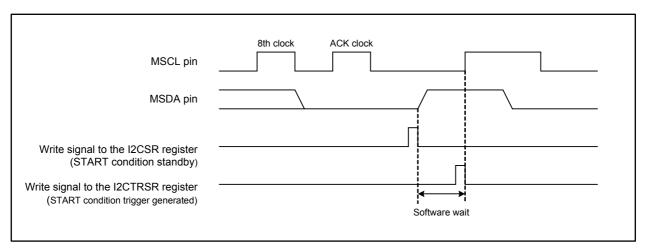


Figure 24.28 Repeated START Condition Generating Timing

R32C/116A Group 25. Protected Areas

25. Protected Areas

The R32C/116A Group has five 32-bit areas protected from unexpected write accesses. The protected areas are randomly accessible as well as RAM. However, they are not rewritable while the protection is being locked.

Table 25.1 lists the location of protected areas and Figures 25.1 and 25.2 show the associated registers.

Table 25.1 Address Range of Protected Areas

Protected Area	Address Range
Protected Area 0	42000h to 4201Fh
Protected Area 1	42020h to 4203Fh
Protected Area 2	42040h to 4205Fh
Protected Area 3	42060h to 4207Fh
Protected Area 4	42080h to 4209Fh

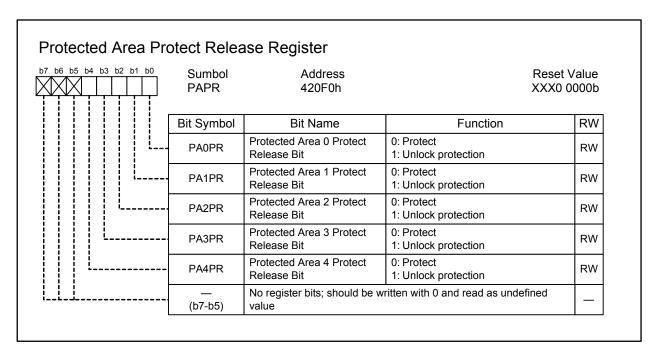


Figure 25.1 PAPR Register

R32C/116A Group 25. Protected Areas

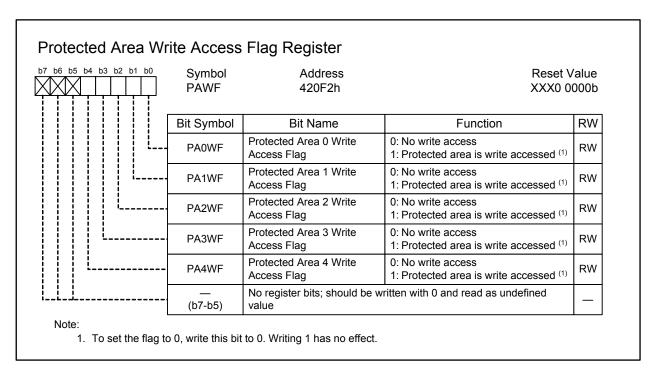


Figure 25.2 PAWF Register

26. I/O Pins

Each pin of the MCU functions as a programmable I/O port, an I/O pin for integrated peripherals, or a bus control pin. These functions can be switched by the function select registers or the processor mode registers. This chapter particularly addresses the function select registers. For the use as a bus control pin, refer to 7. "Processor Mode" and 9. "Bus".

The pull-up resistors are enabled for every group of four pins. However, a pull-up resistor is separated from other peripherals even if it is enabled, when a pin functions as an output pin.

Figure 26.1 shows a block diagram of typical I/O pin.

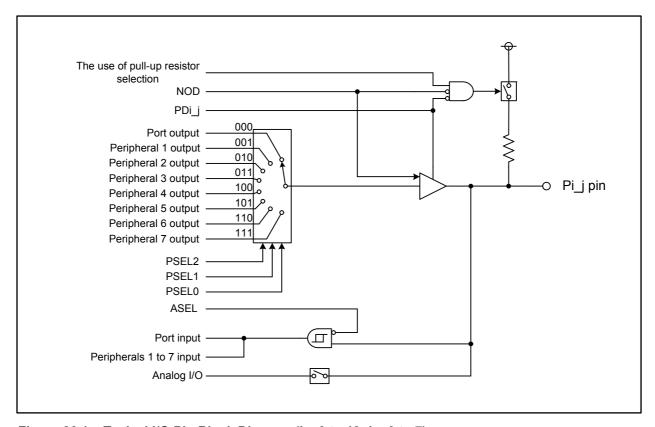


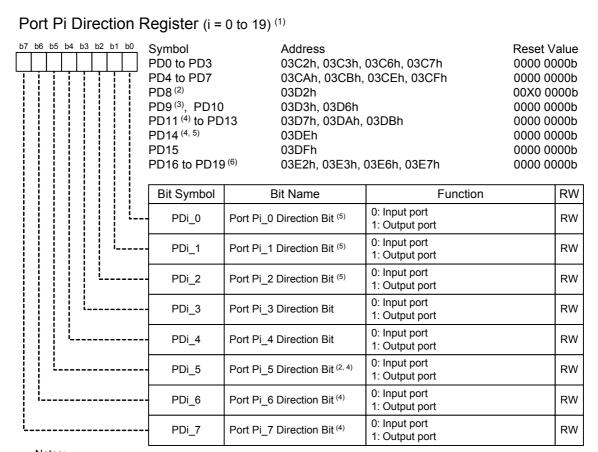
Figure 26.1 Typical I/O Pin Block Diagram (i = 0 to 19; j = 0 to 7)

The registers to control I/O pins are as follows: port Pi direction register (PDi register), output function select registers, and pull-up control registers. The PDi register selects the input or output state of pins. The output function select registers which select output function consist of bits PSEL2 to PSEL0, NOD, and ASEL. Bits PSEL2 to PSEL0 select a function as a programmable I/O or peripheral output (except analog output). The NOD bit selects the N-channel open drain output for a pin. The ASEL bit prevents the increase in power consumption of input buffer caused by an intermediate potential when a pin functions as an analog I/O pin. The pull-up control registers enable/disable the pull-up resistors.

To use a pin as an analog I/O pin, set the PDi_j bit to 0 (input), bits PSEL2 to PSEL0 to 000b, and the ASEL bit to 1.

The input-only port P8_5 shares a pin with $\overline{\text{NMI}}$ and has no function select register or bit 5 in the PD8 register. Port P14_1 also functions as an input-only port. The function select register and bit 1 in the PD14 register are reserved. Port P9 is protected from unexpected write accesses by the PRC2 bit in the PRCR register (refer to 10. "Protection").

26.1 Port Pi Direction Register (PDi Register, i = 0 to 19)


The PDi register selects the input or output state of pins. Bits in this register correspond to respective pins.

In memory expansion mode or microprocessor mode, this register cannot control pins being assigned bus control signals (A0 to A23, D0 to D31, \overline{CSO} to $\overline{CS3}$, $\overline{WR/WRO}$, \overline{BCO} , $\overline{BC1/WR1}$, $\overline{BC2/WR2}$, $\overline{BC3/WR3}$, \overline{RD} , CLKOUT/BCLK, \overline{HLDA} , \overline{HOLD} , ALE, and \overline{RDY}).

Figure 26.2 shows the PDi register.

No register bit is provided for port P8_5. For port P14_1, a reserved bit is provided.

The PD9 register is protected from unexpected write accesses by setting the PRC2 bit in the PRCR register (refer to 10. "Protection").

- Notes
 - 1. In memory expansion mode or microprocessor mode, this register cannot control pins being assigned bus control signals (A0 to A23, D0 to D31, CS0 to CS3, WR/WR0, BC0, BC1/WR1, BC2/WR2, BC3/WR3, RD, CLKOUT/BCLK, HLDA, HOLD, ALE, and RDY).
 - 2. The PD8_5 bit in the PD8 register is unavailable on this MCU. If necessary, set this bit to 0. The read value is undefined.
 - 3. Set the PRC2 bit in the PRCR register to 1 (write enabled) just before rewriting the PD9 register. No interrupt handling or DMA transfers should be inserted between these two instructions.
 - 4. Bits PD11_5 to PD11_7 in the PD11 register and the PD14_7 bit in the PD14 register should be rewritten after the PDWE bit in the PCR register is set to 1 (write enabled).
 - 5. Bits PD14_0 to PD14_2 in the PD14 register are reserved. These bits should be written with 0.
 - 6. In the 144-pin package, enabled bits in registers PD16 to PD19 should be written with 1 (output port).

Figure 26.2 Registers PD0 to PD19

26.2 Output Function Select Registers

When a programmable I/O port and peripheral output share a pin, these registers select the output function of the pin. Regardless of the register settings, signals are input to all the connected peripherals. An output function select register consists of bits PSEL2 to PSEL0, NOD, and ASEL. Bits PSEL2 to PSEL0 select a function as programmable I/O or peripheral output (except analog output). The NOD bit selects the N-channel open drain output. The ASEL bit prevents the increase in power consumption caused by an intermediate potential generated when a pin functions as an analog I/O pin.

Table 26.1 shows the peripherals assigned to each PSEL2 to PSEL0 bit combination, and Figures 26.3 to 26.22 show the function select registers.

Note that ports P8_5 and P14_1 (input only) have no output function select registers.

The P9_iS register is protected from unexpected write accesses by setting the PRC2 bit in the PRCR register (refer to 10. "Protection").

Table 26.1 Peripheral Assignment

Bits PSEL2 to PSEL0	Peripherals
001b	Timer
010b	Three-phase motor control timers
011b	UART
100b	UART special function
101b	Intelligent I/O groups 0 and 2
110b	Intelligent I/O group 1
111b	UART8

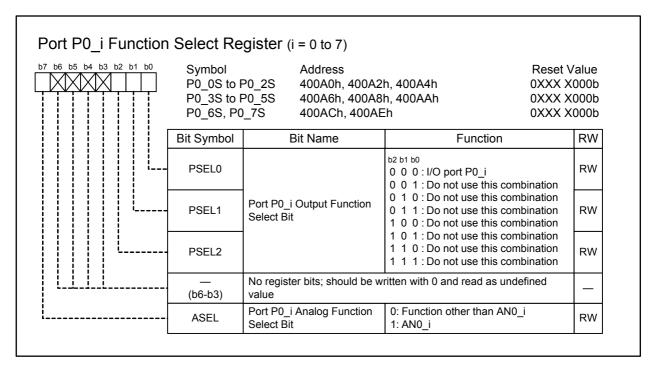
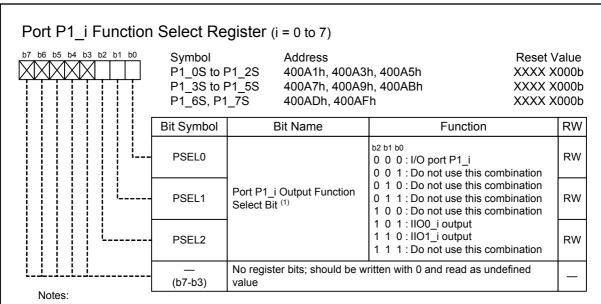
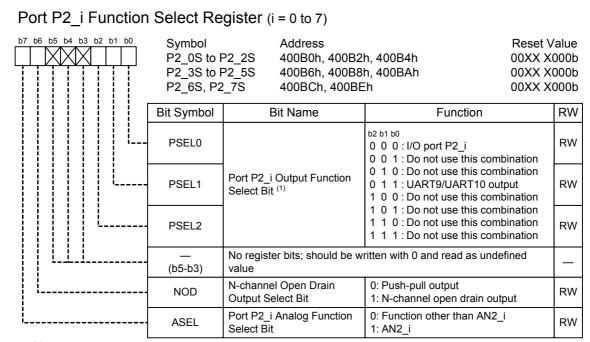



Figure 26.3 Registers P0_0S to P0_7S

Port P0_i shares a pin with the AN0_i input for the A/D converter (i = 0 to 7).

To use it as a programmable I/O port, set the P0_iS register to 00h. To use it as an A/D converter input pin, set this register to 80h and the PD0_i bit to 0 (port P0_i functions as an input port).

1. Refer to the following table for each pin setting.


Port		Setting Value of Bits PSEL2 to PSEL0								
Port	000b	001b	010b	011b	100b	101b	110b	111b		
P1_0	P1_0	(2)	(2)	(2)	(2)	IIO0_0 output	IIO1_0 output	(2)		
P1_1	P1_1	(2)	(2)	(2)	(2)	IIO0_1 output	IIO1_1 output	(2)		
P1_2	P1_2	(2)	(2)	(2)	(2)	IIO0_2 output	IIO1_2 output	(2)		
P1_3	P1_3	(2)	(2)	(2)	(2)	IIO0_3 output	IIO1_3 output	(2)		
P1_4	P1_4	(2)	(2)	(2)	(2)	IIO0_4 output	IIO1_4 output	(2)		
P1_5	P1_5	(2)	(2)	(2)	(2)	IIO0_5 output	IIO1_5 output	(2)		
P1_6	P1_6	(2)	(2)	(2)	(2)	IIO0_6 output	IIO1_6 output	(2)		
P1_7	P1_7	(2)	(2)	(2)	(2)	IIO0_7 output	IIO1_7 output	(2)		

^{2.} Do not use this combination.

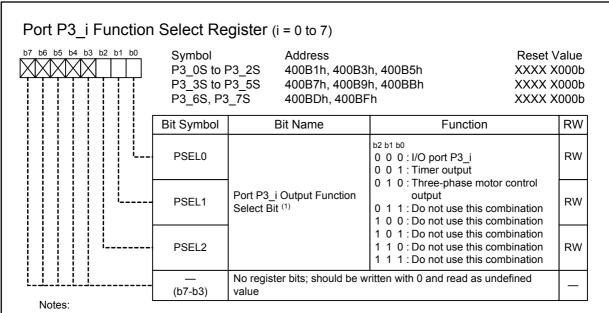
Figure 26.4 Registers P1_0S to P1_7S

Port P1_i shares a pin with intelligent I/O groups 0 and 1 (IIO0 and IIO1) and the external interrupt inputs (i = 0 to 7).

To use it as an output pin, set the PD1_i bit to 1 (port P1_i functions as an output port) and select a function according to Figure 26.4. To use it as an input pin, set the PD1_i bit to 0 (port P1_i functions as an input port).

Notes:

^{1.} Refer to the table below for each pin setting.


Port		Setting Value of Bits PSEL2 to PSEL0								
FOIL	000b	001b	010b	011b	100b	101b	110b	111b		
P2_0	P2_0	(2)	(2)	RTS9	(2)	(2)	(2)	(2)		
P2_1	P2_1	(2)	(2)	CLK9 output	(2)	(2)	(2)	(2)		
P2_2	P2_2	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P2_3	P2_3	(2)	(2)	TXD9	(2)	(2)	(2)	(2)		
P2_4	P2_4	(2)	(2)	RTS10	(2)	(2)	(2)	(2)		
P2_5	P2_5	(2)	(2)	CLK10 output	(2)	(2)	(2)	(2)		
P2_6	P2_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P2_7	P2_7	(2)	(2)	TXD10	(2)	(2)	(2)	(2)		

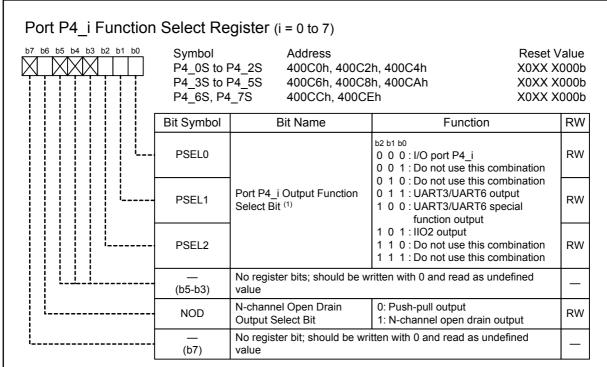
^{2.} Do not use this combination.

Figure 26.5 Registers P2_0S to P2_7S

Port P2_i shares a pin with the serial interface (UART9 and UART10) and AN2_i for the A/D converter (i = 0 to 7).

To use it as an output pin, set the PD2_i bit to 1 (port P2_i functions as an output port) and select a function according to Figure 26.5. To use it as an input pin of functions other than the A/D converter, set the PD2_i bit to 0 (port P2_i functions as an input port). To use it as an A/D converter input pin, set this register to 80h and the PD2_i bit to 0 (port P2_i functions as an input port).

1. Refer to the following table for each pin setting.


Port	Setting Value of Bits PSEL2 to PSEL0									
1 Oit	000b	001b	010b	011b	100b	101b	110b	111b		
P3_0	P3_0	TA0OUT output	(2)	(2)	(2)	(2)	(2)	(2)		
P3_1	P3_1	TA3OUT output	(2)	(2)	(2)	(2)	(2)	(2)		
P3_2	P3_2	TA1OUT output	V	(2)	(2)	(2)	(2)	(2)		
P3_3	P3_3	(2)	∇	(2)	(2)	(2)	(2)	(2)		
P3_4	P3_4	TA2OUT output	W	(2)	(2)	(2)	(2)	(2)		
P3_5	P3_5	(2)	W	(2)	(2)	(2)	(2)	(2)		
P3_6	P3_6	TA4OUT output	U	(2)	(2)	(2)	(2)	(2)		
P3_7	P3_7	(2)	Ū	(2)	(2)	(2)	(2)	(2)		

^{2.} Do not use this combination.

Figure 26.6 Registers P3_0S to P3_7S

Port P3_i shares a pin with the timer output and three-phase motor control output (i = 0 to 7).

To use it as an output pin, set the PD3_i bit to 1 (port P3_i functions as an output port) and select a function according to Figure 26.6. To use it as an input pin, set the PD3_i bit to 0 (port P3_i functions as an input port).

Notes:

1. Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0									
Fort	000b	001b	010b	011b	100b	101b	110b	111b		
P4_0	P4_0	(2)	(2)	RTS3	(2)	(2)	(2)	(2)		
P4_1	P4_1	(2)	(2)	CLK3 output	(2)	(2)	(2)	(2)		
P4_2	P4_2	(2)	(2)	SCL3 output	STXD3	(2)	(2)	(2)		
P4_3	P4_3	(2)	(2)	TXD3 SDA3 output	(2)	OUTC2_0 ISTXD2 IEOUT	(2)	(2)		
P4_4	P4_4	(2)	(2)	RTS6	(2)	(2)	(2)	(2)		
P4_5	P4_5	(2)	(2)	CLK6 output	(2)	(2)	(2)	(2)		
P4_6	P4_6	(2)	(2)	SCL6 output	STXD6	(2)	(2)	(2)		
P4_7	P4_7	(2)	(2)	TXD6 SDA6 output	(2)	(2)	(2)	(2)		

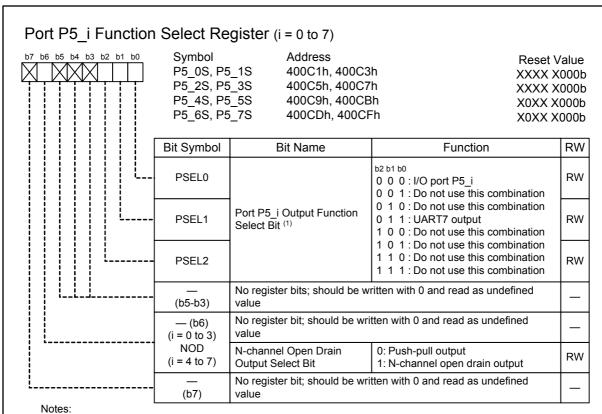

^{2.} Do not use this combination.

Figure 26.7 Registers P4_0S to P4_7S

Port P4_i shares a pin with the serial interface (UART3 and UART6) and intelligent I/O group 2 (IIO2) (i = 0 to 7).

To use it as an output pin, set the PD4_i bit to 1 (port P4_i functions as an output port) and select a function according to Figure 26.7. To use it as an input pin, set the PD4_i bit to 0 (port P4_i functions as an input port).

Ports P4_0 to P4_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

1. Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0									
	000b	001b	010b	011b	100b	101b	110b	111b		
P5_0	P5_0	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P5_1	P5_1	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P5_2	P5_2	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P5_3	P5_3	(2)	(2)	— ⁽²⁾	(2)	(2)	(2)	(2)		
P5_4	P5_4	(2)	(2)	TXD7	(2)	(2)	(2)	(2)		
P5_5	P5_5	(2)	(2)	CLK7 output	(2)	(2)	(2)	(2)		
P5_6	P5_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)		
P5_7	P5_7	(2)	(2)	RTS7	(2)	(2)	(2)	(2)		

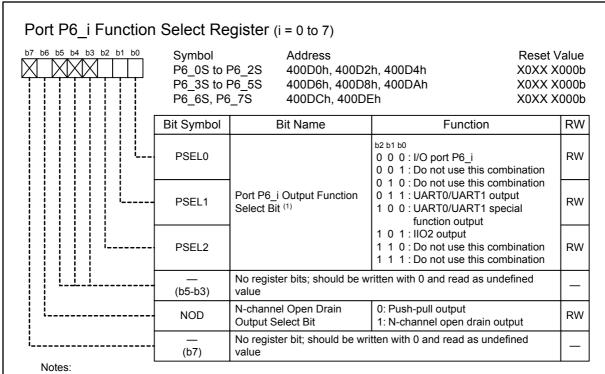

^{2.} Do not use this combination.

Figure 26.8 Registers P5_0S to P5_7S

Port P5 i shares a pin with the serial interface (UART7) (i = 0 to 7).

To use it as an output pin, set the PD5_i bit to 1 (port P5_i functions as an output port) and select a function according to Figure 26.8. To use it as an input pin, set the PD5_i bit to 0 (port P5_i functions as an input port).

Ports P5_4 to P5_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

1. Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0									
Foit	000b	001b	010b	011b	100b	101b	110b	111b		
P6_0	P6_0	(2)	(2)	RTS0	(2)	(2)	(2)	(2)		
P6_1	P6_1	(2)	(2)	CLK0 output	(2)	(2)	(2)	(2)		
P6_2	P6_2	(2)	(2)	SCL0 output	STXD0	(2)	(2)	(2)		
P6_3	P6_3	(2)	(2)	TXD0 SDA0 output	(2)	(2)	(2)	(2)		
P6_4	P6_4	(2)	(2)	RTS1	(2)	OUTC_1 ISCLK2 output	(2)	(2)		
P6_5	P6_5	(2)	(2)	CLK1 output	(2)	(2)	(2)	(2)		
P6_6	P6_6	(2)	(2)	SCL1 output	STXD1	(2)	(2)	(2)		
P6_7	P6_7	(2)	(2)	TXD1 SDA1 output	(2)	(2)	(2)	(2)		

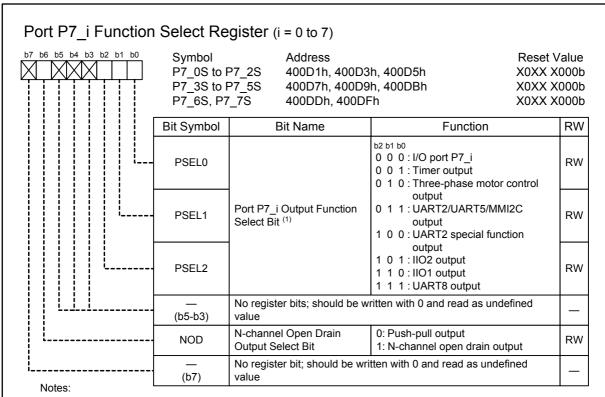

^{2.} Do not use this combination.

Figure 26.9 Registers P6_0S to P6_7S

Port P6_i shares a pin with the serial interface (UART0 and UART1) and intelligent I/O group 2 (IIO2) (i = 0 to 7).

To use it as an output pin, set the PD6_i bit to 1 (port P6_i functions as an output port) and select a function according to Figure 26.9. To use it as an input pin, set the PD6_i bit to 0 (port P6_i functions as an input port).

Ports P6_0 to P6_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

1. Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0									
Poit	000b	001b	010b	011b	100b	101b	110b	111b		
P7_0	P7_0	TA0OUT output	(2)	TXD2 SDA2 output MSDA output	(2)	OUTC2_0 ISTXD2 IEOUT	IIO1_6 output	(2)		
P7_1	P7_1	(2)	(2)	SCL2 output MSCL output	STXD2	OUTC2_2	IIO1_7 output	(2)		
P7_2	P7_2	TA1OUT output	V	CLK2 output	(2)	(2)	(2)	(2)		
P7_3	P7_3	(2)	\overline{V}	RTS2	(2)	(2)	IIO1_0 output	TXD8		
P7_4	P7_4	TA2OUT output	W	(2)	(2)	(2)	IIO1_1 output	CLK8 output		
P7_5	P7_5	(2)	W	(2)	(2)	(2)	IIO1_2 output	(2)		
P7_6	P7_6	TA3OUT output	(2)	TXD5 SDA5 output	(2)	(2)	IIO1_3 output	RTS8		
P7_7	P7_7	(2)	(2)	CLK5 output	(2)	(2)	IIO1_4 output	(2)		

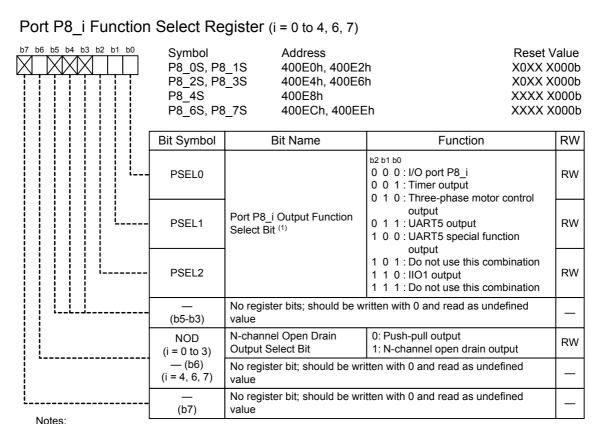

^{2.} Do not use this combination.

Figure 26.10 Registers P7_0S to P7_7S

Port P7_i shares a pin with the timer, three-phase motor control, serial interface (UART2, UART5, and UART8), multi-master I²C-bus interface (MMI2C), and intelligent I/O groups 1 and 2 (IIO1 and IIO2) (i = 0 to 7).

To use it as an output pin, set the PD7_i bit to 1 (port P7_i functions as an output port) and select a function according to Figure 26.10. To use it as an input pin, set the PD7_i bit to 0 (port P7_i functions as an input port).

Ports P7_0 to P7_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0								
	000b	001b	010b	011b	100b	101b	110b	111b	
P8_0	P8_0	TA4OUT output	U	SCL5 output	STXD5	(2)	(2)	(2)	
P8_1	P8_1	(2)	Ū	RTS5	(2)	(2)	IIO1_5 output	(2)	
P8_2	P8_2	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
P8_3	P8_3	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
P8_4	P8_4	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
P8_6	P8_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)	
P8_7	P8_7	(2)	(2)	(2)	(2)	(2)	(2)	(2)	

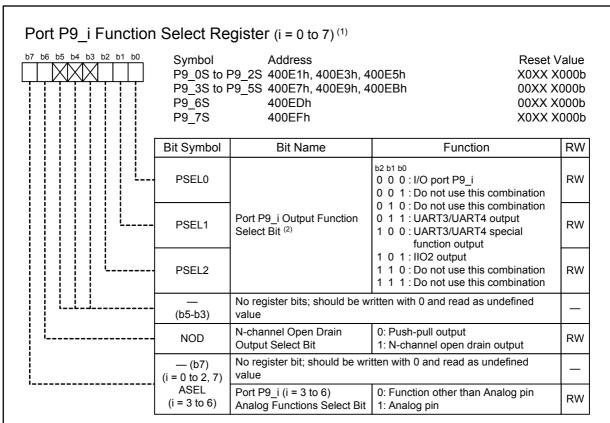

^{2.} Do not use this combination.

Figure 26.11 Registers P8_0S to P8_4S, P8_6S, and P8_7S

Port P8_i shares a pin with the timer, three-phase motor control, serial interface (UART5), intelligent I/O group 1 (IIO1), and external interrupt inputs (i = 0 to 4, 6, 7).

To use it as an output pin, set the PD8_i bit to 1 (port P8_i functions as an output port) and select a function according to Figure 26.11. To use it as an input pin, set the PD8_i bit to 0 (port P8_i functions as an input port).

Ports P8_0 to P8_3 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

Notes:

- 1. Set the PRC2 bit in the PRCR register to 1 (write enabled) just before rewriting this register. No interrupt handling or DMA transfers should be inserted between these two instructions.
- 2. Refer to the following table for each pin setting.

Port	Setting Value of Bits PSEL2 to PSEL0								
Port	000b	001b	010b	011b	100b	101b	110b	111b	
P9_0	P9_0	(3)	(3)	CLK3 output	(3)	(3)	(3)	(3)	
P9_1	P9_1	(3)	(3)	SCL3 output	STXD3	(3)	(3)	(3)	
P9_2	P9_2	(3)	(3)	TXD3 SDA3 output	(3)	OUTC2_0 ISTXD2 IEOUT	(3)	(3)	
P9_3	P9_3	(3)	(3)	RTS3	(3)	(3)	(3)	(3)	
P9_4	P9_4	(3)	(3)	RTS4	(3)	(3)	(3)	(3)	
P9_5	P9_5	(3)	(3)	CLK4 output	(3)	(3)	(3)	(3)	
P9_6	P9_6	(3)	(3)	TXD4 SDA4 output	(3)	(3)	(3)	(3)	
P9_7	P9_7	(3)	(3)	SCL4 output	STXD4	(3)	(3)	(3)	

^{3.} Do not use this combination.

Figure 26.12 Registers P9_0S to P9_7S

Port P9_i shares a pin with the serial interface (UART3 and UART4) and intelligent I/O group 2 (IIO2) (i = 0 to 7). Ports P9_3 to P9_6 also share a pin with the A/D converter I/O (ANEX0 and ANEX1) and D/A converter output.

To use it as the A/D converter pin or the D/A converter pin, set the P9_iS register to 80h and the PD9_i bit to 0 (port P9_i functions as an input port) irrespective of the I/O state.

To use it as an output pin for functions other than the A/D converter or the D/A converter, set the PD9_i bit to 1 (port P9_i functions as an output port) and select a function according to Figure 26.12. To use it as an input pin of functions other than the A/D converter or the D/A converter, set the PD9_i bit to 0 (port P9_i functions as an input port).

When the NOD bit is set to 1, the corresponding pin functions as an N-channel open drain output.

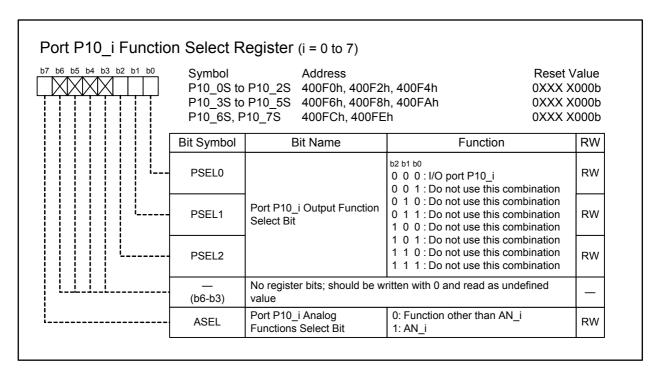
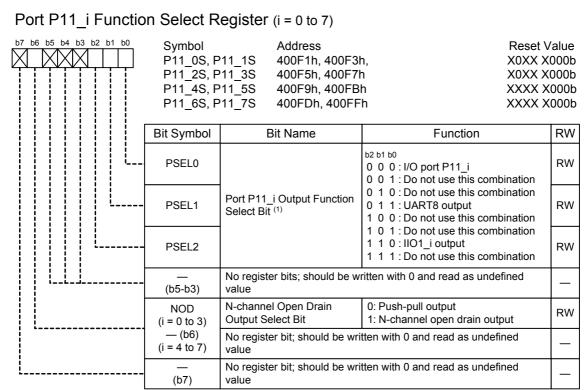
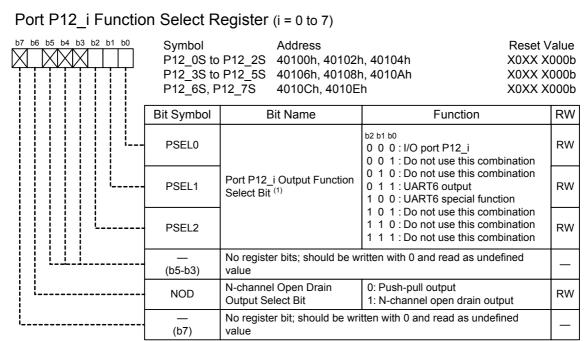



Figure 26.13 Registers P10_0S to P10_7S

Port P10_i shares a pin with the AN_i input for the A/D converter and key input interrupts (i = 0 to 7). To use as it a programmable I/O port, set the P10_iS register to 00h. To use it as an input pin (except for the A/D converter), set the PD10_i bit to 0 (port P10_i functions as an input port). To use it as an input pin for the A/D converter, set the P10_iS register to 80h and the PD10_i bit to 0 (port P10_i functions as an input port).

Notes:

^{1.} Refer to the following table below for each pin setting.


Port			Settir	ng Value of Bits	s PSEL2 to	PSEL0		
Poit	000b	001b	010b	011b	100b	101b	110b	111b
P11_0	P11_0	(2)	(2)	TXD8	(2)	(2)	IIO1_0 output	(2)
P11_1	P11_1	(2)	(2)	CLK8 output	(2)	(2)	IIO1_1 output	(2)
P11_2	P11_2	(2)	(2)	(2)	(2)	(2)	IIO1_2 output	(2)
P11_3	P11_3	(2)	(2)	RTS8	(2)	(2)	IIO1_3 output	(2)
P11_4	P11_4	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P11_5	P11_5	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P11_6	P11_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P11_7	P11_7	(2)	(2)	(2)	(2)	(2)	(2)	(2)

^{2.} Do not use this combination.

Figure 26.14 Registers P11_0S to P11_7S

Port P11_i shares a pin with the serial interface (UART8) and intelligent I/O group 1 (IIO1) (i = 0 to 7). To use it as an output pin, set the PD11_i bit to 1 (port P11_i functions as an output port) and select a function according to Figure 26.14. To use it as an input pin, set the PD11_i bit to 0 (port P11_i functions as an input port).

To use as an N-channel open drain output, set the NOD bit to 1.

Notes:

1. Refer to the following table for each pin setting.

Port			Settir	ng Value of Bits	PSEL2 to P	SEL0		
Port	000b	001b	010b	011b	100b	101b	110b	111b
P12_0	P12_0	(2)	(2)	TXD6 SDA6 output	(2)	(2)	(2)	(2)
P12_1	P12_1	(2)	(2)	CLK6 output	(2)	(2)	(2)	(2)
P12_2	P12_2	(2)	(2)	SCL6 output	STXD6	(2)	(2)	(2)
P12_3	P12_3	(2)	(2)	RTS6	(2)	(2)	(2)	(2)
P12_4	P12_4	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P12_5	P12_5	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P12_6	P12_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P12_7	P12_7	(2)	(2)	(2)	(2)	(2)	(2)	(2)

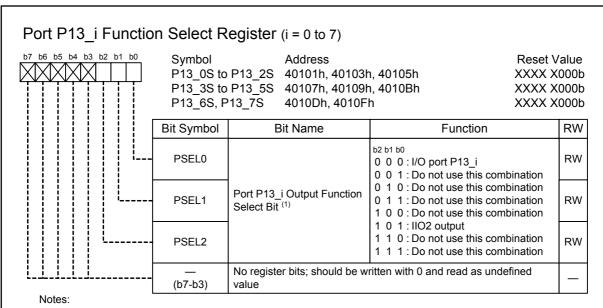

^{2.} Do not use this combination.

Figure 26.15 Registers P12_0S to P12_7S

Port P12 i shares a pin with the serial interface (UART6) (i = 0 to 7).

To use it as an output pin, set the PD12_i bit to 1 (port P12_i functions as an output port) and select a function according to Figure 26.15. To use it as an input pin, set the PD12_i bit to 0 (port P12_i functions as an input port).

Ports P12_0 to P12_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

1. Refer to the following table for each pin setting.

Port			Setti	ng Value of	Bits PSEL2	to PSEL0		
Foit	000b	001b	010b	011b	100b	101b	110b	111b
P13_0	P13_0	(2)	(2)	(2)	(2)	OUTC2_4	(2)	(2)
P13_1	P13_1	(2)	(2)	(2)	(2)	OUTC2_5	(2)	(2)
P13_2	P13_2	(2)	(2)	(2)	(2)	OUTC2_6	(2)	(2)
P13_3	P13_3	(2)	(2)	(2)	(2)	OUTC2_3	(2)	(2)
P13_4	P13_4	(2)	(2)	(2)	(2)	OUTC2_0 ISTXD2 IEOUT	(2)	(2)
P13_5	P13_5	(2)	(2)	(2)	(2)	OUTC2_2	(2)	(2)
P13_6	P13_6	(2)	(2)	(2)	(2)	OUTC2_1 ISCLK2 output	(2)	(2)
P13_7	P13_7	(2)	(2)	(2)	(2)	OUTC2_7	(2)	(2)

^{2.} Do not use this combination.

Figure 26.16 Registers P13_0S to P13_7S

Port P13_i shares a pin with intelligent I/O group 2 (IIO2) (i = 0 to 7).

To use it as an output pin, set the PD13_i bit to 1 (port P13_i functions as an output port) and select a function according to Figure 26.16. To use it as an input pin, set the PD13_i bit to 0 (port P13_i functions as an input port).

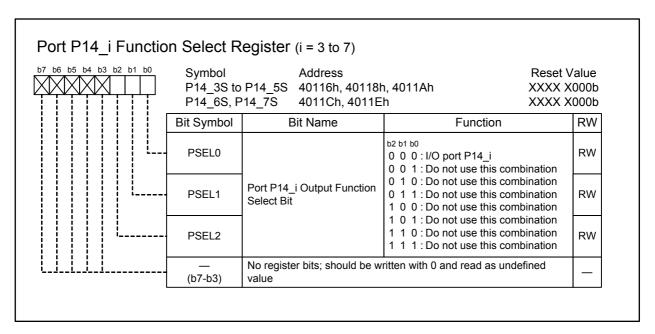
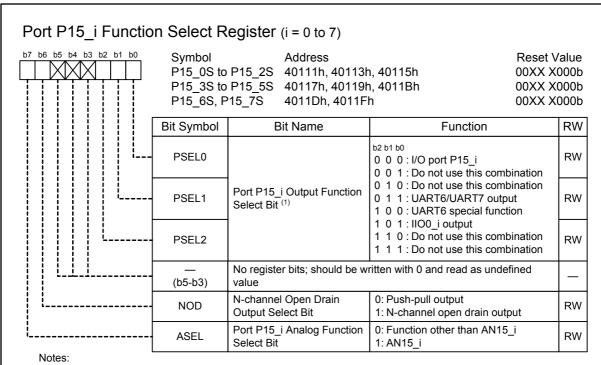



Figure 26.17 Registers P14_3S to P14_7S

Port P14_i shares a pin with external interrupt inputs. Set the P14_iS register to 00h (I/O port) (i = 3 to 7).

1. Refer to the following table for each pin setting.

Port			Settii	ng Value of Bits	s PSEL2 to	PSEL0		
Foit	000b	001b	010b	011b	100b	101b	110b	111b
P15_0	P15_0	(2)	(2)	TXD7	(2)	IIO0_0 output	(2)	(2)
P15_1	P15_1	(2)	(2)	CLK7 output	(2)	IIO0_1 output	(2)	(2)
P15_2	P15_2	(2)	(2)	(2)	(2)	IIO0_2 output	(2)	(2)
P15_3	P15_3	(2)	(2)	RTS7	(2)	IIO0_3 output	(2)	(2)
P15_4	P15_4	(2)	(2)	TXD6 SDA6 output	(2)	IIO0_4 output	(2)	(2)
P15_5	P15_5	(2)	(2)	SCL6 output	STXD6	IIO0_5 output	(2)	(2)
P15_6	P15_6	(2)	(2)	CLK6 output	(2)	IIO0_6 output	(2)	(2)
P15_7	P15_7	(2)	(2)	RTS6	(2)	IIO0_7 output	(2)	(2)

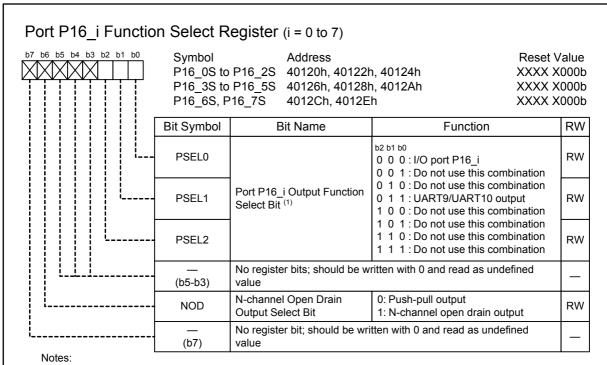

^{2.} Do not use this combination.

Figure 26.18 Registers P15_0S to P15_7S

Port P15_i shares a pin with the serial interface (UART6 and UART7), intelligent I/O group 0 (IIO0), and AN15_i input for the A/D converter (i = 0 to 7).

To use it as an output pin, set the PD15_i bit to 1 (port P15_i functions as an output port) and select a function according to Figure 26.18. To use it as an input pin (except for the A/D converter), set the PD15_i bit to 0 (port P15_i functions as an input port). To use it as an input pin for the A/D converter, set the P15_iS register to 80h and the PD15_i bit to 0.

To use as an N-channel open drain output, set the NOD bit to 1.

1. Refer to the following table for each pin setting.

Port			Setti	ng Value of Bits	PSEL2 to P	SEL0		
Foit	000b	001b	010b	011b	100b	101b	110b	111b
P16_0	P16_0	(2)	(2)	RTS9	(2)	(2)	(2)	(2)
P16_1	P16_1	(2)	(2)	CLK9 output	(2)	(2)	(2)	(2)
P16_2	P16_2	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P16_3	P16_3	(2)	(2)	TXD9	(2)	(2)	(2)	(2)
P16_4	P16_4	(2)	(2)	RTS10	(2)	(2)	(2)	(2)
P16_5	P16_5	(2)	(2)	CLK10 output	(2)	(2)	(2)	(2)
P16_6	P16_6	(2)	(2)	(2)	(2)	(2)	(2)	(2)
P16_7	P16_7	(2)	(2)	TXD10	(2)	(2)	(2)	(2)

^{2.} Do not use this combination.

Figure 26.19 Registers P16_0S to P16_7S

Port P16 i shares a pin with the serial interface (UART9 and UART10) (i = 0 to 7).

To use it as an output pin, set the PD16_i bit to 1 (port P16_i functions as an output port) and select a function according to Figure 26.19. To use it as an input pin, set the PD16_i bit to 0 (port P16_i functions as an input port).

Ports P16_0 to P16_7 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

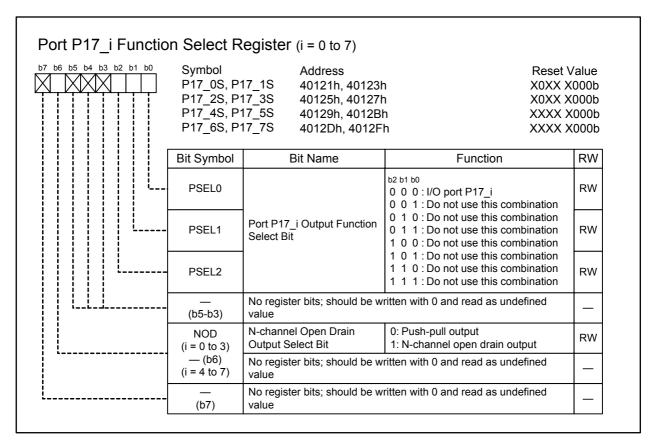


Figure 26.20 Registers P17_0S to P17_7S

Ports P17_0 to P17_3 are 5 V tolerant inputs. To use them as I/O pins with 5 V tolerant input enabled, set the NOD bit to 1.

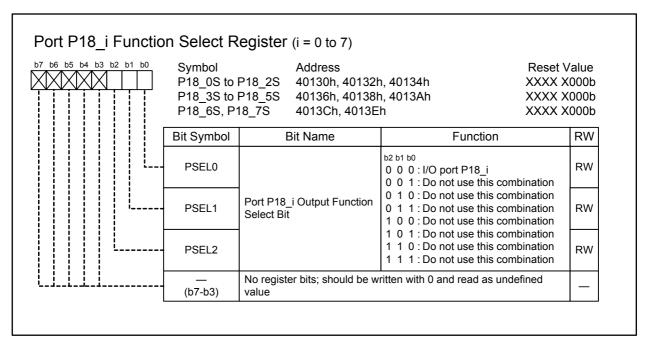


Figure 26.21 Registers P18_0S to P18_7S

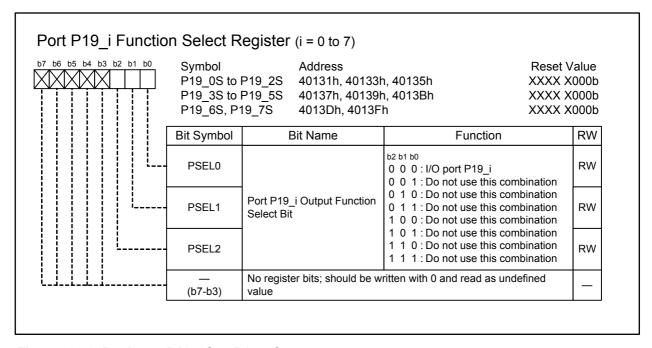


Figure 26.22 Registers P19_0S to P19_7S

Any function other than the programmable I/O port is not assigned for ports P18 and P19. Do not set these registers to any values other than 00h.

26.3 Input Function Select Registers

When a peripheral input is assigned to multiple pins, these registers select which input pin should be connected to the peripheral.

Figures 26.23 to 26.25 show the input function select registers.

Input Function Select Register 0 Symbol Address Reset Value IFS0 40098h X000 0000b Bit Symbol Bit Name **Function** RW Assign timer A input to Timer A Input Pin Switch IFS00 0: Port P3 RW Bit (1) 1: Port P7/port P8 Assign timer B input to Timer B Input Pin Switch IFS01 0: Port P6 RW Bit (2) 1: Port P9 Assign UART6 input to IFS02 RW b3 b2 UART6 Input Pin Switch Bit 0 0: Port P4 0 1: Do not use this combination 1 0: Port P15 IFS03 RW 1 1: Port P12 Assign UART8 input to UART8 Input Pin Switch Bit IFS04 0: Port P7 RW 1: Port P11 Assign UART7 input to UART7 Input Pin Switch Bit IFS05 0: Port P5 RW 1: Port P15 Assign UART3 input to UART3 Input Pin Switch Bit 0: Port P4 IFS06 RW 1: Port P9 No register bit; should be written with 0 and read as undefined (b7) Notes:

1. Refer to the following table for each pin setting of timer A.

	IFS00	TA0OUT input	TA1OUT input	TA1IN	TA2OUT input	TA2IN	TA3OUT input	TA4OUT input	TA4IN
ı	0	P3_0	P3_2	P3_3	P3_4	P3_5	P3_1	P3_6	P3_7
ı	1	P7_0	P7_2	P7_3	P7_4	P7_5	P7_6	P8_0	P8_1

2. Refer to the following table for each pin setting of timer B.

IFS01	TB0IN	TB1IN	TB2IN
0	P6_0	P6_1	P6_2
1	P9_0	P9_1	P9_2

3. Refer to the following table for each pin setting of UART6.

IFS03	IFS02	SDA6 input/SRXD6	RXD6/SCL6 input	CLK6 input	CTS6/SS6
0	0	P4_7	P4_6	P4_5	P4_4
1	0	P15_4	P15_5	P15_6	P15_7
1	1	P12_0	P12_2	P12_1	P12_3

4. Refer to the following table for each pin setting of UART8.

IFS04	CLK8 input	RXD8	CTS8
0	P7_4	P7_5	P7_6
1	P11_1	P11_2	P11_3

5. Refer to the following table for each pin setting of UART7.

IFS05	CLK7 input	RXD7	CTS7
0	P5_5	P5_6	P5_7
1	P15_1	P15_2	P15_3

6. Refer to the following table for each pin setting of UART3.

IFS06	SDA3 input/SRXD3	RXD3/SCL3 input	CLK3 input	CTS3/SS3
0	P4_3	P4_2	P4_1	P4_0
1	P9_2	P9_1	P9_0	P9_3

Figure 26.23 IFS0 Register

Input Function Select Register 2 Symbol Address Reset Value IFS2 4009Ah 0000 00X0b Bit Symbol Bit Name **Function** RW Assign IIO0 input to Intelligent I/O Group 0 Input IFS20 0: Port P1 RW Pin Switch Bit (1) 1: Port P15 No register bit; should be written with 0 and read as undefined (b1) value Assign this input to IFS22 RW b3 b2 Intelligent I/O Group 0 Two-0 0: Port P8 and INT1 phase Pulse Input Pin 0 1: Port P7 and $\overline{INT0}$ Switch Bit (2) 1 0: Port P3 and INT1 IFS23 RW 1 1: Port P3 and INTO Assign IIO1 input to IFS24 RW b5 b4 Intelligent I/O Group 1 Input 0 0: Port P7/port P8 Pin Switch Bit (3) 0 1: Port P11 1 0 : Port P1 IFS25 RW 1 1: Do not use this combination Assign this input to IFS26 RW b7 b6 Intelligent I/O Group 1 Two-0 0: Port P8 and INT1 phase Pulse Input Pin 0 1: Port P7 and INTO Switch Bit (4) 1 0: Port P3 and INT1 IFS27 RW 1 1: Port P3 and INTO

Notes:

1. Refer to the following table for each pin setting of intelligent I/O group 0.

IFS20	IIO0_0 input	IIO0_1 input	IIO0_2 input	IIO0_3 input	IIO0_4 input	IIO0_5 input	IIO0_6 input	IIO0_7 input
0	P1_0	P1_1	P1_2	P1_3	P1_4	P1_5	P1_6	P1_7
1	P15_0	P15_1	P15_2	P15_3	P15_4	P15_5	P15_6	P15_7

2. Refer to the following table for each pin setting of intelligent I/O group 0 in two-phase pulse signal processing mode.

IFS23	IFS22	UD0A	UD0B	UD0Z
0	0	P8_0	P8_1	P8_3 (INT1)
0	1	P7_6	P7_7	P8_2 (INT0)
1	0	P3_0	P3_1	P8_3 (INT1)
1	1	P3_0	P3_1	P8_2 (INT0)

3. Refer to the following table for each pin setting of intelligent I/O group 1.

IFS25	IFS24	IIO1_0 input	IIO1_1 input	IIO1_2 input	IIO1_3 input	IIO1_4 input	IIO1_5 input	IIO1_6 input	IIO1_7 input
0	0	P7_3	P7_4	P7_5	P7_6	P7_7	P8_1	P7_0	P7_1
0	1	P11_0	P11_1	P11_2	P11_3	_	_	_	_
1	0	P1_0	P1_1	P1_2	P1_3	P1_4	P1_5	P1_6	P1_7

4. Refer to the following table for each pin setting of intelligent I/O group 1 in two-phase pulse signal processing mode.

IFS27	IFS26	UD1A	UD1B	UD1Z
0	0	P8_0	P8_1	P8_3 (INT1)
0	1	P7_6	P7_7	P8_2 (INT0)
1	0	P3_0	P3_1	P8_3 (INT1)
1	1	P3_0	P3_1	P8_2 (INT0)

Figure 26.24 IFS2 Register

Input Function Select Register 3 Symbol Address Reset Value IFS3 4009Bh XX00 XX00b Bit Symbol Bit Name Function RW Assign IIO2 input to IFS30 RW 0 0: Port P6/port P7 Intelligent I/O Group 2 Input 0 1: Port P6/port P9 Pin Switch Bit (1) 1 0: Port P13 IFS31 RW 1 1: Port P6/port P4 No register bits; should be written with 0 and read as undefined (b3-b2) Assign UART9 input to UART9 Input Pin Switch Bit IFS34 0: Port P2 RW 1: Port P16 Assign UART10 input to UART10 Input Pin Switch IFS35 0: Port P2 RW Bit (3) 1: Port P16 No register bits; should be written with 0 and read as undefined (b7-b6)

1. Refer to the following table for each pin setting of intelligent I/O group 2.

IFS31	IFS30	ISCLK2 input	ISRXD2/IEIN
0	0	P6_4	P7_1
0	1	P6_4	P9_1
1	0	P13_6	P13_5
1	1	P6_4	P4_2

2. Refer to the following table for each pin setting of UART9. Set this bit to 0 in the 144-pin package.

IFS34	CTS9	CLK9 input	RXD9
0	P2_0	P2_1	P2_2
1	P16_0	P16_1	P16_2

3. Refer to the following table for each pin setting of UART10. Set this bit to 0 in the 144-pin package.

IFS35	CTS10	CLK10 input	RXD10
0	P2_4	P2_5	P2_6
1	P16_4	P16_5	P16_6

Figure 26.25 IFS3 Register

Notes:

26.4 Pull-up Control Registers 0 to 5 (Registers PUR0 to PUR5)

Figures 26.26 to 26.31 show registers PUR0 to PUR5.

These registers enable/disable the pull-up resistors for every group of four pins. To enable the pull-up resistors, set the corresponding bits in registers PUR0 to PUR5 to 1 (pull-up resistor enabled) and the respective bits in the direction register to 0 (input).

In memory expansion mode or microprocessor mode, set 0 (pull-up resistor disabled) to the pull-up control bits for ports P0 to P5, P11, and P13, operating as bus control pins. The pull-up resistors are enabled for ports P0, P1, P11, and P13 when these pins function as input ports in these modes.

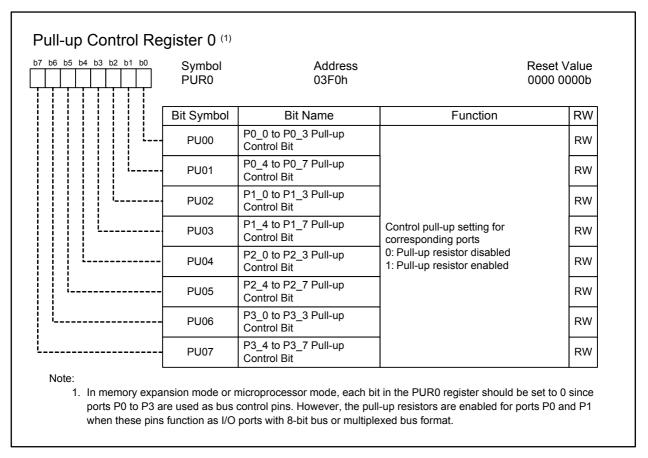


Figure 26.26 PUR0 Register

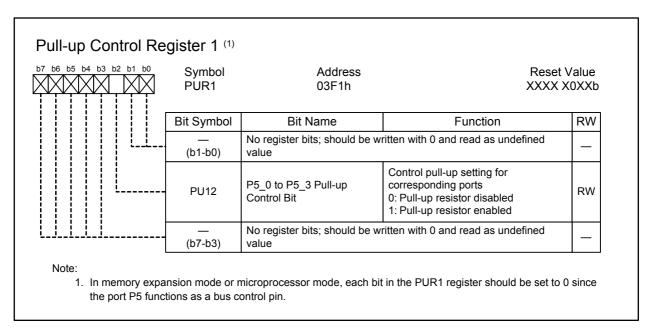


Figure 26.27 PUR1 Register

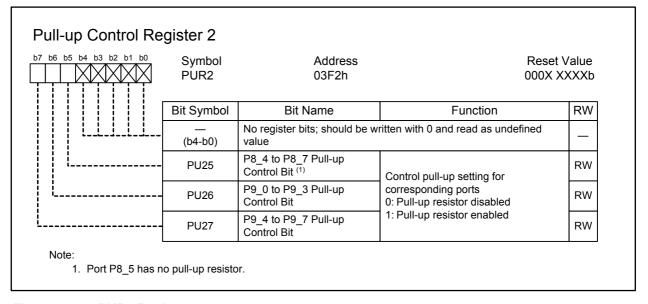


Figure 26.28 PUR2 Register

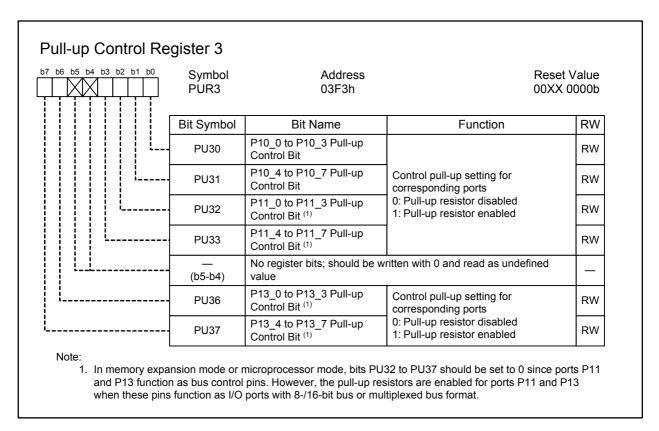


Figure 26.29 PUR3 Register

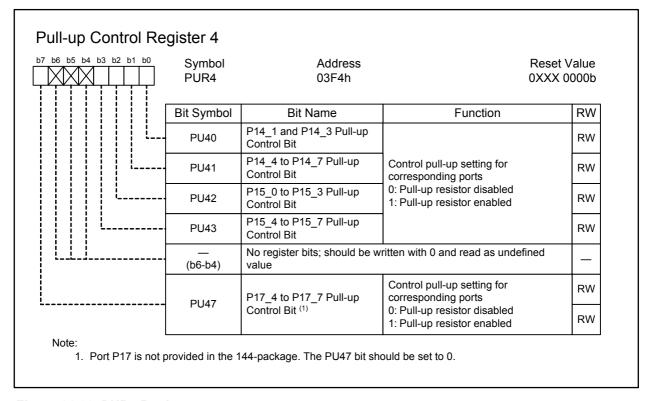
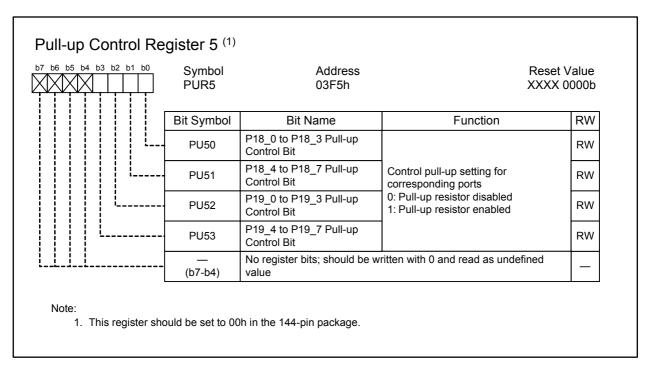
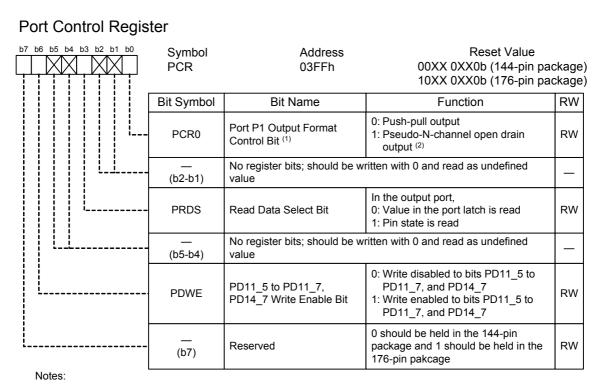


Figure 26.30 PUR4 Register




Figure 26.31 PUR5 Register

26.5 Port Control Register (PCR Register)

Figure 26.32 shows the PCR register.

This register selects an output mode for port P1 between push-pull output and pseudo-N-channel open drain output. When the PCR0 bit is set to 1, the P-channel transistor in the output buffer is turned off. Note that port P1 cannot be a perfect open drain output due to remaining parasitic diode. The absolute maximum rating of the input voltage is, therefore, -0.3 V to VCC + 0.3 V (refer to Figure 26.33).

In memory expansion mode or microprocessor mode, when port P1 is used for the data bus, the PCR0 bit should be set to 0. However, when port P1 is used as a programmable I/O port or an I/O pin for the peripheral functions, the output mode can be selected by setting the PCR0 bit even in these operating modes.

1. In memory expansion mode or microprocessor mode, this bit should be set to 0 since port P1 is used for the data bus. However, when it is used as an I/O port or an I/O pin for the peripheral functions, the PCR0 bit can select an output format between push-pull output and pseudo-N-channel open drain output.

Figure 26.32 PCR Register

^{2.} This function is designated not to make port P1 a full open drain, but to turn off the P-channel transistor in the CMOS output buffer. Therefore, the absolute maximum rating of the input voltage is -0.3 V to VCC + 0.3 V.

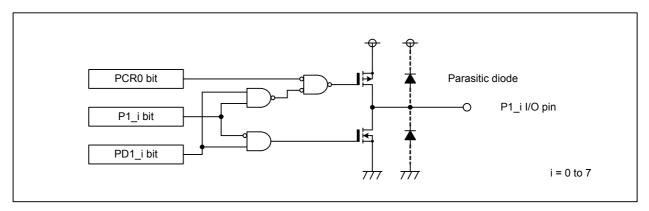


Figure 26.33 Port P1 Output Buffer Configuration

26.6 Configuring Unused Pins

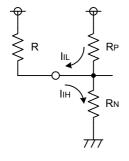
Table 26.2, Table 26.3, and Figure 26.35 show examples of configuring unused pins on the board.

Table 26.2 Unused Pin Configuration in Single-chip Mode (1)

Pin Name	Setting
Ports P0 to P19 (excluding ports P8_5 and P14_1) (2, 3, 4)	Configure as input ports so that each pin is connected to VSS via its own resistor; ⁽⁵⁾ or configure as output ports to leave the pins open
P14_1	Connect the pin to VSS via a resistor (5)
XOUT (6)	Leave pin open
NMI (P8_5)	Connect the pin to VCC via a resistor (5)
AVCC	Connect the pin to VCC
AVSS, VREF	Connect the pin to VSS
NSD	Connect the pin to VCC via a resistor of 1 to 4.7 k Ω

Notes:

- 1. Unused pins should be wired within 2 cm of the MCU.
- 2. When configuring the pins as output ports to leave them open, note that ports as inputs remain unchanged from when the reset is released until the mode transition is completed. During this transition, the power supply current may increase due to an undefined voltage level of the pins. In addition, the direction register value may change due to noise or program runaway caused by the noise. To avoid these situations, reconfigure the direction register regularly by software, which may achieve higher program reliability.
- 3. Ports P16 to P19 are available in the 176-pin package only.
- 4. In the 144-pin package, set FFh to the following addresses: 03E2h, 03E3h, 03E6h, and 03E7h.
- 5. Select a resistance value that is appropriate for the system. A range from 10 to 100 $k\Omega$ is recommended.
- 6. This setting is applicable when an external clock is applied to the XIN pin.


Table 26.3 Unused Pin Configuration in Memory Expansion Mode or Microprocessor Mode (1)

Pin Name	Setting
Ports P1, P6 to P19 (excluding ports P8_5 and P14_1) (2, 3, 4)	Configure as input ports so that each pin is connected to VSS via its own resistor; ⁽⁵⁾ or configure as output ports to leave the pins open
P14_1	Connect the pin to VSS via a resistor (5)
BC0 to BC3, WR0 to WR3, ALE, HLDA, XOUT (6), BCLK	Leave the pins open
HOLD, RDY	Connect the pins to VCC via a resistor (5)
NMI (P8_5)	Connect the pin to VCC via a resistor (5)
AVCC	Connect the pin to VCC
AVSS, VREF	Connect the pins to VSS
NSD	Connect the pin to VCC via a resistor of 1 to 4.7 k Ω

Notes:

- 1. Unused pins should be wired within 2 cm of the MCU.
- 2. When configuring the pins as output ports to leave them open, note that ports as inputs remain unchanged from when the reset is released until the mode transition is completed. During this transition, the power supply current may increase due to an undefined voltage level of the pins. In addition, the direction register value may change due to noise or program runaway caused by the noise. To avoid these situations, reconfigure the direction register regularly by software, which may achieve higher program reliability.
- 3. Ports P16 to P19 are available in the 176-pin package only.
- 4. In the 144-pin package, set FFh to the following addresses: 03E2h, 03E3h, 03E6h, and 03E7h.
- 5. Select a resistance value that is appropriate for the system. A range from 10 to 100 k Ω is recommended.
- 6. This setting is applicable when an external clock is applied to the XIN pin.

Pull-up/pull-down resistors

The figure shows the equivalent circuit of an input pin.

The equivalent input resistors (RP and RN) are calculated using input power current (IIL and IIH).

Example: When VCC = 5.0 V, $IIH = IIL = 5 \mu A$,

$$RP = RN = \frac{5.0}{5 \times 10^{-6}} = 1 \text{ M}\Omega$$

Since the voltage (VIH) defined as high is more than 0.8 VCC, the resistance value R should satisfy the following expression:

R//RP : RN = 0.2 : 0.8

That is,

$$R = \frac{2RPRN}{8RP - 2RN}$$

Specifically,

Example: When VCC = 5.0 V, $IIH = IIL = 5 \mu A$,

$$R = \frac{2 \times 10^6 \times 10^6}{8 \times 10^6 - 2 \times 10^6} = 333333$$

The maximum pull-up resistor R is approximately 330 k Ω .

The actual resistance value is the calculated value with some margins.

Figure 26.34 Pull-up/Pull-down Resistors

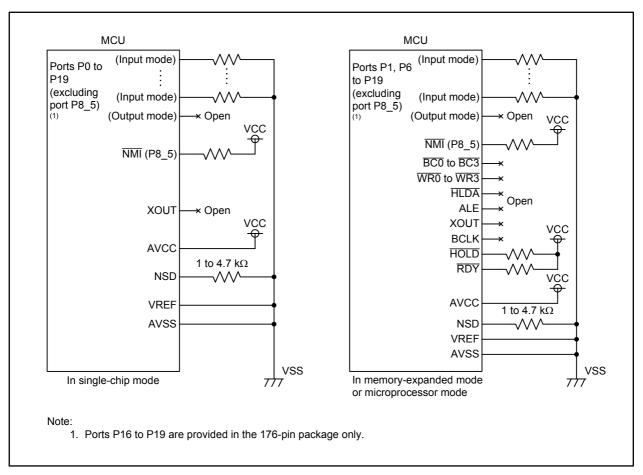


Figure 26.35 Unused Pin Configuration

27. Flash Memory

27.1 Overview

The flash memory can be programmed in the following three modes: CPU rewrite mode, standard serial I/O mode, and parallel I/O mode.

Table 27.1 lists specifications of the flash memory and Table 27.2 shows the overview of each rewrite mode.

Table 27.1 Flash Memory Specifications

Item	Specification
Rewrite modes	CPU rewrite mode, standard serial I/O mode, parallel I/O mode
Structure	Block architecture. Refer to Figure 27.1
Program operation	8-byte basis
Erase operation	1-block basis
Program and erase control method	Software commands
Protection types	Lock bit protect, ROM code protect, ID code protect
Software commands	9

Table 27.2 Flash Memory Rewrite Mode Overview

Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	CPU executes a software	A dedicated serial	A dedicated parallel
	command to rewrite the flash	programmer rewrites the flash	programmer rewrites the
	memory	memory	flash memory
	EW0 mode:	Standard serial I/O mode 1:	
	Rewritable in areas other	Synchronous serial I/O	
	than the on-chip flash	selected	
	memory	Standard serial I/O mode 2:	
	EW1 mode:	UART selected	
	Rewritable in areas other		
	than specified blocks to be		
	rewritten		
CPU operating	Single-chip mode,	Standard serial I/O mode	Parallel I/O mode
mode	Memory expansion mode		
	(EW0 mode)		
Programmer	_	Serial programmer	Parallel programmer
On-board	Supported	Supported	Not supported
programming			

Figure 27.1 shows the on-chip flash memory structure.

The on-chip flash memory contains program area to store user programs, and data area/data flash to store the result of user programs. The program area consists of blocks 0 to 17, and data area/data flash consists of blocks A and B.

Each block can be individually protected (locked) from programming or erasing by setting the lock bit.

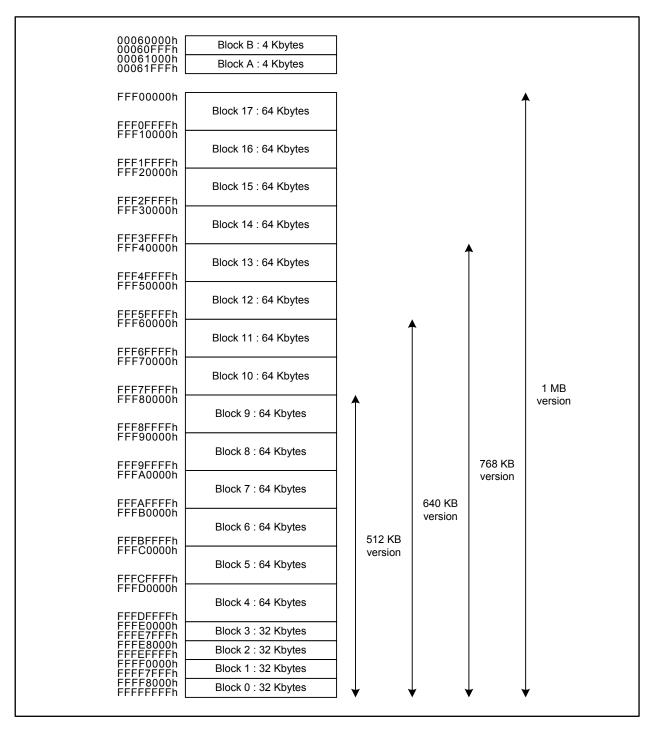


Figure 27.1 On-chip Flash Memory Block Diagram

27.2 Flash Memory Protection

There are three types of protection as shown in Table 27.3. Lock bit protection is intended to prevent accidental write or erase by program runaway. ROM code protection and ID code protection are intended to prevent read or write by a third party.

Table 27.3 Protection Types and Characteristics

Protection Type	Lock Bit Protection	ROM Code Protection	ID Code Protection
Protected	Erase, write	Read, write	Read, erase, write
operations			
Protection	CPU rewrite mode	Parallel I/O mode	Standard serial I/O mode
available in	Standard serial I/O mode		
	Parallel I/O mode		
Protection	Individual blocks	Entire flash memory	Entire flash memory
available for			
Protection	Setting 0 to the lock bit of	Setting the protect bit of any	Writing the program which
settings	block to be protected	block to 0	has set an ID code to specified address
Protection	Setting the LBD bit in the	Erasing all blocks whose	Sending a proper ID code
disabled by	FMR register to 1 (lock bit	protect bits are set to 0	from the serial programmer
	protection disabled), or by		
	erasing the blocks whose		
	lock bits are set to 0 to		
	permanently disable the		
	protection		

27.2.1 Lock Bit Protection

This protection can be used in all three rewrite modes. When the lock bit protection is enabled, all blocks whose lock bits are set to 0 (locked) are protected against programming and erasing.

To set the lock bit to 0, the lock bit program command must be issued.

To temporarily disable the protection of all protected blocks, disable the lock bit protection itself by setting the LBD bit in the FMR1 register to 1 (lock bit protection disabled). The protection of a protected block is disabled permanently and its lock bit becomes 1 (unlocked) if the block is erased.

27.2.2 ROM Code Protection

This protection can only be used in parallel I/O mode. When the ROM code protection is enabled, the entire flash memory is protected against reading and writing.

To disable the protection, erase all the blocks whose protect bits are set to 0 (protected).

Each block has two protect bits. Setting any protect bit to 0 by a software command enables the protection for the entire flash memory. Table 27.4 lists protect bit addresses.

Table 27.4 Protect Bit Addresses

Block	Protect Bit 0	Protect Bit 1
Block B	00060100h	00060300h
Block A	00061100h	00061300h
Block 17	FFF00100h	FFF00300h
Block 16	FFF10100h	FFF10300h
Block 15	FFF20100h	FFF20300h
Block 14	FFF30100h	FFF30300h
Block 13	FFF40100h	FFF40300h
Block 12	FFF50100h	FFF50300h
Block 11	FFF60100h	FFF60300h
Block 10	FFF70100h	FFF70300h
Block 9	FFF80100h	FFF80300h
Block 8	FFF90100h	FFF90300h
Block 7	FFFA0100h	FFFA0300h
Block 6	FFFB0100h	FFFB0300h
Block 5	FFFC0100h	FFFC0300h
Block 4	FFFD0100h	FFFD0300h
Block 3	FFFE0100h	FFFE0300h
Block 2	FFFE8100h	FFFE8300h
Block 1	FFFF0100h	FFFF0300h
Block 0	FFFF8100h	FFFF8300h

27.2.3 ID Code Protection

This protection can only be used in standard serial I/O mode. A command from the serial programmer is to be accepted when the 7-byte ID code sent from the serial programmer matches the ID code programmed in the flash memory. However, when the reset vector is FFFFFFFh, the ID code check is skipped because the flash memory is considered to be blank. When the reset vector is FFFFFFFh and the ROM code protection is enabled, only the block erase command is accepted.

The ID codes sent from the serial programmer are consecutively numbered as ID1, ID2, ..., and ID7. ID codes programmed in the flash memory, also numbered as ID1, ID2, ..., and ID7, are assigned to addresses FFFFFE8h, FFFFFE9h, ..., and FFFFFEEh as shown in Figure 27.2. The ID code protection is enabled when a program which has an ID code set in the corresponding address is written to the flash memory.

The following two ASCII code combinations are specified as reserved ID codes: "ALeRASE" and "Protect". Refer to Table 27.5, 27.2.4 "Forcible Erase Function", and 27.2.5 "Standard Serial I/O Mode Disable Function" for details.

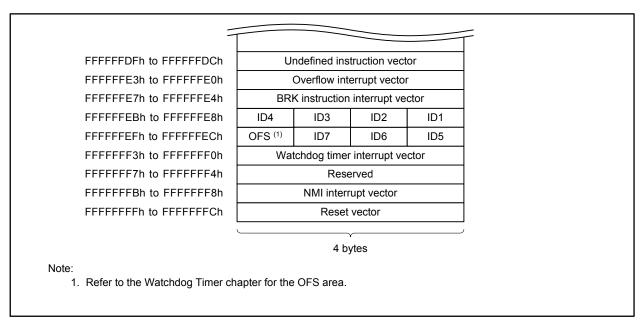


Figure 27.2 Addresses for ID Code Stored

Table 27.5 Reserved ID Codes

ID Code		ID1	ID2	ID3	ID4	ID5	ID6	ID7
ALeRASE	Glyph	Α	L	е	R	Α	S	E
	ASCII code	41h	4Ch	65h	52h	41h	53h	45h
Protect	Glyph	Р	r	0	t	е	С	t
	ASCII code	50h	72h	6Fh	74h	65h	63h	74h

27.2.4 Forcible Erase Function

The forcible erase function is available in standard serial I/O mode. With this function, all blocks of the flash memory are forcibly erased when ID codes sent from the serial programmer matches the ASCII code corresponding to the following sequential ASCII-glyphs: "A", "L", "e", "R", "A", "S", and "E". However, the function is ignored when the ROM code protection is activated and ID codes other than "ALERASE" are programmed in the flash memory.

Table 27.6 Operational Conditions for Forcible Erase Function

ID Codes Sent From	ID Codes Programmed in	ROM Code	Function	
the Serial Programmer	the Flash Memory	Protection		
	"ALeRASE"		Erase all blocks of the flash memory	
"ALeRASE"	Any codes other than "ALeRASE" or "Protect"	Inactivated		
ALCIVAGE		Activated	Check ID codes (resulted in unmatched	
	ALENASE OF FIOLECT		codes)	
	"ALeRASE"	_	Check ID codes (resulted in unmatched	
Any codes other than	ALERASE		codes)	
"ALeRASE"	Any codes other than	_	Check ID codes	
	"ALeRASE" or "Protect"			

27.2.5 Standard Serial I/O Mode Disable Function

With the standard serial I/O mode disable function, the flash memory in standard serial I/O mode is inaccessible from the CPU when ID code programmed in the flash memory are ASCII codes corresponding to the following sequential ASCII-glyphs: "P", "r", "o", "t", "e", "c", and "t".

When the ROM code protection is activated and ID codes corresponding to "Protect" are programmed, the serial programmer cannot deactivate the ROM code protection. In this case, the flash memory is not accessible from the outside of MCU, except that the parallel programmer can delete the flash memory.

27.3 CPU Rewrite Mode

In CPU rewrite mode, the CPU executes software commands to rewrite the flash memory. The CPU accesses the flash memory not via the CPU buses, but via the dedicated flash memory rewrite buses (refer to Figure 27.3).

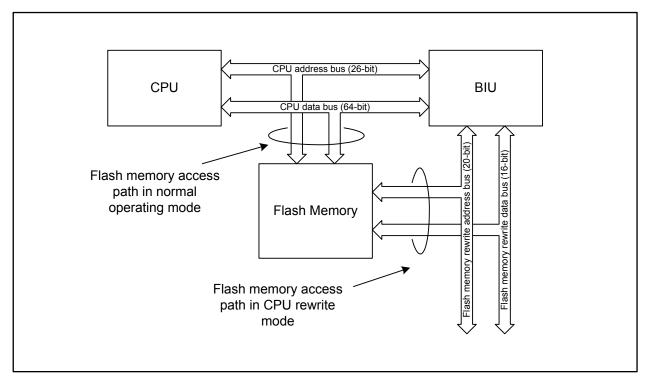


Figure 27.3 Flash Memory Access Path in CPU Rewrite Mode

Bus setting for flash memory rewrite should be performed by the FEBC register. Refer to 27.3.1 "Flash Memory Rewrite Bus Timing" and 28. "Electrical Characteristics" for the appropriate bus setting.

The CPU rewrite mode contains modes EW0 and EW1 as shown in Table 27.7.

Table 27.7 EW0 and EW1 Modes

Item	EW0 Mode	EW1 Mode		
CPU operating modes	Single-chip mode Memory expansion mode	Single-chip mode		
Rewrite program executable spaces	Spaces other than the on-chip flash memory	Internal spaces other than specified blocks to be rewritten, internal RAM		
Restrictions on software commands	None	Do not execute either the program command or the block erase command for blocks where the rewrite control programs are written to Do not execute the enter read status register mode command Execute the enter read lock bit status mode command in RAM Execute the enter read protect bit status mode command in RAM		
Mode after program/ erase operation	Read status register mode	Read array mode		
CPU state during program/erase operation	Operating	Operating unless the CPU accesses the SFRs, flash memory or external bus. If it accesses the areas above mentioned, it stops operating		
Flash memory state detection by	 Reading the FMSR0 register by a program Executing the enter read status register mode command to read data 	Reading the FMSR0 register by a program		
Suspend request timing	When the SUSREQ bit in the FMR1 register is set to 1	When an interrupt request with higher priority level than that is set by the SUSILVL bit in the FMR1 register is generated		
Other restrictions	None	 Disable interrupts (except NMI) during program/erase operation, if suspend/ resume function is not used Disable DMA transfer during program/ erase operation 		

To select CPU rewrite mode, the FEW bit in the FMCR register should be set to 1. Then, EW0 mode/EW1 mode can be selected by setting the EWM bit in the FMR0 register.

Registers FMCR and FMR0 are protected by registers PRR and FPR0, respectively.

Figures 27.4 to 27.12 show associated registers.

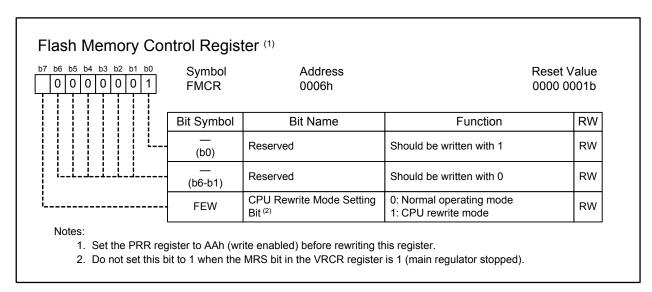


Figure 27.4 FMCR Register

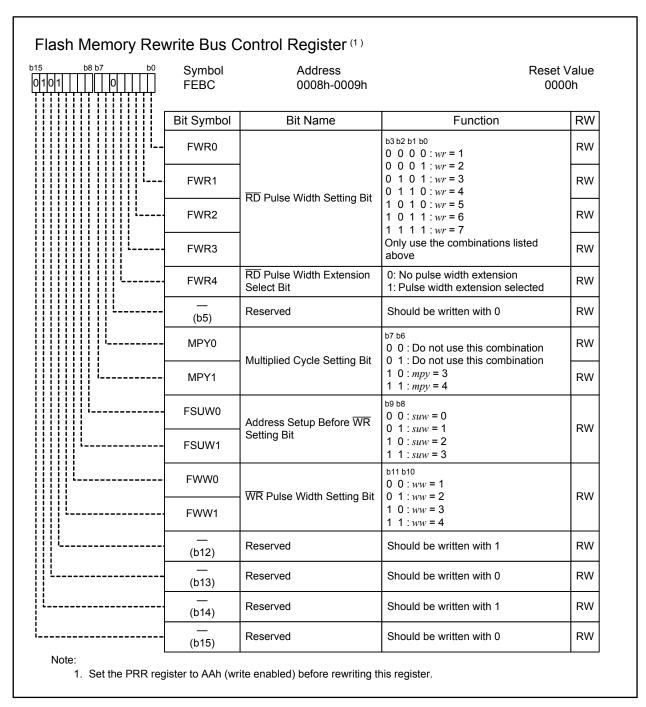


Figure 27.5 FEBC Register

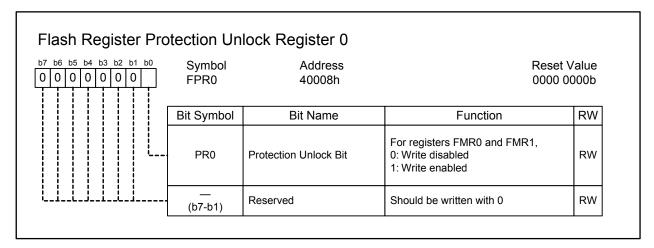


Figure 27.6 FPR0 Register

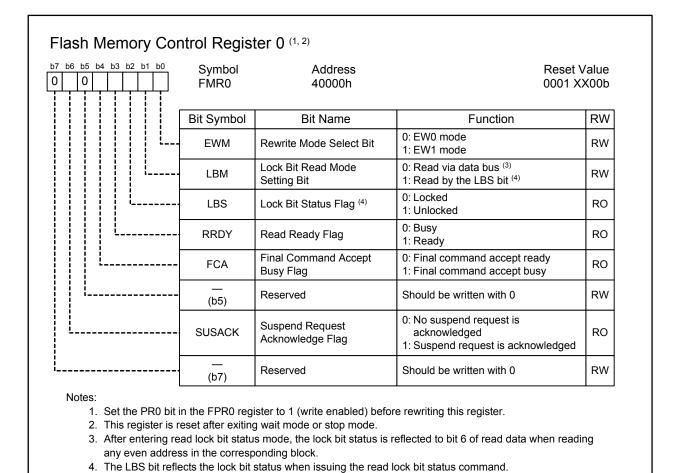


Figure 27.7 FMR0 Register

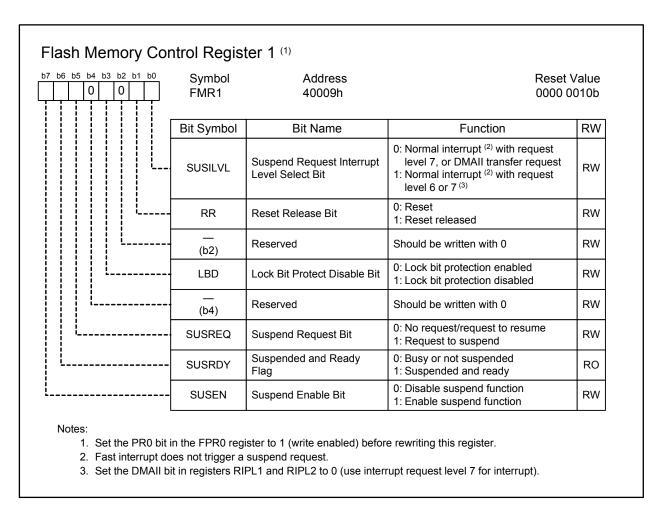


Figure 27.8 FMR1 Register

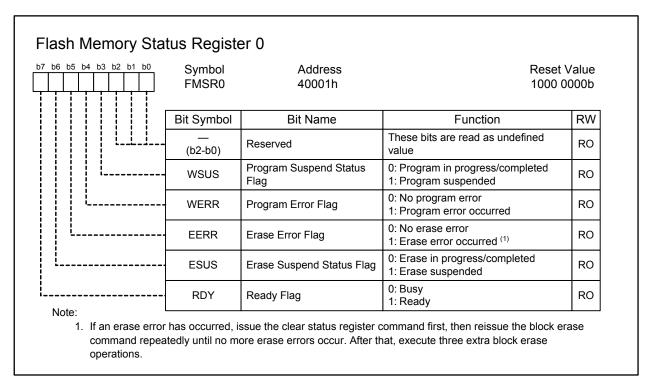


Figure 27.9 FMSR0 Register

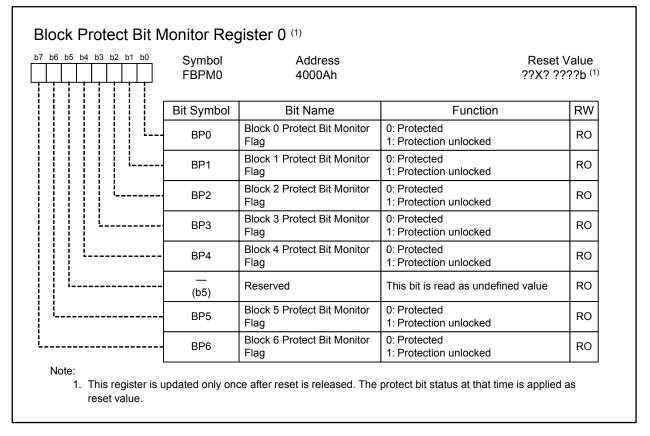


Figure 27.10 FBPM0 Register

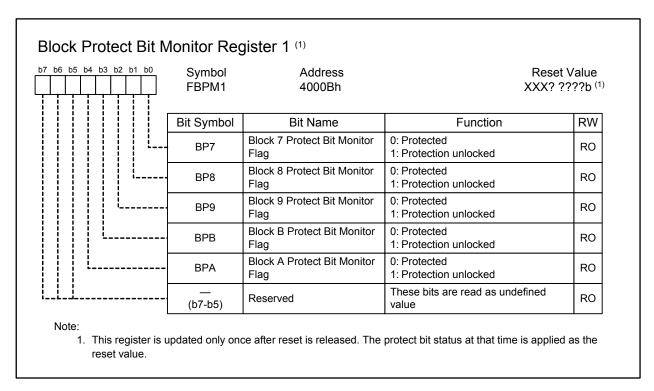


Figure 27.11 FBPM1 Register

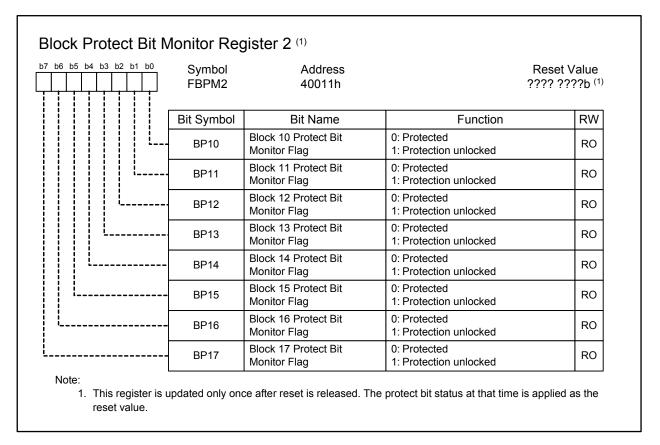


Figure 27.12 FBPM2 Register

27.3.1 Flash Memory Rewrite Bus Timing

The bus setting for the flash memory rewrite is performed by setting the FEBC register. This section specifically describes the setting of the FEBC register.

The reference clock is the base clock set with bits BCD1 and BCD0 in the CCR register. Time duration including tsu, tw, tc, and th are specified by the number of base clock cycles.

Tables 27.8 to 27.10 show the correlation of the read cycle and setting of bits MPY1, MPY0, and FWR4 to FWR0, according to peripheral bus clock divide ratios. Tables 27.11 to 27.13 show the correlation of the write cycle and setting of bits MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0. Associated read/write timings are illustrated in Figures 27.13 and 27.14, respectively.

Read/write cycle timing is selected from the tables below to meet the timing requirements in the CPU rewrite mode described in the electrical characteristics.

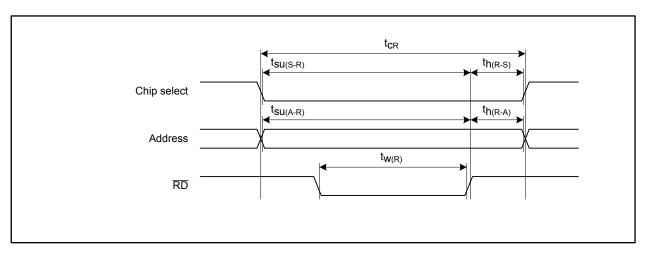


Figure 27.13 Read Timing

Table 27.8 Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 2 (unit: cycles)

					MPY	1 and MP	Y0 Bit Settings				
EWD2 to	o EMDO	FWR4		10b				11b			
	FWR3 to FWR0 Bit Settings			тру	· = 3			тру	· = 4		
Dit Se	tungs	Settings	tsu(S-R), tsu(A-R)	tw(R)	tcR	th(R-S), th(R-A)	tsu(S-R), tsu(A-R)	tw(R)	tcR	th(R-S), th(R-A)	
		0	4	3	4	0	6	5	6	0	
0000b	wr = 1	1	6	5	6	0	6	5	6	0	
	_	0	8	7	8	0	10	9	10	0	
0001b	wr = 2	1	8	7	8	0	10	9	10	0	
04041		0	10	9	10	0	14	13	14	0	
0101b	wr = 3	1	12	11	12	0	14	13	14	0	
01106	1	0	14	13	14	0	18	17	18	0	
0110b	wr = 4	1	14	13	14	0	18	17	18	0	
1010b	wr = 5	0	16	15	16	0	22	21	22	0	
10100	Wr - 3	1	18	17	18	0	22	21	22	0	
1011b	1011b $wr = 6$	0	20	19	20	0	26	25	26	0	
10110	w - 0	1	20	19	20	0	26	25	26	0	
1111b	wr = 7	0	22	21	22	0	30	29	30	0	
11110	<i>wr</i> – <i>f</i>	1	24	23	24	0	30	29	30	0	

Table 27.9 Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 3 (unit: cycles)

					MPY	1 and MP	Y0 Bit Set	tings			
EWD2 to	o FWR0	FWR4		10b				11b			
	ettings	Bit		тру	y = 3			тру	y = 4		
Dit Se	turiys	Settings	tsu(S-R),	tw(R)	tcR	th(R-S),	tsu(S-R),	tw(R)	tcR	th(R-S),	
			tsu(A-R)		ick	th(R-A)	tsu(A-R)	LW(K)	ICR	th(R-A)	
0000b	wr = 1	0	6	4.5	6	0	6	4.5	6	0	
00000	WI - 1	1	6	4.5	6	0	6	4.5	6	0	
0001b	wr = 2	0	9	7.5	9	0	9	7.5	9	0	
00015	WI - Z	1	9	7.5	9	0	12	10.5	12	0	
0101b	$0101b \qquad wr = 3$	0	12	10.5	12	0	15	13.5	15	0	
01010	WI - 3	1	12	10.5	12	0	15	13.5	15	0	
0110b	wr = 4	0	15	13.5	15	0	18	16.5	18	0	
01100	W/ - 4	1	15	13.5	15	0	18	16.5	18	0	
1010b	wr = 5	0	18	16.5	18	0	21	19.5	21	0	
10100	WI - 3	1	18	16.5	18	0	24	22.5	24	0	
1011b	1011b $wr = 6$	0	21	19.5	21	0	27	25.5	27	0	
10110	<i>wr</i> – 0	1	21	19.5	21	0	27	25.5	27	0	
1111b	1b wr = 7	0	24	22.5	24	0	30	28.5	30	0	
11110	<i>wr</i> – /	1	24	22.5	24	0	30	28.5	30	0	

Table 27.10 Read Cycle and Bit Settings: MPY1, MPY0, and FWR4 to FWR0, When Peripheral Bus Clock is Divided by 4 (unit: cycles)

					MPY	1 and MP	Y0 Bit Set	tings		
E/V/D3 +/	0 E/MD0	FWR4		10)b		11b			
	FWR3 to FWR0 Bit Settings			тру	y = 3			тру	[,] = 4	
Dit Se	turigs	Settings	tsu(S-R),	fw/D)	tcR	th(R-S),	tsu(S-R),	tw/D)	tcR	th(R-S),
			tsu(A-R)	, ,	ick	th(R-A)	tsu(A-R)	tw(R)	ick	th(R-A)
0000b	wr = 1	0	4	2	4	0	8	6	8	0
00000	W/ - 1	1	8	6	8	0	8	6	8	0
0001b	wr = 2	0	8	6	8	0	12	10	12	0
00015	WI - Z	1	8	6	8	0	12	10	12	0
0101b	0101b $wr = 3$	0	12	10	12	0	16	14	16	0
01010	Wr - 3	1	12	10	12	0	16	14	16	0
0110b	wr = 4	0	16	14	16	0	20	18	20	0
01100	W/ - 4	1	16	14	16	0	20	18	20	0
1010b	wr = 5	0	16	14	16	0	24	22	24	0
10100	Wr - 3	1	20	18	20	0	24	22	24	0
1011b	011b $wr = 6$	0	20	18	20	0	28	26	28	0
10110	WI = 0	1	20	18	20	0	28	26	28	0
1111b	wr = 7	0	24	22	24	0	32	30	32	0
11110	wr = 7	1	24	22	24	0	32	30	32	0

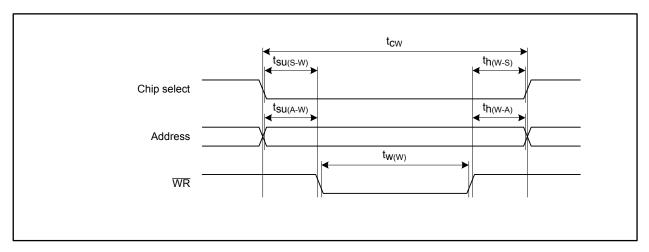


Figure 27.14 Write Timing

Table 27.11 Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 2 (unit: cycles)

						MPY.	1 and MP	Y0 Bit Set	tings		
FSUV	V1 and	FWW	/1 and	10b				11b			
FSU	FSUW0 FWW0			тру	= 3			тру	= 4		
Bit Se	ettings	Bit Se	ettings	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)
		00b	ww = 1	1	3	6	2	1	4	6	1
00b	suw = 0	01b	ww = 2	1	6	8	1	1	8	10	1
000	3uw - 0	10b	ww = 3	1	9	12	2	1	12	14	1
		11b	ww = 4	1	12	14	1	1	16	18	1
		00b	ww = 1	4	3	8	1	5	4	10	1
01b	suw = 1	01b	ww = 2	4	6	12	2	5	8	14	1
010	3uw-1	10b	ww = 3	4	9	14	1	5	12	18	1
		11b	ww = 4	4	12	18	2	5	16	22	1
		00b	ww = 1	7	3	12	2	9	4	14	1
10b	suw = 2	01b	ww = 2	7	6	14	1	9	8	18	1
100	Suw 2	10b	ww = 3	7	9	18	2	9	12	22	1
		11b	ww = 4	7	12	20	1	9	16	26	1
		00b	ww = 1	10	3	14	1	13	4	18	1
11b	suw = 3	01b	ww = 2	10	6	18	2	13	8	22	1
'''	Suv J	10b	ww = 3	10	9	20	1	13	12	26	1
		11b	ww = 4	10	12	24	2	13	16	30	1

Table 27.12 Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 3 (unit: cycles)

						MPY.	1 and MP	Y0 Bit Set	tings			
FSU	W1 and	FWW	1 and		10b				11b			
FS	FSUW0 FWW0			тру	= 3			тру	= 4			
Bit S	Settings	Bit Settings		tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)	
		00b	ww = 1	1	3	6	2	1	4	6	1	
00b	suw = 0	01b	ww = 2	1	6	9	2	1	8	12	3	
000	$\int SuW - 0$	10b	ww = 3	1	9	12	2	1	12	15	2	
		11b	ww = 4	1	12	15	2	1	16	18	1	
		00b	ww = 1	4	3	9	2	6	3	12	3	
01b	suw = 1	01b	ww = 2	4	6	12	2	6	7	15	2	
015	Suw - 1	10b	ww = 3	4	9	15	2	6	11	18	1	
		11b	ww = 4	4	12	18	2	6	15	24	3	
		00b	ww = 1	7	3	12	2	9	4	15	2	
10b	suw = 2	01b	ww = 2	7	6	15	2	9	8	18	1	
100	Suv 2	10b	ww = 3	7	9	18	2	9	12	24	3	
		11b	ww = 4	7	12	21	2	9	16	27	2	
		00b	ww = 1	10	3	15	2	13	4	18	1	
11b	suw = 3	01b	ww = 2	10	6	18	2	13	8	24	3	
'''	Suw - 3	10b	ww = 3	10	9	21	2	13	12	27	2	
		11b	ww = 4	10	12	24	2	13	16	30	1	

Table 27.13 Write Cycle and Bit Settings: MPY1, MPY0, FSUW1, FSUW0, FWW1, and FWW0, When Peripheral Bus Clock is Divided by 4 (unit: cycles)

						MPY'	1 and MP	Y0 Bit Set	tings		
FSUV	V1 and	FWW	/1 and		10)b		11b			
FSUW0		FWW0			mpy = 3				тру	= 4	
Bit Se	Bit Settings		ettings	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)	tsu(S-W), tsu(A-W)	tw(W)	tcw	th(W-S), th(W-A)
		00b	ww = 1	1	3	8	4	1	4	8	3
00b	suw = 0	01b	ww = 2	1	6	8	1	1	8	12	3
000	Suw - 0	10b	ww = 3	1	9	12	2	1	12	16	3
		11b	ww = 4	1	12	16	3	1	16	20	3
		00b	ww = 1	4	3	8	1	5	4	12	3
01b	suw = 1	01b	ww = 2	4	6	12	2	5	8	16	3
010	3uw-1	10b	ww = 3	4	9	16	3	5	12	20	3
		11b	ww = 4	4	12	20	4	5	16	24	3
		00b	ww = 1	8	2	12	2	9	4	16	3
10b	suw = 2	01b	ww = 2	8	5	16	3	9	8	20	3
100	3uw - 2	10b	ww = 3	8	8	20	4	9	12	24	3
		11b	ww = 4	8	11	20	1	9	16	28	3
		00b	ww = 1	10	3	16	3	13	4	20	3
11b	suw = 3	01b	ww = 2	10	6	20	4	13	8	24	3
'''		10b	ww = 3	10	9	20	1	13	12	28	3
		11b	ww = 4	10	12	24	2	13	16	32	3

27.3.2 Software Commands

In CPU rewrite mode, software commands enable program and erase operations for the flash memory. Writing commands and reading/writing data should be performed in 16-bit units.

Table 27.14 lists the software commands.

Table 27.14 Software Commands

Command	First Comn	nand Cycle	Second Con	nmand Cycle
Command	Address	Data	Address	Data
Enter read array mode	FFFFF800h	00FFh	_	_
Enter read status register mode (1)	FFFFF800h	0070h	_	
Clear status register	FFFFF800h	0050h	-	
Program (2)	FFFFF800h	0043h	WA	WD
Block erase	FFFFF800h	0020h	BA	00D0h
Lock bit program	FFFFF800h	0077h	BA	00D0h
Read lock bit status	FFFFF800h	0071h	BA	00D0h
Enter read lock bit status mode (3)	FFFFF800h	0071h	_	_
Protect bit program	FFFFF800h	0067h	PBA	00D0h
Enter read protect bit status mode (3)	FFFFF800h	0061h	_	_

WA: Even address to be written WD: 16-bit data to be written

BA: Even address within a specific block PBA: Protect bit address (refer to Table 27.4)

- 1. This command cannot be executed in EW1 mode.
- 2. The program is performed in 64-bit (4-word) units. A sequence of commands consists of commands from the second to fifth. The upper 29 bits of the address WA should be fixed and the lower 3 bits of respective commands from the second to fifth should be set to 000b, 010b, 100b, and 110b for the addresses 0h, 2h, 4h, and 6h, or 8h, Ah, Ch, and Eh.
- 3. This command should be executed in RAM.

27.3.3 Mode Transition

CPU rewrite mode supports four flash memory operating modes:

- Read array mode
- Read status register mode
- Read lock bit status mode
- Read protect bit status mode

When reading the flash memory in these modes, the memory data, the status register value, the state of the lock bit in the read block, and the state of the protect bit are individually read. Details are listed in Tables 27.15 to 27.17.

Table 27.15 Status Register

Bit	Bit Symbol	Bit Name	Defir	nition
DIL	Bit Symbol	Dit Name	0	1
b15-b8	_	Disabled bit	_	_
b7	SR7	Sequencer status	BUSY	READY
b6	SR6	Erase suspend status	Erase in progress/ completed	Erase suspended
b5	SR5	Erase status	Successfully completed	Error
b4	SR4	Program status	Successfully completed	Error
b3	SR3	Program suspend status	Program in progress/ completed	Program suspended
b2	_	Reserved bit	_	_
b1	_	Reserved bit	_	_
b0	_	Reserved bit	_	_

Table 27.16 Lock Bit Status

Bit	Bit Symbol	Bit Name	Defir	nition
Dit	Dit Gymbol	Dit Name	0	1
b15-b7	_	Disabled bit	_	_
b6	LBS	Lock bit status	Locked	Unlocked
b5-b0	_	Disabled bit	_	_

Table 27.17 Protect Bit Status

Bit	Bit Symbol	Bit Name	Defir	nition
Dit	Dit Gymbol	Dit Name	0	1
b15-b7	_	Disabled bit	_	_
b6	PBS	Protect bit status	Protected	Unprotected
b5-b0	_	Disabled bit	_	

In these operating modes, program or erase operation can be performed by software commands. After an operation is completed, the flash memory module automatically enters read array mode (in EW1 mode) or read status register mode (in EW0 mode).

27.3.4 Issuing Software Commands

This section describes how to issue software commands.

These commands should be issued while the RDY bit in the FMSR0 register is 1 (ready).

27.3.4.1 Enter Read Array Mode Command

Execute this command to enter read array mode.

When 00FFh is written to address FFFF800h, the flash memory enters read array mode. In this mode, the value stored to a given address in memory can be read.

In EW1 mode, the flash memory is always in read array mode.

27.3.4.2 Enter Read Status Register Mode

Execute this command to enter read status register mode.

When 0070h is written to address FFFF800h, the status register value is read in any address of the flash memory.

Do not issue this command in EW1 mode.

27.3.4.3 Clear Status Register

Execute this command to reset the status register in the flash memory.

When 0050h is written to address FFFFF800h, bits SR5 and SR4 in the status register become 0 (successfully completed) (refer to Table 27.15). Consequently, bits EERR and WERR in the FMSR0 register become 0 (no errors).

27.3.4.4 Program Command

Execute this command to program the flash memory in 8-byte (4-word) units.

To start automatic programming (program and program-verify operations), write 0043h to address FFFFF800h, then write data to addresses 8n + 0 to 8n + 6. Verify that the FCA bit in the FMR0 register is 0 just before executing the final command.

To monitor the automatic program operation, read the RDY bit in the FMSR0 register. This bit becomes 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.

The operation result can be verified by the WERR bit in the FMSR0 register (refer to 27.3.5 "Status Check").

Do not write additional data to an address that is already programmed.

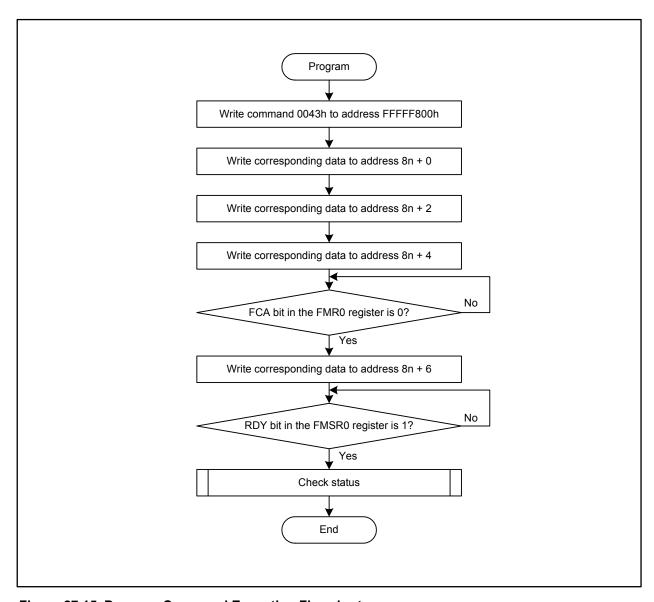


Figure 27.15 Program Command Execution Flowchart

27.3.4.5 Block Erase Command

Execute this command to erase a specified block in the flash memory.

To start automatic erasing of a specified block (erase and erase-verify operations), write 0020h to address FFFF800h, verify that the FCA bit in the FMR0 register is 0, then write 00D0h to an even address in the corresponding block.

To monitor the automatic erase operation, read the RDY bit in the FMSR0 register. This bit becomes 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.

The operation result can be verified by the EERR bit in the FMSR0 register (refer to 27.3.5 "Status Check").

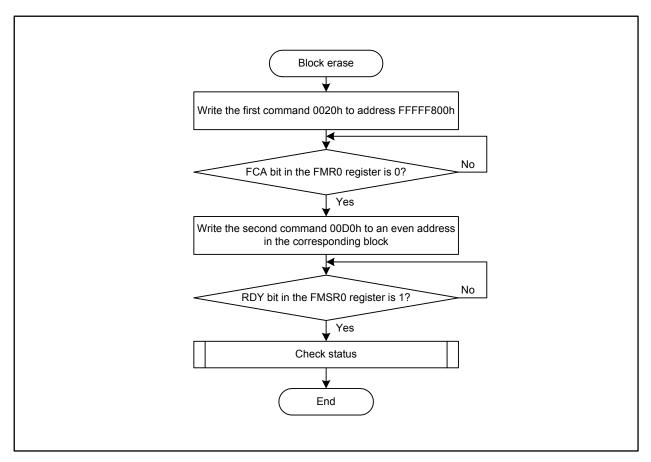


Figure 27.16 Block Erase Command Execution Flowchart

27.3.4.6 Lock Bit Program Command

Execute this command to lock a specified block in the flash memory.

To lock the block, write 0077h to address FFFFF800h, verify that the FCA bit in the FMR0 register is 0, then write 00D0h to an even address in the corresponding block. Then the lock bit of the block becomes 0 (locked).

To monitor the lock bit program, read the RDY bit in the FMSR0 register. This bit becomes 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.

The state of the lock bit can be verified by the read lock bit status command if the LBM bit in the FMR0 register is 1 (read by the LBS bit) (refer to 27.3.4.7 "Read Lock Bit Status Command"). If the LBM bit is 0 (read via data bus), enter read lock bit status mode (refer to 27.3.4.8 "Enter Read Lock Bit Status Mode Command").

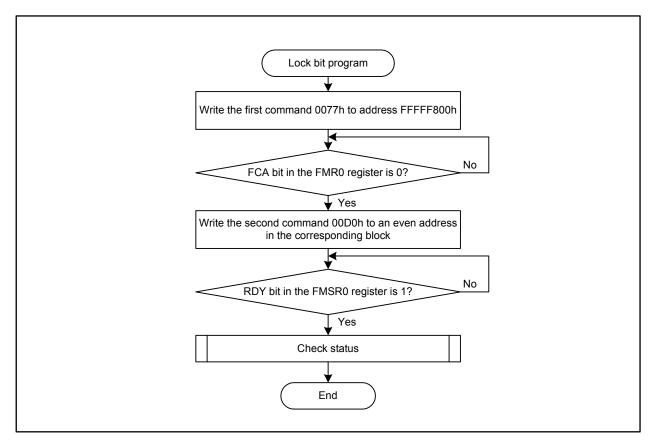


Figure 27.17 Lock Bit Program Command Execution Flowchart

27.3.4.7 Read Lock Bit Status Command

Execute this command to verify if a specified block in the flash memory is locked. This command can be used when the LBM bit in the FMR0 register is 1 (read by the LBS bit).

The LBS bit in the FMSR0 register reflects the lock bit status of the specified block when the following is performed: first write 0071h to address FFFF800h and verify that the FCA bit in the FMR0 register becomes 0. Then write 00D0h to an even address of the corresponding block.

Read the LBS bit after the RDY bit in the FMSR0 register becomes 1 (ready).

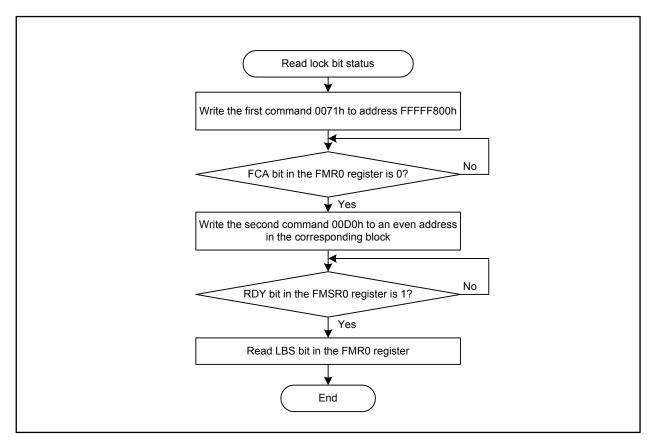


Figure 27.18 Read Lock Bit Status Command Execution Flowchart

27.3.4.8 Enter Read Lock Bit Status Mode Command

Execute this command to enter read lock bit status mode. This command is enabled when the LBM bit in the FMR0 register is 0 (read via data bus).

To read the lock bit status of the read block, write 0071h to address FFFFF800h (refer to Table 27.16). The status is read in any address of the flash memory.

Execute this command in RAM.

27.3.4.9 Protect Bit Program Command

Execute this command to protect a specific block in the flash memory. ROM code protection is enabled by setting one of the protect bits of the block to 0.

To set the protect bit of the designated block to 0 (protected), write 0067h to address FFFF800h, verify that the FCA bit in the FMR0 register is 0, and then write 00D0h to the protect bit of the corresponding block (refer to Table 27.4).

To monitor the protect bit program, read the RDY bit in the FMSR0 register. This bit becomes 0 (busy) when the operation is in progress and 1 (ready) when the operation is completed.

To verify the state of protect bit, enter read protect bit status mode (refer to 27.3.4.10 "Enter Read Protect Bit Status Mode Command"), then read the flash memory.

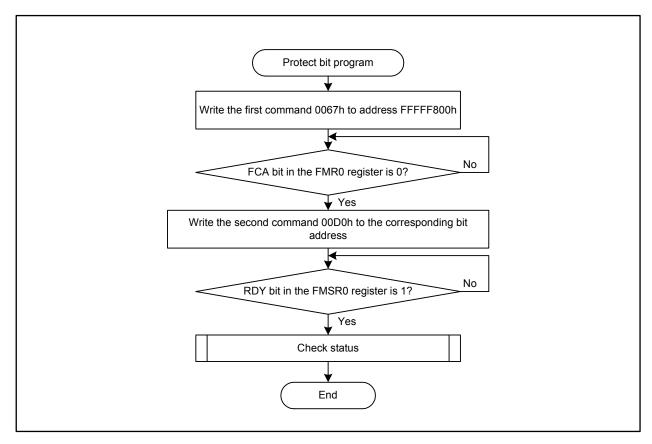


Figure 27.19 Protect Bit Program Command Execution Flowchart

27.3.4.10 Enter Read Protect Bit Status Mode Command

Execute this command to enter read protect bit status mode.

To read the protect bit status of the read block, write 0061h to address FFFFF800h (refer to Table 27.17). The status is read from any address in the flash memory.

Execute this command in RAM.

27.3.5 Status Check

To verify if a software command is successfully executed, read the EERR or WERR bit in the FMSR0 register, or the SR5 bit or SR4 bit in the status register.

Table 27.18 lists status and errors indicated by these bits and Figure 27.20 shows the flowchart of the status check.

Table 27.18 Status and Errors

	Register Register)	Error	Source of Error
EERR bit (SR5 bit)	WERR bit (SR4 bit)	EHOI	Source of Entor
1	1	Command sequence error	 Data other than 00D0h or 00FFh (command to cancel) was written as the last command of two commands An unavailable address was specified by an address specifying command
1	0	Erase error	Attempted to erase a locked block Corresponding block was not erased properly
0	1	Program error	 Attempted to program a locked block Data was not programmed properly Lock bit was not programmed properly Protect bit was not programmed properly
0	0	No error	

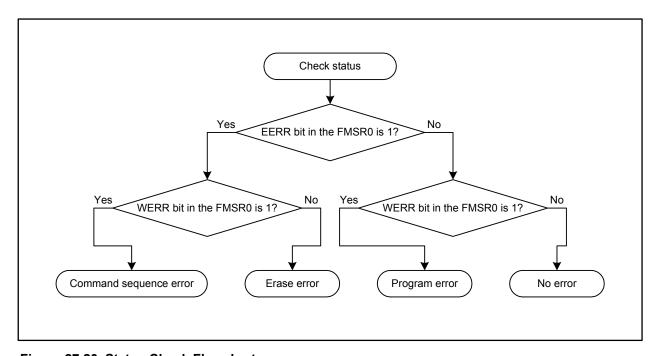


Figure 27.20 Status Check Flowchart

When an error occurs, execute the clear status register command and then handle the error. If erase errors or program errors occur frequently even though the program is correct, the corresponding block may be disabled.

27.3.6 Suspend/Resume Operation

The R32C/116A Group supports program-suspend and erase-suspend operations to execute other operations with higher priority. Unlike non-maskable interrupts which abort an operation in progress, a suspended operation is able to resume on demand. The following two software commands are suspendable: block erase and program.

27.3.6.1 Suspend Request

To generate a suspend request, set the SUSEN bit in the FMR1 register to 1 (suspend function enabled) before issuing a software command.

This section describes how to manage a suspend request in modes EW0 and EW1, respectively.

(1) Suspend request in EW0 mode

A suspend is requested by a program. Issue a software command, then set the SUSREQ bit in the FMR1 register to 1 (suspend requested) while a program or erase operation is being executed, that is, the RDY bit in the FMSR0 register is 0 (busy).

(2) Suspend Request in EW1 Mode

A suspend is requested by an interrupt. After issuing a software command, a suspend is requested when an interrupt with higher request level than the level set in the SUSILVL bit in the FMR1 register is generated while a program or erase operation is being executed, that is, the RDY bit in the FMSR0 register is 0 (busy). Note that a fast interrupt does not trigger a suspend request.

Note that set all interrupt-associated registers before entering CPU rewrite mode. When setting the SUSILVL bit in the FMR1 register to 0 (normal interrupt with request level 7 or DMA II transfer request), set the IPL to 6. When setting this bit to 1 (normal interrupt with request level 6 or 7), set the IPL to 5. Once the IPL is set, do not rewrite the interrupt-associated registers.

27.3.6.2 Operation in Suspend State

The operation with higher priority than the in-progress program or erase operation should be performed after verifying the suspend operation has completed successfully.

When a suspend request is acknowledged and the SUSRDY bit in the FMR1 register becomes 1 (suspended and ready), the CPU enables access to the flash memory. At the same moment, the SUSACK bit in the FMR0 register and the RDY bit in the FMSR0 register become 1. In addition, bits WSUS and ESUS in the FMSR0 register also become 1 if the above mentioned suspend request is generated while program and erase operations are being executed, respectively.

Figure 27.21 shows the flow to verify a successful suspend operation.

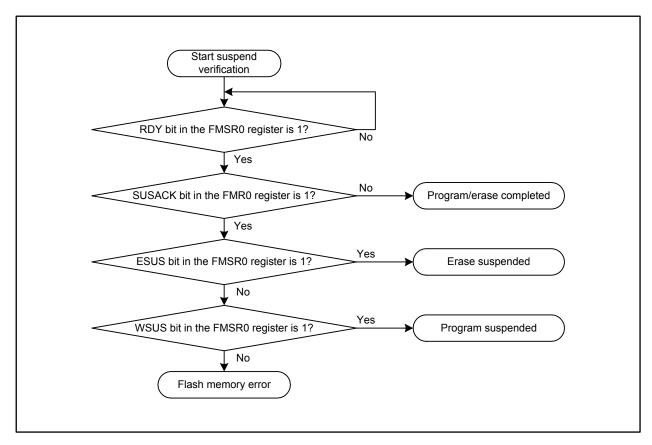


Figure 27.21 Verification of Suspend Operation

When the RDY bit in the FMSR0 register is 1 (ready) and the SUSACK bit in the FMR0 register is 0 (no suspend request is acknowledged), the program or erase operation has been completed. Resume requests, if any, are ignored.

When the RDY bit is 1 (ready) and SUSACK bit is 1 (suspend request is acknowledged), a suspend request is accepted. However, if both bits ESUS and WSUS in the FMSR0 register are 0, the flash memory may have an error.

The software commands listed in Table 27.19 are valid while a program or erase operation is suspended. Do not issue any unlisted command while being in program-suspend or erase-suspend state.

Table 27.19 Valid Software Commands in Program-Suspend/Erase-Suspend State

Valid Commands in Program-Suspend State	Valid Commands in Erase-Suspend State
Enter read array mode	Enter read array mode
Enter read status register mode	Enter read status register mode
Clear status register	Clear status register
	• Program ⁽¹⁾

Note:

1. Issuing the command to a block being erased causes a command sequence error. The program commands executed in this program cannot be suspended.

27.3.6.3 Resume Request

To resume the original operation being processed before a suspend operation, set the SUSREQ bit in the FMR1 register to 0 (no suspend requested or resume requested) while the SUSACK bit in the FMR0 register is 1 (suspend request is acknowledged). When the SUSACK bit is 0 (no suspend request is acknowledged), setting of the SUSREQ bit to 0 is ignored.

If the SUSACK bit in the FMR0 register in suspend state becomes 0 (no suspend request is acknowledged), the flash memory may have an error. In this case, erase the corresponding block following the steps below:

- (1) Set the SUSREQ bit in the FMR1 register to 0 (resume requested).
- (2) Wait at least 150 us, or until the RDY bit in the FMSR0 register becomes 1 (ready).
- (3) Set the RR bit in the FMR1 register to 0 (reset).
- (4) Wait at least 20 µs.
- (5) Set the RR bit to 1 (reset released).
- (6) Set the LBD bit in the FMR1 register to 1 (lock bit protection disabled).
- (7) Erase the corresponding block.

27.3.6.4 Suspend/Resume Usage Procedure

This section describes the usage procedure of suspend/resume function. For issuing software commands, refer to 27.3.4 "Issuing Software Commands".

Figure 27.22 shows a flow of suspend/resume operation in EW0 mode. In this example, since the resume operation is executed in the interrupt handler, all other interrupts must be disabled. If any of these interrupts must be enabled, do not execute suspend/resume operation in that interrupt handler. Figure 27.23 shows a flow of suspend/resume operation in EW1 mode. After issuing a software command, the CPU continues to operate unless it accesses the SFR, flash memory, or external bus. To stop the operation, set the I flag to 1 (interrupts enabled) and read the RDY bit in the FMSR0 register. When an interrupt request is generated and the program or erase operation is suspended, the CPU resumes the operation and just after that, the interrupt sequence is executed to branch an interrupt handler. The resume operation is executed in the main routine.

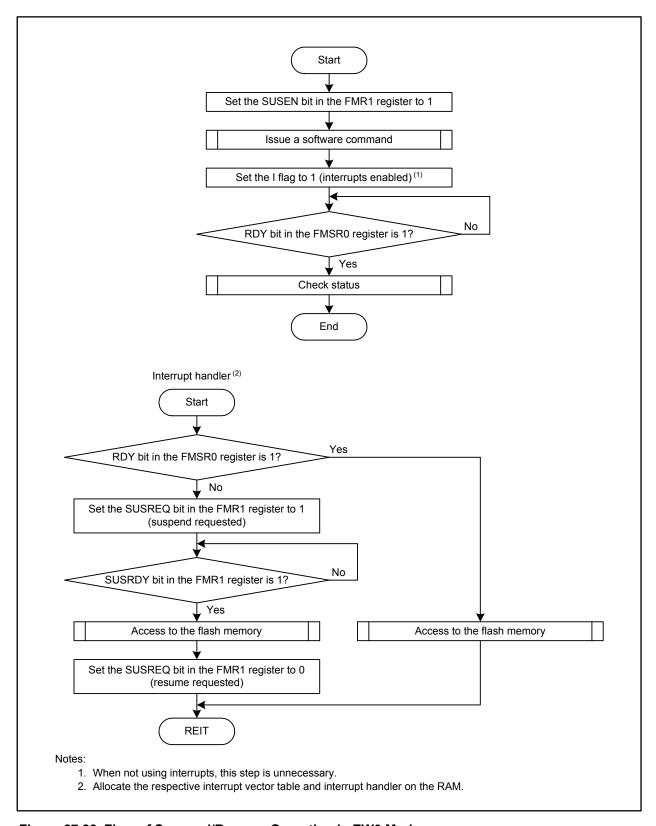


Figure 27.22 Flow of Suspend/Resume Operation in EW0 Mode

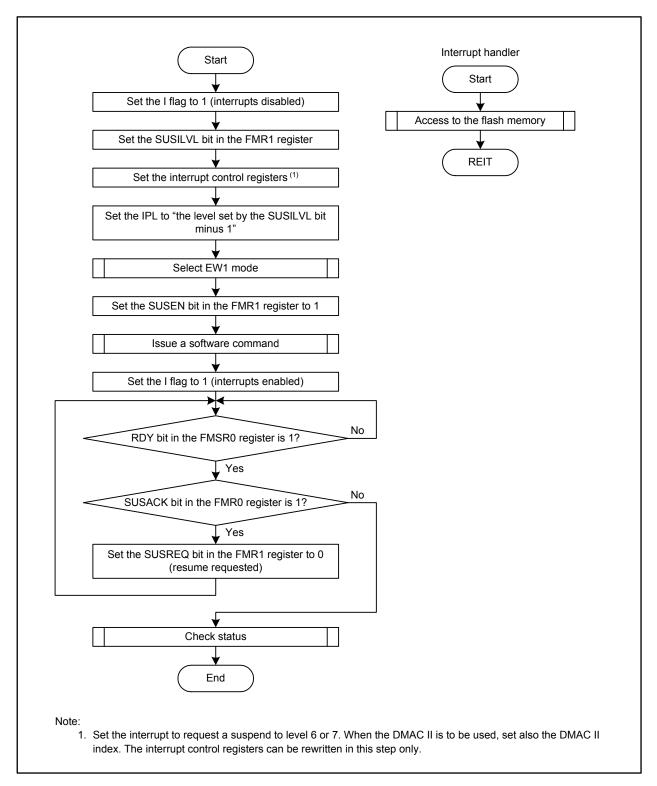


Figure 27.23 Flow of Suspend/Resume Operation in EW1 Mode

27.4 Standard Serial I/O Mode

In standard serial I/O mode, an R32C/116A Group compatible serial programmer can be used to rewrite the flash memory while the MCU is mounted on a board.

For further information on the serial programmer, contact your serial programmer manufacturer and refer to the user's manual included with the serial programmer for instructions.

As shown in Table 27.20, this mode provides two types of transmit/receive mode: Standard serial I/O mode 1 which uses a synchronous serial interface, and standard serial I/O mode 2 which uses UART.

Table 27.20 Standard Serial I/O Mode Specifications

Ite	em	Standard Serial I/O Mode 1	Standard Serial I/O Mode 2
Transmit/receiv	ve mode	Synchronous serial I/O	UART
Transmit/receiv	e bit rate	High	Low
Serial interface	to be used	UART1	UART1
Pin settings	CNVSS	High	High
	CE (P5_0)	High	High
	EPM (P5_5)	Low	Low
Pin functions	SCLK (P6_5)	In reset: Low In transmission/reception: Transmit/receive clock	In reset: Low In transmission/reception: Unused
	BUSY (P6_4)	BUSY signal	Monitor to check program operation
	RXD (P6_6)	Serial data input	Serial data input
	TXD (P6_7)	Serial data output	Serial data output

Table 27.21 lists the pin definitions and functions in standard serial I/O mode. Figures 27.24 and 27.25 show examples of a circuit application in standard serial I/O modes 1 and 2, respectively. Refer to the serial programmer user manual to handle pins controlled by the serial programmer.

Table 27.21 Pin Definitions and Functions in Standard Serial I/O Mode

Pin Name	Function	I/O	Description
VCC, VSS	Power supply input	I	Applicable as follows: VCC = guaranteed voltage for program/ erase operations, VSS = 0 V
VDC1, VDC0	Connecting pins for decoupling capacitor	_	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
CNVSS	CNVSS	I	This pin should be connected to VCC via a resistor
RESET	Reset input	I	Reset input pin. While the RESET pin is driven low, at least 20 clock cycles should be input at the XIN pin
XIN	Main clock input	I	A ceramic resonator or a crystal oscillator should be connected
XOUT	Main clock output	0	between pins XIN and XOUT. An external clock should be input at XIN while leaving XOUT open
NSD	Debug port	I/O	This pin should be connected to VCC via a resistor of 1 to 4.7 k Ω
AVCC, AVSS	Analog power supply	I	AVCC and AVSS should be connected to VCC and VSS, respectively
VREF	Reference voltage input	I	Reference voltage input for the A/D converter and D/A converter
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7	Input port	I	High or low should be input, or the ports should be left open
P5_0	CE input	ı	High should be input
P5_1 to P5_4	Input port	ı	High or low should be input, or the ports should be left open
P5_5	EPM input	ı	Low should be input
P5_6, P5_7, P6_0 to P6_3	Input port	I	High or low should be input, or the ports should be left open
P6_4	BUSY output	0	Standard serial I/O mode 1: BUSY output pin Standard serial I/O mode 2: Program operation monitor
P6_5	SCLK input	I	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Low should be input
P6_6	Data input RXD	I	Serial data input pin
P6_7	Data output TXD	0	Serial data output pin
P7_0 to P7_7, P8_0 to P8_4	Input port	I	High or low should be input, or the ports should be left open
P8_5	NMI input	ı	This pin should be connected to VCC via a resistor
P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	Input port	I	High or low should be input, or the ports should be left open

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

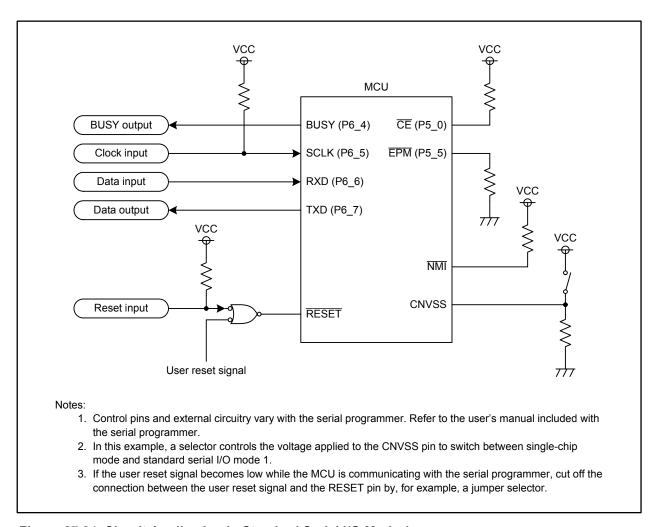


Figure 27.24 Circuit Application in Standard Serial I/O Mode 1

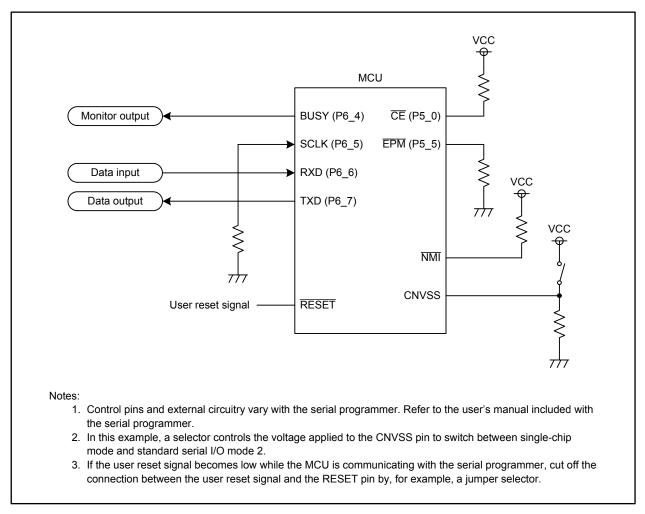


Figure 27.25 Circuit Application in Standard Serial I/O Mode 2

27.5 Parallel I/O mode

In parallel I/O mode, an R32C/116A Group compatible parallel programmer can be used to rewrite the flash memory.

For further information on the parallel programmer, contact your parallel programmer manufacturer and refer to the user's manual included with your parallel programmer for instructions.

27.6 Notes on Flash Memory Rewriting

27.6.1 Note on Power Supply

 Keep the supply voltage constant within the range specified in the electrical characteristics while a rewrite operation on the flash memory is in progress. If the supply voltage goes beyond the guaranteed value, the device cannot be guaranteed.

27.6.2 Note on Hardware Reset

• Do not perform a hardware reset while a rewrite operation on the flash memory is in progress.

27.6.3 Note on Flash Memory Protection

• If an ID code written in an assigned address has an error, any read/write operation on the flash memory in standard serial I/O mode is disabled.

27.6.4 Notes on Programming

- Do not set the FEW bit in the FMCR register to 1 (CPU rewrite mode) in low speed mode or low power mode. In addition, do not change the current mode to wait mode or stop mode during CPU rewrite mode.
- The program, block erase, lock bit program, and protect bit program are interrupted by an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt. If any of the software commands above are interrupted, erase the corresponding block and then execute the same command again. If the block erase command is interrupted, the lock bit and protect bit values become undefined. Therefore, disable the lock bit, and then execute the block erase command again.
- Do not use CPU rewrite mode in the interrupt handler of non-maskable interrupts.

27.6.5 Notes on Interrupts

- EW0 mode
 - To use interrupts assigned to the relocatable vector table, the vector table should be addressed in RAM space.
 - When an NMI, watchdog timer interrupt, oscillator stop detection interrupt, or low voltage detection interrupt occurs, the flash memory module automatically enters read array mode. Therefore, these interrupts are enabled even during a rewrite operation. However, the rewrite operation in progress is aborted by the interrupts and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation. Note that the FMR1 register is not reset. Set the SUSEN bit to 0 (suspend function disabled) in an interrupt handler.
 - Instructions BRK, INTO, and UND, which refer to data on the flash memory, cannot be used in this mode.

- EW1 mode
 - Interrupts assigned to the relocatable vector table should not be accepted during program or block erase operation in the area in which the relocatable vector table is.
 - The watchdog timer interrupt should not be generated.
 - When an NMI, watchdog timer interrupt, oscillator stop detection interrupt, or low voltage detection interrupt occurs, the flash memory module automatically enters read array mode. Therefore, these interrupts are enabled even during a rewrite operation. However, the rewrite operation in progress is aborted by the interrupts and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the EWM bit in the FMR0 register to 1 (EW1 mode) and the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation. Note that the FMR1 register is not reset. Set the SUSEN bit to 0 (suspend function disabled) in an interrupt handler.

27.6.6 Notes on Rewrite Control Program

- EW0 mode
 - If the supply voltage drops during the rewrite operation of blocks having the rewrite control program, the rewrite control program may not be successfully rewritten, and the rewrite operation itself may not be performed. In this case, perform the rewrite operation by serial programmer or parallel programmer.
- EW1 mode
 - Do not rewrite blocks having the rewrite control program.

27.6.7 Notes on Number of Program/Erase Cycles and Software Command Execution Time

 The time to execute software commands (program, block erase, lock bit program, and protect bit program) increases as the number of program/erase cycles increases. If the number of program/ erase cycles exceeds the endurance value specified in the electrical characteristics, it may take an unpredictable amount of time to execute the software commands. The wait time for executing software commands should be set much longer than the execution time specified in the electrical characteristics.

27.6.8 Other Notes

- The minimum values of program/erase cycles specified in the electrical characteristics are the
 maximum values that can guarantee the initial performance of the flash memory. The program/
 erase operation may still be performed even if the number of program/erase cycles exceeds the
 guaranteed values.
- Chips repeatedly programmed and erased for debugging should not be used for commercial products.

28. Electrical Characteristics

Table 28.1 Absolute Maximum Ratings (1)

Symbol		Characteristic	Condition	Value	Unit
V_{CC}	Supply vol	tage	$V_{CC} = AV_{CC}$	-0.3 to 6.0	V
AV _{CC}	Analog su	pply voltage	$V_{CC} = AV_{CC}$	-0.3 to 6.0	V
Vı	Input voltage	XIN, RESET, CNVSS, NSD, V _{REF} , P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_3, P8_4 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P17_4 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (2)		-0.3 to V _{CC} + 0.3	V
		P4_0 to P4_7, P5_4 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_3, P12_0 to P12_7, P16_0 to P16_7, P17_0 to P17_3 (2)		-0.3 to 6.0	V
Vo	Output voltage	XOUT, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (2)		-0.3 to V _{CC} + 0.3	V
P_d	Power con	sumption	T _a = 25°C	500	mW
_	Operating	temperature range		-40 to 85	°C
T _{stg}	Storage te	mperature range		-65 to 150	°C

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to
 the device. This is a stress rating only and functional operation of the device at these or any other
 conditions above those indicated in the operational sections of this specification is not implied.
 Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Ports P16 to P19 are available in the 176-pin package only.

Table 28.2 Operating Conditions (1/5) (1)

Symbol		Charac	teristic		Value		Unit
Symbol		Charac	CENSUC	Min.	Тур.	Max.	Offic
V _{CC}	Digital supply	/ voltage		3.0	5.0	5.5	V
AV_{CC}	Analog suppl	ly voltage			V_{CC}		V
V_{REF}	Reference vo	oltage		3.0		V _{CC}	V
V_{SS}	Digital groun	d voltage			0		V
AV_{SS}	Analog grour	nd voltage			0		V
dV _{CC} /dt	V _{CC} ramp up	rate (V _{CC} < 2.0 V	")	0.05			V/ms
V _{IH}	High level input voltage	P3_0 to P3_7, P5 P9_0 to P9_7, P1 P11_0 to P11_7, P15_0 to P15_7,	P14_1, P14_3 to P14_7,	0.8 × V _{CC}		V _{CC}	V
			5_4 to P5_7, P6_0 to P6_7, 8_0 to P8_3, P16_0 to P16_7, 3)	0.8 × V _{CC}		6.0	V
		P1_0 to P1_7,	in single-chip mode	0.8 × V _{CC}		V _{CC}	٧
		P13_0 to P13_7	in memory expansion mode or microprocessor mode	0.5 × V _{CC}		V _{CC}	٧
		P12_0 to P12_7	in single-chip mode	0.8 × V _{CC}		6.0	V
			in memory expansion mode or microprocessor mode	0.5 × V _{CC}		6.0	V
V _{IL}	Low level input voltage	P3_0 to P3_7, P4 P6_0 to P6_7, P7 P9_0 to P9_7, P1	P14_1, P14_3 to P14_7, P16_0 to P16_7, P18_0 to P18_7,	0		0.2 × V _{CC}	>
		P0_0 to P0_7,	in single-chip mode	0		0.2 × V _{CC}	V
		P1_0 to P1_7, P12_0 to P12_7, P13_0 to P13_7	in memory expansion mode or microprocessor mode	0		0.16 × V _{CC}	V
T _{opr}	Operating	N version		-20		85	°C
	temperature			-40		85	°C
	range	P version		-40		85	°C

- 1. The device is operationally guaranteed under these operating conditions.
- 2. V_{IH} and V_{IL} for P8_7 are specified for P8_7 as a programmable port. These values are not applicable for P8_7 as XCIN.
- 3. Ports P16 to P19 are available in the 176-pin package only.

Table 28.3 Operating Conditions (2/5)

(V_{CC} = 3.0 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted) ⁽¹⁾

Symbol	Characteristic		\	/alue (2	2)	Unit
Gyiriboi	Gharacteristic		Min.	Тур.	Max.	Offic
C _{VDC}	Decoupling capacitance for voltage regulator	Inter-pin voltage: 1.5 V	2.4		10.0	μF

- 1. The device is operationally guaranteed under these operating conditions.
- 2. This value should be met with due consideration to the following conditions: operating temperature, DC bias, aging, etc.

Table 28.4 Operating Conditions (3/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ (1)

Symbol		Characteristic		Value		Unit
Symbol		Characteristic	Min.	Тур.	Max.	Ullit
I _{OH(peak)}	peak output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (3)			-10.0	mA
l _{OH(avg)}	average output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (3)			-5.0	mA
I _{OL} (peak)	peak output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (3)			10.0	mA
I _{OL} (avg)	average output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (3)			5.0	mA

- 1. The device is operationally guaranteed under these operating conditions.
- The following conditions should be satisfied:
 - The sum of I_{OL(peak)} of ports P0, P1, P2, P8_6, P8_7, P9, P10, P11_0 to P11_4, P14_3 to P14_6, P15, P18_2 to P18_7, P19_0, P19_1, P19_6, and P19_7 is 80 mA or less.
 - The sum of I_{OL(peak)} of ports P3, P4, P5, P6, P7, P8_0 to P8_4, P11_5 to P11_7, P12, P13, P14_7, P16, P17, P18_0, P18_1, and P19_2 to P19_5 is 80 mA or less.
 - The sum of I_{OH(peak)} of ports P0, P1, P2, P11_0 to P11_4, P18_2 to P18_7, P19_0, and P19_1 is -40 mA or less.
 - The sum of I_{OH(peak)} of ports P8_6, P8_7, P9, P10, P14_3 to P14_6, P15, P19_6, and P19_7 is -40 mA or less.
 - The sum of I_{OH(peak)} of ports P3, P4, P5, P11_5, P11_6, P12, P13, P16, P17_0 to P17_3, and P19_2 to P19_5 is -40 mA or less.
 - The sum of $I_{OH(peak)}$ of ports P6, P7, P8_0 to P8_4, P11_7, P14_7, P17_4 to P17_7, P18_0, and P18_1 is -40 mA or less.
- 3. Ports P16 to P19 are available in the 176-pin package only.
- 4. Average value within 100 ms.

Table 28.5 Operating Conditions (4/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ (1)

Cumbal	Characteristic		Value		Linit
Symbol	Characteristic	Min.	Тур.	Max.	Unit
$f_{(XIN)}$	Main clock oscillator frequency	4		16	MHz
f _(XRef)	Reference clock frequency	2		4	MHz
f _(PLL)	PLL clock oscillator frequency	96		128	MHz
f _(Base)	Base clock frequency			64	MHz
t _{c(Base)}	Base clock cycle time	15.625			ns
f _(CPU)	CPU operating frequency			64	MHz
t _{C(CPU)}	CPU clock cycle time	15.625			ns
f _(BCLK)	Peripheral bus clock operating frequency			32	MHz
t _{C(BCLK)}	Peripheral bus clock cycle time	31.25			ns
f _(PER)	Peripheral clock source frequency			32	MHz
f _(XCIN)	Sub clock oscillator frequency		32.768	62.5	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

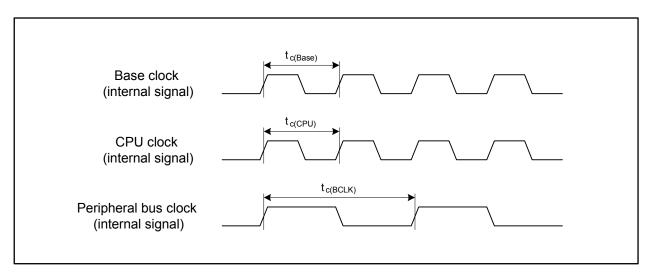


Figure 28.1 Clock Cycle Time

Table 28.6 Operating Conditions (5/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ (1)

Symbol	Characteristic			Value			
Symbol			Min.	Тур.	Max.	Unit	
$V_{r(VCC)}$	Allowable ripple voltage	V _{CC} = 5.0 V			0.5	Vp-p	
		V _{CC} = 3.0 V			0.3	Vp-p	
dV _{r(VCC)} /dt	Ripple voltage gradient	V _{CC} = 5.0 V			±0.3	V/ms	
		V _{CC} = 3.0 V			±0.3	V/ms	
f _{r(VCC)}	Allowable ripple frequency				10	kHz	

Note:

1. The device is operationally guaranteed under these operating conditions.

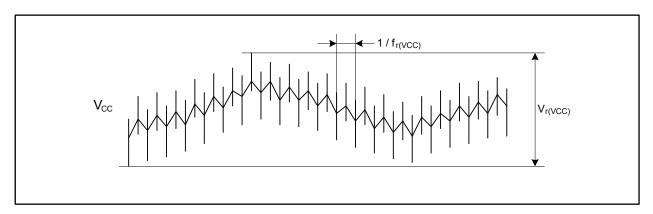


Figure 28.2 Ripple Waveform

Table 28.7 Electrical Characteristics of RAM $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and Ta} = T_{opr}, \text{ unless otherwise noted})$

Symbol V _{RDR}	Characteristic	Measurement		Value		Unit
Symbol	Characteristic	Condition	Min.	Тур.	Max.	Offic
V_{RDR}	RAM data retention voltage	In stop mode	2.0			V

Table 28.8 Electrical Characteristics of Flash Memory $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and Ta} = T_{opr}, \text{ unless otherwise noted})$

Symbol	Characteristic			Value		Unit
Symbol	Grialacteristic		Min.	Тур.	Max.	Offic
_	Program/erase cycles (1)	Program area	1000			Cycles
		Data area	10000			Cycles
	4-word program time	Program area		150	900	μs
		Data area		300	1700	μs
_	Lock bit program time	Program area		70	500	μs
		Data area		140	1000	μs
_	Block erasure time	4-Kbyte block		0.12	3.0	s
		32-Kbyte block		0.17	3.0	s
		64-Kbyte block		0.20	3.0	s
t _{SUSP}	Suspend latency	•			250	μs
_	Data retention (2)	$T_a = 55^{\circ}C^{(3)}$	10			Years

Notes:

1. Program/erase definition

This value represents the number of erasures per block.

When the number of program/erase cycles is n, each block can be erased n times.

For example, if a 4-word write is performed in 512 different addresses in the 4-Kbyte block A and then the block is erased, this is counted as a single program/erase operation.

However, the same address cannot be written to more than once per erasure (overwrite disabled).

- 2. Data retention includes periods when no supply voltage is applied and no clock is provided.
- 3. Contact a Renesas Electronics sales office for data retention times other than the above condition.

Table 28.9 Power Supply Circuit Timing Characteristics $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$

Symbol	Characteristic	Measurement		Value		Unit
Syllibol	Characteristic	Condition	Min.	Тур.	Max.	Offic
Δ(1 1 1)	Internal power supply start-up stabilization time after the main power supply is turned on				2	ms

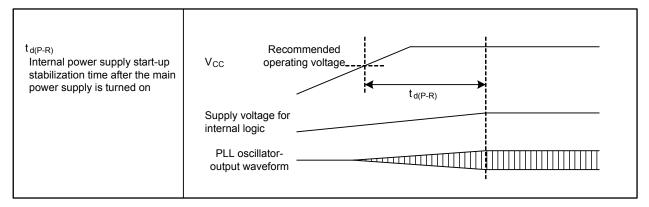


Figure 28.3 Power Supply Circuit Timing

Table 28.10 Electrical Characteristics of Voltage Regulator for Internal Logic ($V_{CC} = 3.0$ to 5.5 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristics	Measurement		Unit		
Symbol	Characteristics	Condition	Min.	Тур.	Max.	Offic
V _{VDC1}	Output voltage			1.5		V

Table 28.11 Electrical Characteristics of Low Voltage Detector (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristics	Measurement	Value			Unit
Symbol		Condition	Min.	Тур.	Max.	Oill
∆Vdet	Detected voltage error				±0.3	V
Vdet(R)-Vdet(F)	Hysteresis width		0			V
_	Self-consuming current	V _{CC} = 5.0 V, low voltage detector enabled		4		μΑ
$t_{d(E-A)}$	Operation start time of low voltage detector				150	μs

Table 28.12 Electrical Characteristics of Oscillator ($V_{CC} = 3.0$ to 5.5 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristics	Measurement Condition	Value			Unit
			Min.	Тур.	Max.	Oill
f _{SO(PLL)}	PLL clock self-oscillation frequency		35	55	80	MHz
t _{LOCK(PLL)}	PLL lock time (1)				1	ms
t _{jitter(p-p)}	PLL jitter period (p-p)				2.0	ns
f _(OCO)	On-chip oscillator frequency		62.5	125	250	kHz

Note:

1. This value is applicable only when the main clock oscillation is stable.

Table 28.13 Electrical Characteristics of Clock Circuitry $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$

Symbol	Characteristics	Measurement Condition	Value			Unit
			Min.	Тур.	Max.	Offic
t _{rec(WAIT)}	Recovery time from wait mode to low power mode				225	μs
$t_{rec(STOP)}$	Recovery time from stop mode (1)				225	μs

Note:

1. The recovery time from stop mode does not include the main clock oscillation stabilization time. The CPU starts operating before the oscillator is stabilized.

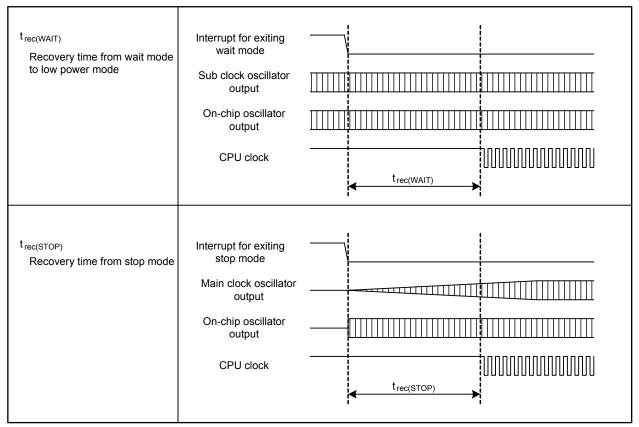


Figure 28.4 Clock Circuit Timing

Timing Requirements (V_{CC} = 3.0 to 5.5 V, V_{SS} = 0 V, and Ta = T_{opr} , unless otherwise noted)

Table 28.14 Flash Memory CPU Rewrite Mode Timing

Symbol	Characteristics	Value		Unit
		Min.	Max.	Offic
t _{cR}	Read cycle time	200		ns
t _{su(S-R)}	Chip-select setup time before read	200		ns
t _{h(R-S)}	Chip-select hold time after read	0		ns
t _{su(A-R)}	Address setup time before read	200		ns
t _{h(R-A)}	Address hold time after read	0		ns
t _{w(R)}	Read pulse width	100		ns
t _{cW}	Write cycle time	200		ns
t _{su(S-W)}	Chip-select setup time before write	0		ns
t _{h(W-S)}	Chip-select hold time after write	30		ns
t _{su(A-W)}	Address setup time before write	0		ns
t _{h(W-A)}	Address hold time after write	30		ns
t _{w(W)}	Write pulse width	50		ns

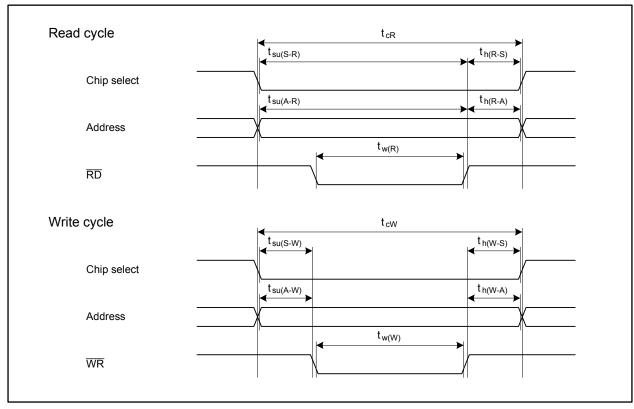


Figure 28.5 Flash Memory CPU Rewrite Mode Timing

 $V_{CC} = 5 V$

Table 28.15 Electrical Characteristics (1/3) $(V_{CC} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_a = T_{opr}, \text{ and } f_{(CPU)} = 64 \text{ MHz}, \text{ unless otherwise noted)}$

Symbol	Characteristic		Measurement	Value			Unit
Cymbol	Griaracteristic	Condition	Min.	Тур.	Max.	Offic	
V _{OH}	High level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OH} = -5 mA	V _{CC} - 2.0		V _{CC}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OH} = -200 μA	V _{CC} - 0.3		V _{CC}	V
V _{OL}	Low level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OL} = 5 mA			2.0	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OL} = 200 μA			0.45	V

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

Table 28.16 Electrical Characteristics (2/3) $(V_{CC} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_a = T_{opr}, \text{ and } f_{(CPU)} = 64 \text{ MHz}, \text{ unless otherwise noted)}$

Symbol		Characteristic	Measurement	Value			Unit
Cymbol		Characterione	Condition	Min.	Тур.	Max.	OTHE
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, NMI, INTO to INT8, KIO to KI3, TA0IN to TA4IN, TA0OUT to TA4OUT, TB0IN to TB5IN, CTSO to CTS10, CLKO to CLK10, RXDO to RXD10, SCLO to SCL6, SDAO to SDA6, SSO to SS6, SRXDO to SRXD6, ADTRG, IIOO_0 to IIOO_7, IIO1_0 to IIO1_7, UD0A, UD0B, UD1A, UD1B, ISCLK2, ISRXD2, IEIN, MSCL, MSDA		0.2		1.0	V
		RESET		0.2		1.8	V
Ή	High level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 5 V			5.0	μА
I _L	Low level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 0 V			-5.0	μА
R _{PULLUP}	Pull-up resistor	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_3, P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P17_4 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 0 V	30	50	170	kΩ
R _{fXIN}	Feedback resistor	XIN			1.5		МΩ
R _{fXCIN}	Feedback resistor	XCIN			15		МΩ

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

Table 28.17 Electrical Characteristics (3/3) $(V_{CC} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$

Symbol	Characterist ic Measurement Condition		surament Condition		Value	;	Unit
Syllibol			Suferient Condition	Min.	Тур.	Max.	UII
CC	Power supply current	In single-chip mode, output pins are left open and others are connected to V _{SS}	$\begin{split} &f_{(CPU)} = 64 \text{ MHz, } f_{(BCLK)} = 32 \text{ MHz,} \\ &f_{(XIN)} = 8 \text{ MHz,} \\ &\text{Active: XIN, PLL,} \\ &\text{Stopped: XCIN, OCO} \end{split}$		45	60	m/
		XIN-XOUT Drive strength: low	f _(CPU) = f _{SO(PLL)} /24 MHz, Active: PLL (self-oscillation), Stopped: XIN, XCIN, OCO		12		m
		XCIN-XCOUT Drive strength: low	$\begin{split} &f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, \\ &f_{(XIN)} = 8 \text{ MHz}, \\ &\text{Active: XIN,} \\ &\text{Stopped: PLL, XCIN, OCO} \end{split}$		1.2		m
			f _(CPU) = f _(BCLK) = 32.768 kHz, Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown		220		μΑ
			f _(CPU) = f _(BCLK) = f _(OCO) /4 kHz, Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown		230		μ
			$\begin{split} &f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, \\ &f_{(XIN)} = 8 \text{ MHz}, \\ &\text{Active: XIN,} \\ &\text{Stopped: PLL, XCIN, OCO,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		960	1600	μ
			$\begin{split} &f_{(CPU)} = f_{(BCLK)} = 32.768 \text{ kHz}, \\ &\text{Active: XCIN,} \\ &\text{Stopped: XIN, PLL, OCO,} \\ &\text{Main regulator: shutdown,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		8	140	μ
			$\begin{split} &f_{\text{(CPU)}} = f_{\text{(BCLK)}} = f_{\text{(OCO)}}/4 \text{ kHz}, \\ &\text{Active: OCO,} \\ &\text{Stopped: XIN, PLL, XCIN,} \\ &\text{Main regulator: shutdown,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		10	150	μ
			Stopped: all clocks, Main regulator: shutdown, T _a = 25°C		5	70	μ

Table 28.18 A/D Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 4.2$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V, $T_a = T_{opr}$, and $f_{(BCLK)} = 32$ MHz, unless otherwise noted)

Cymbol	Characteristic	Measurement Condition			Value		Unit
Symbol	Characteristic	Measurem	Measurement Condition –		Тур.	Max.	Ullit
_	Resolution	V _{REF} = V _{CC}				10	Bits
_	Absolute error	V _{REF} = V _{CC} = 5 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1			±3	LSB
			External op-amp connection mode			±7	LSB
INL	Integral non-linearity error	V _{REF} = V _{CC} = 5 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1			±3	LSB
			External op-amp connection mode			±7	LSB
DNL	Differential non-linearity error					±1	LSB
_	Offset error					±3	LSB
_	Gain error					±3	LSB
R _{LADDER}	Resistor ladder	V _{REF} = V _{CC}		4		20	kΩ
t _{CONV}	Conversion time (10 bits)	ϕ_{AD} = 16 MHz, with function	sample and hold	2.06			μs
		ϕ_{AD} = 16 MHz, withoution	out sample and hold	3.69			μs
t _{CONV}	Conversion time (8 bits)	ϕ_{AD} = 16 MHz, with function	sample and hold	1.75			μs
		ϕ_{AD} = 16 MHz, withoution	out sample and hold	3.06			μs
t _{SAMP}	Sampling time	φ _{AD} = 16 MHz		0.188			μs
V _{IA}	Analog input voltage			0		V_{REF}	V
φ _{AD}	Operating clock	Without sample and	I hold function	0.25		16	MHz
	frequency	With sample and ho	old function	1		16	MHz
R _{PU(AST)}	Pull-up resistor for open- circuit detection			5	10	15	kΩ
R _{PD(AST)}	Pull-down resistor for open-circuit detection			5	10	15	kΩ

Table 28.19 D/A Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 4.2$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic	Measurement Condition		Value		
Symbol	Characteristic	Measurement Condition	Min.	Тур.	Max.	Unit
_	Resolution				8	Bits
_	Absolute precision				1.0	%
t _S	Settling time				3	μs
R _O	Output resistance		4	10	20	kΩ
I _{VREF}	Reference input current	See Note 1			1.5	mA

Note:

1. One D/A converter is used. The DAi register (i = 0, 1) of the other unused converter is set to 00h. The resistor ladder for the A/D converter is not considered.

Even when the VCUT bit in the AD0CON1 register is set to 0 (V_{REF} disconnected), I_{VREF} is supplied.

Timing Requirements (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.20 External Clock Input

Symbol	Characteristic	Va	Unit	
Symbol	Characteristic	Min.	Max.	Offic
t _{C(X)}	External clock input period	62.5	250	ns
t _{w(XH)}	External clock input high level pulse width	25		ns
$t_{w(XL)}$	External clock input low level pulse width	25		ns
t _{r(X)}	External clock input rise time		5	ns
$t_{f(X)}$	External clock input fall time		5	ns
t _w / t _c	External clock input duty	40	60	%

Table 28.21 External Bus Timing

Symbol	Characteristic	Va	Unit	
Symbol	Characteristic	Min.	Max.	Offic
t _{su(D-R)}	Data setup time before read	40		ns
t _{h(R-D)}	Data hold time after read	0		ns
t _{dis(R-D)}	Data disable time after read		$0.5 \times t_{c(Base)} + 10$	ns

Timing Requirements (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.22 Timer A Input (counting input in event counter mode)

Symbol	Characteristic		Value	
Symbol	Griaracteristic	Min.	Max.	Unit
t _{C(TA)}	TAilN input clock cycle time	200		ns
t _{w(TAH)}	TAilN input high level pulse width	80		ns
t _{W(TAL)}	TAilN input low level pulse width	80		ns

Table 28.23 Timer A Input (gating input in timer mode)

Symbol	Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Offic
t _{C(TA)}	TAilN input clock cycle time	400		ns
t _{w(TAH)}	TAilN input high level pulse width	180		ns
t _{w(TAL)}	TAilN input low level pulse width	180		ns

Table 28.24 Timer A Input (external trigger input in one-shot timer mode)

Symbol	Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Offic
$t_{C(TA)}$	TAilN input clock cycle time	200		ns
t _{W(TAH)}	TAilN input high level pulse width	80		ns
t _{W(TAL)}	TAilN input low level pulse width	80		ns

Table 28.25 Timer A Input (external trigger input in pulse-width modulation mode)

Symbol	Characteristic	Va	Unit	
Symbol	Gridi acteristic	Min.	Max.	Offic
t _{W(TAH)}	TAilN input high level pulse width	80		ns
t _{W(TAL)}	TAilN input low level pulse width	80		ns

Table 28.26 Timer A Input (increment/decrement switching input in event counter mode)

Symbol	col Characteristic		Value		
Symbol	Characteristic	Min.	Max.	Unit	
t _{C(UP)}	TAiOUT input clock cycle time	2000		ns	
t _{w(UPH)}	TAiOUT input high level pulse width	1000		ns	
t _{w(UPL)}	TAiOUT input low level pulse width	1000		ns	
t _{su(UP-TIN)}	TAiOUT input setup time	400		ns	
t _{h(TIN-UP)}	TAiOUT input hold time	400		ns	

Timing Requirements (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.27 Timer B Input (counting input in event counter mode)

Symbol	Characteristic -		Value	
Symbol			Max.	Unit
t _{c(TB)}	TBilN input clock cycle time (one edge counting)	200		ns
t _{W(TBH)}	TBilN input high level pulse width (one edge counting)	80		ns
t _{W(TBL)}	TBilN input low level pulse width (one edge counting)	80		ns
t _{C(TB)}	TBilN input clock cycle time (both edges counting)	200		ns
t _{W(TBH)}	TBilN input high level pulse width (both edges counting)	80		ns
t _{W(TBL)}	TBilN input low level pulse width (both edges counting)	80		ns

Table 28.28 Timer B Input (pulse period measure mode)

Symbol Characteristic	Characteristic	Value		Unit
	Min.	Max.		
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBilN input high level pulse width	180		ns
t _{W(TBL)}	TBilN input low level pulse width	180		ns

Table 28.29 Timer B Input (pulse-width measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	Offic
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{W(TBH)}	TBilN input high level pulse width	180		ns
t _{W(TBL)}	TBilN input low level pulse width	180		ns

Timing Requirements (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.30 Serial Interface

Cymahal	Observatoristis	Value		l lmit
Symbol	Characteristic	Min.	Max.	Unit
t _{C(CK)}	CLKi input clock cycle time	200		ns
t _{w(CKH)}	CLKi input high level pulse width	80		ns
t _{w(CKL)}	CLKi input low level pulse width	80		ns
t _{su(D-C)}	RXDi input setup time	80		ns
t _{h(C-D)}	RXDi input hold time	90		ns

Table 28.31 A/D Trigger Input

Symbol	Characteristic	Value		Unit
	Characteristic	Min.	Max.	Offic
t _{W(ADH)}	ADTRG input high level pulse width Hardware trigger input high level pulse width	$\frac{3}{\phi_{AD}}$		ns
t _{W(ADL)}	ADTRG input low level pulse width Hardware trigger input high level pulse width	125		ns

Table 28.32 External Interrupt INTi Input

Symbol	Characteristic		Value		Unit
Symbol	Characteristic	Characteristic		Max.	Offic
t _{W(INH)}	INTi input high level pulse width	Edge sensitive	250		ns
		Level sensitive	t _{C(CPU)} + 200		ns
t _{W(INL)}	INTi input low level pulse width	Edge sensitive	250		ns
		Level sensitive	t _{C(CPU)} + 200		ns

Table 28.33 Intelligent I/O

Symbol	Characteristic	Value		Linit
Symbol Characteristic		Min.	Max.	Unit
t _{c(ISCLK2)}	ISCLK2 input clock cycle time	600		ns
t _{w(ISCLK2H)}	ISCLK2 input high level pulse width	270		ns
t _{w(ISCLK2L)}	ISCLK2 input low level pulse width	270		ns
$t_{su(RXD-ISCLK2)}$	ISRXD2 input setup time	150		ns
t _{h(ISCLK2-RXD)}	ISRXD2 input hold time	100		ns

Timing Requirements (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.34 Multi-master I²C-bus Interface

		Value				
Symbol	Characteristic	Standard-mode		Fast-mode		Unit
		Min.	Max.	Min.	Max.	
t _{w(SCLH)}	MSCL input high level pulse width	600		600		ns
t _{w(SCLL)}	MSCL input low level pulse width	600		600		ns
t _{r(SCL)}	MSCL input rise time		1000		300	ns
t _{f(SCL)}	MSCL input fall time		300		300	ns
t _{r(SDA)}	MSDA input rise time		1000		300	ns
t _{f(SDA)}	MSDA input fall time		300		300	ns
t _{h(SDA-SCL)} S	MSCL high level hold time after start condition/restart condition	(1)		$2 \times t_{C(\phi IIC)} + 40$		ns
t _{su(SCL-SDA)P}	MSCL high level setup time for restart condition/stop condition	(1)		$2 \times t_{C(\phi IIC)} + 40$		ns
t _{w(SDAH)} P	MSDA high level pulse width after stop condition	(1)		$4 \times t_{C(\phi IIC)} + 40$		ns
t _{su(SDA-SCL)}	MSDA input setup time	100		100		ns
t _{h(SCL-SDA)}	MSDA input hold time	0		0		ns

Note:

1. The value is calculated by the following formulas based on a value SSC by setting bits SSC4 to SSC0 in the I2CSSCR register:

$$t_{h(SDA-SCL)S} = SSC \div 2 \times t_{c(\phi IIC)} + 40 [ns]$$

$$t_{su(SCL-SDA)P} = (SSC \div 2 + 1) \times t_{c(\phi IIC)} + 40 [ns]$$

$$t_{w(SDAH)P} = (SSC + 1) \times t_{c(\phi IIC)} + 40 [ns]$$

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.35 External Bus Timing (separate bus)

Symbol	Characteristic	Measurement	Val	Unit	
Syllibol		Condition	Min.	Max.	Ullit
t _{su(S-R)}	Chip-select setup time before read		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		t _{c(Base)} -15		ns
t _{su(A-R)}	Address setup time before read		(1)		ns
t _{h(R-A)}	Address hold time after read		t _{c(Base)} -15		ns
t _{w(R)}	Read pulse width	-	(1)		ns
t _{su(S-W)}	Chip-select setup time before write	Refer to Figure 28.6	(1)		ns
t _{h(W-S)}	Chip-select hold time after write	ga. o _o.o	1.5 × t _{c(Base)} -15		ns
t _{su(A-W)}	Address setup time before write	-	(1)		ns
t _{h(W-A)}	Address hold time after write	-	1.5 × t _{c(Base)} -15		ns
t _{W(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0		ns

Note:

1. The value is calculated using the formulas below based on the base clock cycles $(t_{C(Base)})$ and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".

$$\begin{split} t_{su(S-R)} &= t_{su(A-R)} = Tsu(A-R) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} - 10 \text{ [ns]} \\ t_{su(S-W)} &= t_{su(A-W)} = Tsu(A-W) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} - 10 \text{ [ns]} \end{split}$$

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.36 External Bus Timing (multiplexed bus)

Symbol	Characteristic	Measurement	Value		
Symbol	Characteristic	Condition	Min.	Max.	Unit
t _{su(S-ALE)}	Chip-select setup time before ALE		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		1.5 × t _{c(Base)} -15		ns
t _{su(A-ALE)}	Address setup time before ALE]	(1)		ns
t _{h(ALE-A)}	Address hold time after ALE	-	t _{c(Base)} - 5 ⁽²⁾		ns
t _{h(R-A)}	Address hold time after read]	1.5 × t _{c(Base)} -15		ns
t _{d(ALE-R)}	ALE-read delay time]	t _{c(Base)} - 5 ⁽²⁾	t _{c(Base)} + 10 ⁽²⁾	ns
t _{w(ALE)}	ALE pulse width	Refer to	(1)		ns
t _{dis(R-A)}	Address disable time after read	Figure 28.6		8	ns
$t_{w(R)}$	Read pulse width]	(1)		ns
t _{h(W-S)}	Chip-select hold time after write]	1.5 × t _{c(Base)} -15		ns
t _{h(W-A)}	Address hold time after write]	1.5 × t _{c(Base)} -15		ns
t _{d(ALE-W)}	ALE-write delay time		t _{c(Base)} - 5 ⁽²⁾	t _{c(Base)} + 10 ⁽²⁾	ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0.5 × t _{c(Base)}		ns

Notes:

1. The value is calculated using the formulas below based on the base clock cycles $(t_{c(Base)})$ and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".

```
\begin{split} t_{su(S-ALE)} &= t_{su(A-ALE)} = t_{w(ALE)} = (Tsu(A-R) - 1) \times t_{c(Base)} \text{ -15 [ns]} \\ \text{(when Tsu(A-R) is greater than 1)} \\ t_{su(S-ALE)} &= t_{su(A-ALE)} = t_{w(ALE)} = 0.5 \times t_{c(Base)} \text{ -15 [ns] (when Tsu(A-R) is 1)} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} \text{ -10 [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} \text{ -10 [ns]} \end{split}
```

2. When Tsu(A-R) is greater than 1 or Tsu(A-W) is greater than 1. Change " $t_{c(Base)}$ " to "0.5 × $t_{c(Base)}$ " when Tsu(A-R) is 1 or Tsu(A-W) is 1.

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.37 Serial Interface

Symbol	Characteristic	Measurement	Value		Unit
		Condition	Min.	Max.	Offic
$t_{d(C-Q)}$	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 28.6	0		ns

Table 28.38 Intelligent I/O

Symbol	Characteristic	Measurement	Value		Unit
		Condition	Min.	Max.	Offic
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 28.6	0		ns

Table 28.39 Multi-master I²C-bus Interface (standard-mode)

Symbol	Characteristic	Measurement	Va	Linit	
Symbol	Cilaracteristic	Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)S}	MSCL output delay time after start condition/restart condition	Refer to	20 × t _{c(φIIC)} - 120	52 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Restart condition/stop condition output delay time after MSCL becomes high	Figure 28.6	20 × t _{c(φIIC)} + 40	52 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{C(\phi IIC)} + 120$	ns

Table 28.40 Multi-master I²C-bus Interface (fast-mode)

Symbol	Characteristic Measurement Value				Unit
Symbol	Characteristic	Condition	Min.	Max.	Offic
t _{f(SCL)}	MSCL output fall time		2 (1)		ns
t _{f(SDA)}	MSDA output fall time		2 (1)		ns
t _{d(SDA-SCL)S}	MSCL output delay time after start condition/restart condition	Refer to	10 × t _{c(φIIC)} - 120	26 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Restart condition/stop condition output delay time after MSCL becomes high	Figure 28.6	10 × t _{c(\phiIIC)} + 40	26 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{C(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

Table 28.41 Electrical Characteristics (1/3) (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, T_a = T_{opr} , and $f_{(CPU)}$ = 64 MHz, unless otherwise noted)

Symbol		Characteristic	Measurement	Va	alue		Unit
Symbol		Characteristic	Condition	Min. Typ. Ma			Offic
V _{OH}	•	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OH} = -1 mA	V _{CC} - 0.6		V _{CC}	V
V _{OL}	•	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	I _{OL} = 1 mA			0.5	V

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

Table 28.42 Electrical Characteristics (2/3) (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, T_a = T_{opr} , and $f_{(CPU)}$ = 64 MHz, unless otherwise noted)

Symbol		Characteristic	Measurement		Value		Unit
Cymbol			Condition	Min.	Тур.	Max.	Oill
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, NMI, INTO to INT8, KIO to KI3, TAOIN to TA4IN, TAOOUT to TA4OUT, TBOIN to TB5IN, CTSO to CTS10, CLKO to CLK10, RXDO to RXD10, SCLO to SCL6, SDAO to SDA6, SSO to SS6, SRXDO to SRXD6, ADTRG, IIOO_0 to IIOO_7, IIO1_0 to IIO1_7, UDOA, UDOB, UD1A, UD1B, ISCLK2, ISRXD2, IEIN, MSCL, MSDA		0.2		1.0	V
		RESET		0.2		1.8	V
I _I H	High level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 3.3 V			4.0	μΑ
I _{IL}	Low level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P16_0 to P16_7, P17_0 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 0 V			-4.0	μА
R _{PULLUP}	Pull-up resistor	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_3, P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P13_0 to P13_7, P14_1, P14_3 to P14_7, P15_0 to P15_7, P17_4 to P17_7, P18_0 to P18_7, P19_0 to P19_7 (1)	V _I = 0 V	50	100	500	kΩ
R _{fXIN}	Feedback resistor	XIN			3		МΩ
R _{fXCIN}	Feedback resistor	XCIN			25		ΜΩ

Note:

1. Ports P16 to P19 are available in the 176-pin package only.

 $V_{\rm CC}$ = 3.3 V

Table 28.43 Electrical Characteristics (3/3) $(V_{CC} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$

Cumbal	Characte	Ma	coursment Condition		Value	Э	Unit
Symbol	ristic	ivie	asurement Condition	Min.	Тур.	Max.	Offic
l _{cc}	Power supply current	In single-chip mode, output pins are left open and others are connected to V _{SS} XIN-XOUT Drive strength: low	$f_{(CPU)}$ = 64 MHz, $f_{(BCLK)}$ = 32 MHz, $f_{(XIN)}$ = 8 MHz, Active: XIN, PLL, Stopped: XCIN, OCO $f_{(CPU)}$ = $f_{SO(PLL)}/24$ MHz,		40	55	mA mA
		XCIN-XCOUT Drive strength: low	Active: PLL (self-oscillation), Stopped: XIN, XCIN, OCO $f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz},$ $f_{(XIN)} = 8 \text{ MHz},$		670		μΑ
			Active: XIN, Stopped: PLL, XCIN, OCO $f_{(CPU)} = f_{(BCLK)} = 32.768 \text{ kHz},$		670		μΑ
			Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown		180		μΑ
			f _(CPU) = f _(BCLK) = f _(OCO) /4 kHz, Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown		190		μΑ
			$\begin{split} &f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, \\ &f_{(XIN)} = 8 \text{ MHz}, \\ &\text{Active: XIN,} \\ &\text{Stopped: PLL, XCIN, OCO,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		500	900	μA
			$\begin{split} &f_{(CPU)} = f_{(BCLK)} = 32.768 \text{ kHz}, \\ &\text{Active: XCIN,} \\ &\text{Stopped: XIN, PLL, OCO,} \\ &\text{Main regulator: shutdown,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		8	140	μА
			$\begin{split} &f_{(CPU)} = f_{(BCLK)} = f_{(OCO)}/4 \text{ kHz}, \\ &\text{Active: OCO}, \\ &\text{Stopped: XIN, PLL, XCIN,} \\ &\text{Main regulator: shutdown,} \\ &T_a = 25^{\circ}\text{C, Wait mode} \end{split}$		10	150	μА
			Stopped: all clocks, Main regulator: shutdown, T _a = 25°C		5	70	μA

Table 28.44 A/D Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 3.0$ to 3.6 V, $V_{SS} = AV_{SS} = 0$ V, $T_a = T_{opr}$, and $f_{(BCLK)} = 32$ MHz, unless otherwise noted)

O male al	Observant aviation		and One differen		Value		1.124
Symbol	Characteristic	Measurem	ent Condition	Min.	Тур.	Max.	Unit
_	Resolution	V _{REF} = V _{CC}				10	Bits
_	Absolute error	V _{REF} = V _{CC} = 3.3 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1			±5	LSB
			External op-amp connection mode			±7	LSB
INL	Integral non-linearity error	$V_{REF} = V_{CC} = 3.3 V$	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1			±5	LSB
			External op-amp connection mode			±7	LSB
DNL	Differential non- linearity error	$V_{REF} = V_{CC} = 3.3 V$				±1	LSB
_	Offset error					±3	LSB
_	Gain error					±3	LSB
R _{LADDER}	Resistor ladder	$V_{REF} = V_{CC}$		4		20	kΩ
t _{CONV}	Conversion time (10 bits)	ϕ_{AD} = 10 MHz, with sample and hole	d function	3.3			μs
t _{CONV}	Conversion time (8 bits)	ϕ_{AD} = 10 MHz, with sample and hole	d function	2.8			μs
t _{SAMP}	Sampling time	φ _{AD} = 10 MHz		0.3			μs
V _{IA}	Analog input voltage			0		V_{REF}	V
ϕ_{AD}	Operating clock	Without sample and	hold function	0.25		10	MHz
	frequency	With sample and ho	ld function	1		10	MHz
R _{PU(AST)}	Pull-up resistor for open-circuit detection			5	10	15	kΩ
R _{PD(AST)}	Pull-down resistor for open-circuit detection			5	10	15	kΩ

Table 28.45 D/A Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 3.0$ to 3.6 V, $V_{SS} = AV_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic	Measurement Condition	Value			Unit
Syllibol	TIDOI Characteristic Measurement Condition —		Min.	Тур.	Max.	Offic
_	Resolution				8	Bits
_	Absolute precision				1.0	%
t _S	Settling time				3	μs
R _O	Output resistance		4	10	20	kΩ
I _{VREF}	Reference input current	See Note 1			1.0	mA

Note:

1. One D/A converter is used. The DAi register (i = 0, 1) of the other unused converter is set to 00h. The resistor ladder for the A/D converter is not considered.

Even when the VCUT bit in the AD0CON1 register is set to 0 (V_{REF} disconnected), I_{VREF} is supplied.

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.46 External Clock Input

Symbol	Characteristic	Va	Unit	
Syllibol	Characteristic		Max.	Offic
t _{C(X)}	External clock input period	62.5	250	ns
t _{w(XH)}	External clock input high level pulse width	25		ns
$t_{w(XL)}$	External clock input low level pulse width	25		ns
$t_{r(X)}$	External clock input rise time		5	ns
t _{f(X)}	External clock input fall time		5	ns
t _w / t _c	External clock input duty	40	60	%

Table 28.47 External Bus Timing

Symbol	Characteristic	Va	lue	Unit
Symbol	Characteristic	Min. Max.		Offic
t _{su(D-R)}	Data setup time before read	40		ns
t _{h(R-D)}	Data hold time after read	0		ns
t _{dis(R-D)}	Data disable time after read		$0.5 \times t_{c(Base)} + 10$	ns

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.48 Timer A Input (counting input in event counter mode)

Symbol	Characteristic	Va	Unit	
Syllibol	ool Characteristic		Max.	Offic
t _{c(TA)}	TAilN input clock cycle time	200		ns
t _{w(TAH)}	TAilN input high level pulse width	80		ns
t _{w(TAL)}	TAilN input low level pulse width	80		ns

Table 28.49 Timer A Input (gating input in timer mode)

Symbol	Characteristic		Value	
Symbol			Max.	Unit
t _{c(TA)}	TAilN input clock cycle time	400		ns
t _{w(TAH)}	TAilN input high level pulse width	180		ns
t _{w(TAL)}	TAilN input low level pulse width	180		ns

Table 28.50 Timer A Input (external trigger input in one-shot timer mode)

Symbol	Characteristic	Va	Unit	
Symbol	Characteristic		Max.	Offic
t _{c(TA)}	TAilN input clock cycle time	200		ns
t _{w(TAH)}	TAilN input high level pulse width	80		ns
t _{w(TAL)}	TAilN input low level pulse width	80		ns

Table 28.51 Timer A Input (external trigger input in pulse-width modulation mode)

Symbol	Characteristic	Value		Unit
Symbol	DOI CHARACTERISTIC		Max.	Offic
t _{w(TAH)}	TAilN input high level pulse width	80		ns
t _{W(TAL)}	TAilN input low level pulse width	80		ns

Table 28.52 Timer A Input (increment/decrement switching input in event counter mode)

Symbol Characteristic	Observatoristic	Value		Llmit
	Min.	Max.	Unit	
$t_{c(UP)}$	TAiOUT input clock cycle time	2000		ns
t _{w(UPH)}	TAiOUT input high level pulse width	1000		ns
t _{w(UPL)}	TAiOUT input low level pulse width	1000		ns
t _{su(UP-TIN)}	TAiOUT input setup time	400		ns
t _{h(TIN-UP)}	TAiOUT input hold time	400		ns

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.53 Timer B Input (counting input in event counter mode)

Cymbol	Symbol Characteristic		Value	
Syllibol			Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time (one edge counting)	200		ns
t _{w(TBH)}	TBilN input high level pulse width (one edge counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (one edge counting)	80		ns
t _{c(TB)}	TBilN input clock cycle time (both edges counting)	200		ns
t _{w(TBH)}	TBilN input high level pulse width (both edges counting)	80		ns
t _{w(TBL)}	TBilN input low level pulse width (both edges counting)	80		ns

Table 28.54 Timer B Input (pulse period measure mode)

Symbol Characteristic	Characteristic		Value	
	Griaracteristic	Min.	Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBilN input high level pulse width	180		ns
t _{w(TBL)}	TBilN input low level pulse width	180		ns

Table 28.55 Timer B Input (pulse-width measure mode)

Symbol	Characteristic		Value	
Symbol Characteristic		Min.	Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBilN input high level pulse width	180		ns
$t_{w(TBL)}$	TBilN input low level pulse width	180		ns

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.56 Serial Interface

Symbol C	Ob a se a ta si a ti a	Value		Llmit
	Characteristic	Min.	Max.	Unit
t _{c(CK)}	CLKi input clock cycle time	200		ns
t _{w(CKH)}	CLKi input high level pulse width	80		ns
t _{w(CKL)}	CLKi input low level pulse width	80		ns
t _{su(D-C)}	RXDi input setup time	80		ns
t _{h(C-D)}	RXDi input hold time	90		ns

Table 28.57 A/D Trigger Input

Symbol	Symbol Characteristic	Value		Unit
Syllibol		Min.	Max.	Offic
t _{w(ADH)}	ADTRG input high level pulse width Hardware trigger input high level pulse width	$\frac{3}{\phi_{\mathrm{AD}}}$		ns
t _{w(ADL)}	ADTRG input low level pulse width Hardware trigger input high level pulse width	125		ns

Table 28.58 External Interrupt INTi Input

Symbol	Symbol Characteristic		Value		Unit
Symbol			Min.	Max.	Offic
t _{w(INH)}	INTi input high level pulse width	Edge sensitive	250		ns
		Level sensitive	t _{C(CPU)} + 200		ns
t _{W(INL)}	INTi input low level pulse width	Edge sensitive	250		ns
		Level sensitive	t _{C(CPU)} + 200		ns

Table 28.59 Intelligent I/O

Symbol	Characteristic		Value	
Symbol	Griaracteristic	Min.	Max.	Unit
t _{C(ISCLK2)}	ISCLK2 input clock cycle time	600		ns
t _{w(ISCLK2H)}	ISCLK2 input high level pulse width	270		ns
t _{W(ISCLK2L)}	ISCLK2 input low level pulse width	270		ns
t _{su(RXD-ISCLK2)}	ISRXD2 input setup time	150		ns
t _{h(ISCLK2-RXD)}	ISRXD2 input hold time	100		ns

$$V_{CC}$$
 = 3.3 V

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.60 Multi-master I²C-bus Interface

		Value				
Symbol	Characteristic	Standar	rd-mode	Fast-mode		Unit
		Min.	Max.	Min.	Max.	
t _{w(SCLH)}	MSCL input high level pulse width	600		600		ns
t _{w(SCLL)}	MSCL input low level pulse width	600		600		ns
t _{r(SCL)}	MSCL input rise time		1000		300	ns
t _{f(SCL)}	MSCL input fall time		300		300	ns
t _{r(SDA)}	MSDA input rise time		1000		300	ns
t _{f(SDA)}	MSDA input fall time		300		300	ns
t _{h(SDA-SCL)S}	MSCL high level hold time after start condition/restart condition	(1)		$2 \times t_{C(\phi IIC)} + 40$		ns
t _{su(SCL-SDA)P}	MSCL high level setup time for restart condition/stop condition	(1)		$2 \times t_{C(\phi IIC)} + 40$		ns
t _{w(SDAH)P}	MSDA high level pulse width after stop condition	(1)		$4 \times t_{C(\phi IIC)} + 40$		ns
t _{su(SDA-SCL)}	MSDA input setup time	100		100		ns
t _{h(SCL-SDA)}	MSDA input hold time	0		0		ns

Note:

1. The value is calculated using the formulas below based on a value SSC set by bits SSC4 to SSC0 in the I2CSSCR register:

$$\begin{split} &t_{h(SDA\text{-}SCL)S} = SSC \div 2 \times t_{c(\phi IIC)} + 40 \text{ [ns]} \\ &t_{su(SCL\text{-}SDA)P} = (SSC \div 2 + 1) \times t_{c(\phi IIC)} + 40 \text{ [ns]} \\ &t_{w(SDAH)P} = (SSC + 1) \times t_{c(\phi IIC)} + 40 \text{ [ns]} \end{split}$$

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.61 External Bus Timing (separate bus)

Cumbal	Characteristic	Measurement	Val	Linit	
Symbol	Characteristic	Condition	Min.	Max.	— Unit
t _{su(S-R)}	Chip-select setup time before read		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		t _{c(Base)} - 15		ns
t _{su(A-R)}	Address setup time before read		(1)		ns
t _{h(R-A)}	Address hold time after read		t _{c(Base)} - 15		ns
t _{w(R)}	Read pulse width		(1)		ns
t _{su(S-W)}	Chip-select setup time before write	Refer to Figure 28.6	(1)		ns
t _{h(W-S)}	Chip-select hold time after write]	1.5 × t _{c(Base)} - 15		ns
t _{su(A-W)}	Address setup time before write]	(1)		ns
t _{h(W-A)}	Address hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0		ns

Note:

1. The value is calculated using the formulas below based on the base clock cycles $(t_{c(Base)})$ and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".

$$\begin{split} t_{su(S-R)} &= t_{su(A-R)} = Tsu(A-R) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} - 10 \text{ [ns]} \\ t_{su(S-W)} &= t_{su(A-W)} = Tsu(A-W) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} - 10 \text{ [ns]} \end{split}$$

 $V_{CC} = 3.3 \text{ V}$

Switching Characteristics ($V_{CC} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted}$)

Table 28.62 External Bus Timing (multiplexed bus)

Symbol	Characteristic	Measurement	Va	Unit	
Syllibol	Characteristic	Condition	Min.	Max.	Offic
t _{su(S-ALE)}	Chip-select setup time before ALE		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		1.5 × t _{c(Base)} - 15		ns
t _{su(A-ALE)}	Address setup time before ALE		(1)		ns
t _{h(ALE-A)}	Address hold time after ALE		t _{c(Base)} - 5 ⁽²⁾		ns
t _{h(R-A)}	Address hold time after read		1.5 × t _{c(Base)} - 15		ns
t _{d(ALE-R)}	ALE-read delay time		t _{c(Base)} - 5 ⁽²⁾	t _{c(Base)} + 10 ⁽²⁾	ns
t _{W(ALE)}	ALE pulse width	Refer to	(1)		ns
t _{dis(R-A)}	Address disable time after read	Figure 28.6		8	ns
t _{w(R)}	Read pulse width		(1)		ns
t _{h(W-S)}	Chip-select hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{h(W-A)}	Address hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{d(ALE-W)}	ALE-write delay time		t _{c(Base)} - 5 ⁽²⁾	t _{c(Base)} + 10 ⁽²⁾	ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0.5 × t _{c(Base)}		ns

Notes:

1. The value is calculated using the formulas below based on the base clock cycles (t_{c(Base)}) and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to 9.3.5 "External Bus Timing".

```
\begin{split} t_{su(S-ALE)} &= t_{su(A-ALE)} = (Tsu(A-R) - 1) \times t_{c(Base)} - 15 \text{ [ns] (when Tsu(A-R) is greater than 1)} \\ t_{su(S-ALE)} &= t_{su(A-ALE)} = 0.5 \times t_{c(Base)} - 15 \text{ [ns] (when Tsu(A-R) is 1)} \\ t_{w(ALE)} &= (Tsu(A-R) - 1) \times t_{c(Base)} - 20 \text{ [ns] (when Tsu(A-R) is greater than 1)} \\ t_{w(ALE)} &= 0.5 \times t_{c(Base)} - 20 \text{ [ns] (when Tsu(A-R) is 1)} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} - 10 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} - 10 \text{ [ns]} \end{split}
```

2. When Tsu(A-R) is greater than 1 or Tsu(A-W) is greater than 1. Change " $t_{c(Base)}$ " to "0.5 × $t_{c(Base)}$ " when Tsu(A-R) is 1 or Tsu(A-W) is 1.

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 28.63 Serial Interface

Symbol	Characteristic	Measurement	Value		Unit
		Condition	Min.	Max.	UIIIL
$t_{d(C-Q)}$	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 28.6	0		ns

Table 28.64 Intelligent I/O

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 28.6	0		ns

Table 28.65 Multi-master I²C-bus Interface (Standard-mode)

Symbol	Characteristic	Measurement Condition	Va	Linit	
			Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)S}	MSCL output delay time after start condition/restart condition	Refer to	20 × t _{c(φIIC)} - 120	52 × t _{c(φIIC)} - 40	ns
t _d (SCL-SDA)P	Restart condition/stop condition output delay time after MSCL becomes high	Figure 28.6	20 × t _{c(φIIC)} + 40	52 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		2 ×t _{c(\phiIIC)} + 40	$3 \times t_{C(\phi IIC)} + 120$	ns

Table 28.66 Multi-master I²C-bus Interface (Fast-mode)

Symbol	Characteristic	Measurement Condition	Va	Linit	
			Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2 (1)		ns
t _{f(SDA)}	MSDA output fall time		2 (1)		ns
t _{d(SDA-SCL)S}	MSCL output delay time after start condition/restart condition	Relei lo	10 × t _{c(φIIC)} - 120	26 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Restart condition/stop condition output delay time after MSCL becomes high	Figure 28.6	10 × t _{c(\phiIIC)} + 40	26 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{C(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

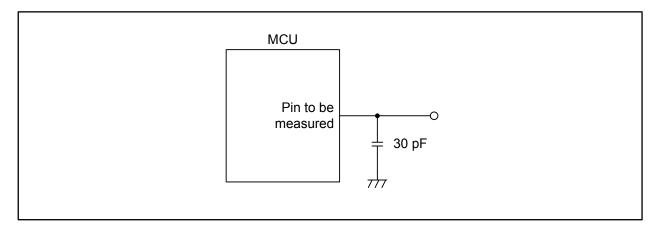


Figure 28.6 Switching Characteristic Measurement Circuit

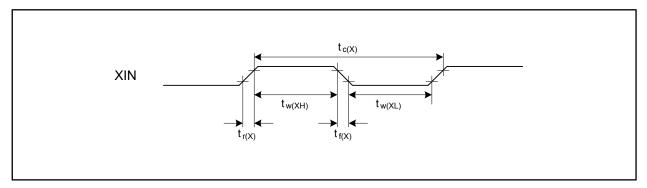


Figure 28.7 External Clock Input Timing

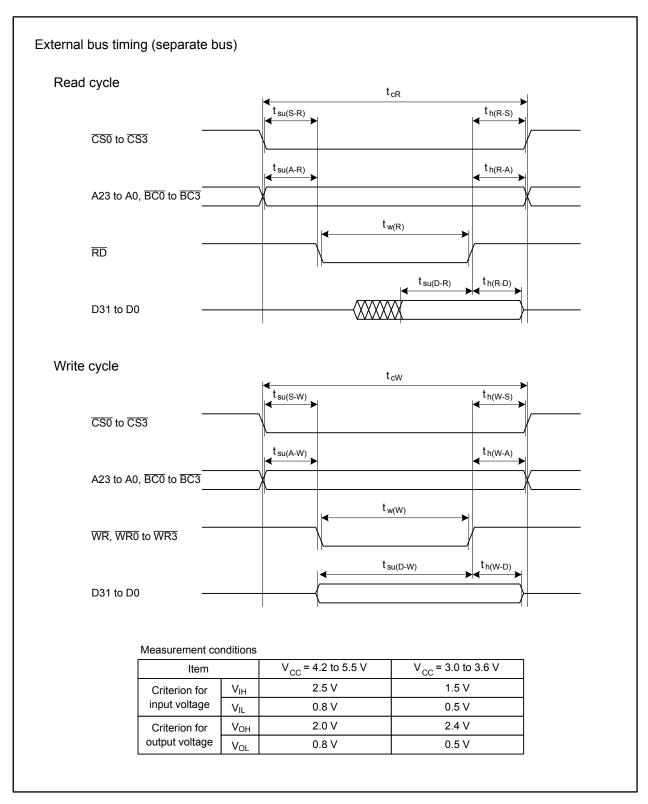


Figure 28.8 External Bus Timing for Separate Bus

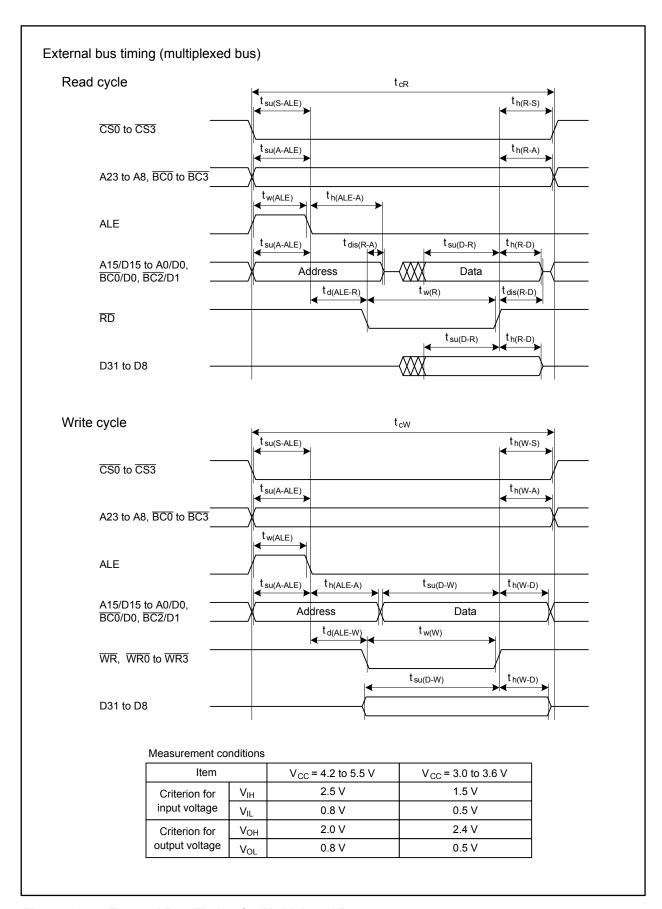


Figure 28.9 External Bus Timing for Multiplexed Bus

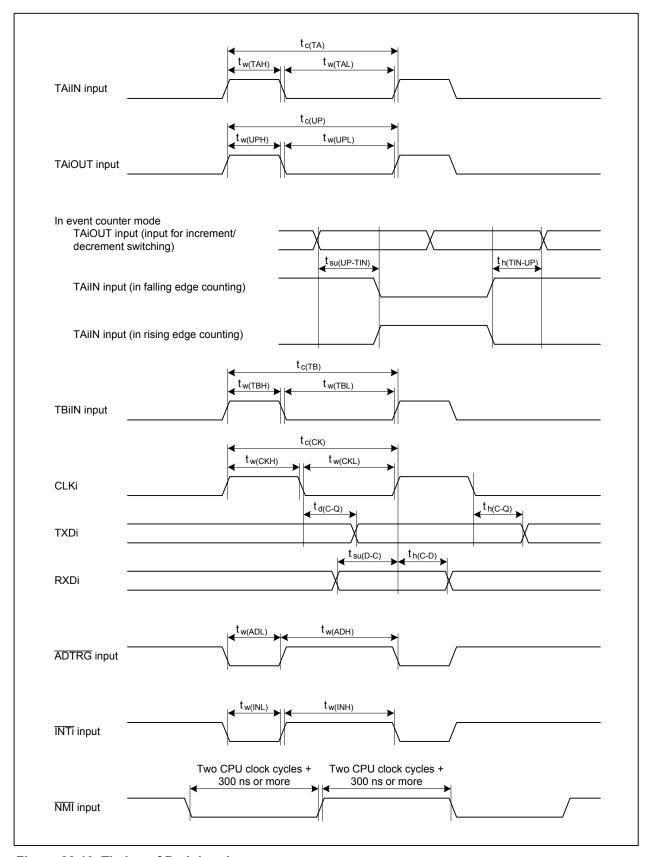


Figure 28.10 Timing of Peripherals

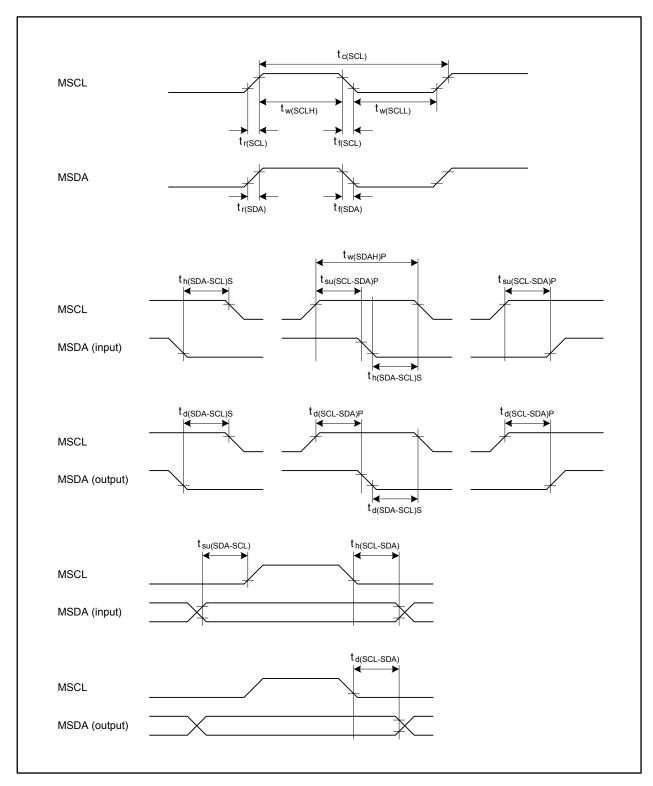


Figure 28.11 Timing of Multi-master I²C-bus Interface

29. Usage Notes

29.1 Notes on Board Designing

29.1.1 Power Supply Pins

The board should be designed so there is no potential difference between pins with the same name. Note the following points:

- Connect all VSS pins to the same GND. Traces for the pins should be as wide as physically possible so the same voltage can be applied to every VSS pin.
- Connect all VCC pins to the same power supply. Traces for the pins should be as wide as physically possible so the same voltage can be applied to every VCC pin.

Insert a capacitor between each VCC pin and the VSS pin to prevent operation errors due to noise. The capacitor should be beneficially effective at high and low frequencies and should have a capacitance of approximately 0.1 μ F. The traces for the capacitor and the power supply pins should be as short and wide as physically possible.

29.1.2 Supply Voltage

The device is operationally guaranteed under operating conditions specified in electrical characteristics.

Drive the RESET pin low before the supply voltage becomes lower than the recommended value.

29.2 Notes on Register Setting

29.2.1 Registers with Write-only Bits

Read-modify-write instructions cannot be used when setting a register containing write-only bits. Read-modify-write instructions read a value of an address, modify the value, and write the modified value to the same address. Table 29.1 lists read-modify-write instructions, and Table 29.2 lists registers containing write-only bits. To set a new value by modifying the previous one, write the previous value into RAM as well as to the register, change the contents of the RAM and then transfer the new value to the register by the MOV instruction.

Table 29.1 Read-modify-write Instructions

Function	Mnemonic
Transfer	MOVDir
Bit processing	BCLR, BMCnd, BNOT, BSET, BTSTC, and BTSTS
Shifting	ROLC, RORC, ROT, SHA, and SHL
Arithmetic operation	ABS, ADC, ADCF, ADD, ADSF, DEC, DIV, DIVU, DIVX, EXTS, EXTZ, INC, MUL, MULU, NEG, SBB, and SUB
Decimal operation	DADC, DADD, DSBB, and DSUB
Floating-point operation	ADDF, DIVF, MULF, and SUBF
Logical operation	AND, NOT, OR, and XOR

Table 29.2 Registers with Write-only Bits

Module	Register	Symbol	Address
Watchdog timer	Watchdog timer start register	WDTS	04404Eh
Timer A	Timer A0 register (1)	TA0	0347h-0346h
	Timer A1 register (1)	TA1	0349h-0348h
	Timer A2 register (1)	TA2	034Bh-034Ah
	Timer A3 register (1)	TA3	034Dh-034Ch
	Timer A4 register (1)	TA4	034Fh-034Eh
	Increment/decrement select register	UDF	0344h
Three-phase motor	Timer B2 interrupt generating frequency set counter	ICTB2	030Dh
control timers	Timer A1-1 register	TA11	0303h-0302h
	Timer A2-1 register	TA21	0305h-0304h
	Timer A4-1 register	TA41	0307h-0306h
	Dead time timer	DTT	030Ch
Serial interface	UART0 bit rate register	U0BRG	0369h
	UART1 bit rate register	U1BRG	02E9h
	UART2 bit rate register	U2BRG	0339h
	UART3 bit rate register	U3BRG	0329h
	UART4 bit rate register	U4BRG	02F9h
	UART5 bit rate register	U5BRG	01C9h
	UART6 bit rate register	U6BRG	01D9h
	UART7 bit rate register	U7BRG	01E1h
	UART8 bit rate register	U8BRG	01E9h
	UART9 bit rate register	U9BRG	040301h
	UART10 bit rate register	U10BRG	040309h
	UART0 transmit buffer register	U0TB	036Bh-036Ah
	UART1 transmit buffer register	U1TB	02EBh-02EAh
	UART2 transmit buffer register	U2TB	033Bh-033Ah
	UART3 transmit buffer register	U3TB	032Bh-032Ah
	UART4 transmit buffer register	U4TB	02FBh-02FAh
	UART5 transmit buffer register	U5TB	01CBh-01CAh
	UART6 transmit buffer register	U6TB	01DBh-01DAh
	UART7 transmit buffer register	U7TB	01E3h-01E2h
	UART8 transmit buffer register	U8TB	01EBh-01EAh
	UART9 transmit buffer register	U9TB	040303h-040302h
	UART10 transmit buffer register	U10TB	04030Bh-04030Ah
Intelligent I/O	Group 2 SIO transmit buffer register	G2TB	016Dh-016Ch

^{1.} The register has write-only bits in one-shot timer mode and pulse-width modulation mode.

29.3 Notes on Clock Generator

29.3.1 Sub Clock

29.3.1.1 Oscillator Constant Matching

The constant matching of the sub clock oscillator should be evaluated in both cases when the drive strength is high and low.

Contact the oscillator manufacturer for details on the oscillation circuit constant matching.

29.3.2 Power Control

Do not switch the base clock source until the oscillation of the clock to be used has stabilized. However, this does not apply to the on-chip oscillator since it starts running immediately after the CM31 bit in the CM3 register is set to 1.

To switch the base clock source from the PLL clock to a low speed clock, use the MOV.L or OR.L instruction to set the BCS bit in the CCR register to 1.

- Program example in assembly language
 OR.L #80h, 0004h
- Program example in C language asm("OR.L #80h, 0004h");

29.3.2.1 Stop Mode

• To exit stop mode using a reset, apply a low signal to the RESET pin until the main clock oscillation stabilizes.

29.3.2.2 Suggestions for Power Saving

The following are suggestions to reduce power consumption when programming or designing systems.

- I/O pins:
- If inputs are floating, both transistors may be conducting. Set unassigned pins to input mode and connect each of them to VSS via a resistor, or set them to output mode and leave them open.
- A/D converter:
- When not performing the A/D conversion, set the VCUT bit in the AD0CON1 register to 0 (VREF disconnected). To perform the A/D conversion, set the VCUT bit to 1 (VREF connected) and wait at least 1 µs before starting conversion.
- D/A converter:
- When not performing the D/A conversion, set the DAiE bit in the DACON register (i = 0, 1) to 0 (output disabled) and the DAi register to 00h.
- Peripheral clock stop:
 - When entering wait mode, power consumption can be reduced by setting the CM02 bit in the CM0 register to 1 to stop the peripheral clock source. However, this setting does not stop the fC32.

29.4 Notes on Bus

29.4.1 Notes on Register Settings

29.4.1.1 Chip Select Boundary Select Registers

When not using memory expansion mode, do not change values after a reset for registers CB01, CB12, and CB23.

When using memory expansion mode, set all of these registers to a value within the specified range whether or not each chip select space is used.

29.5 Notes on Interrupts

29.5.1 ISP Setting

The interrupt stack pointer (ISP) is initialized to 00000000h after a reset. Set a value to the ISP before an interrupt is accepted, otherwise the program may go out of control. A multiple of 4 should be set to the ISP, which enables faster interrupt sequence due to less memory access.

When using NMI, in particular, since this interrupt cannot be disabled, set the PM24 bit in the PM2 register to 1 (NMI enabled) after setting the ISP at the beginning of the program.

29.5.2 NMI

- NMI cannot be disabled once the PM24 bit in the PM2 register is set to 1 (NMI enabled). This bit setting should be done only when using NMI.
- When the PM24 bit in the PM2 register is 1 (NMI enabled), the P8_5 bit in the P8 register is enabled just for monitoring the NMI pin state. It is not enabled as a general port.

29.5.3 External Interrupts

- The input signal to the INTi pin requires the pulse width specified in the electrical characteristics (i = 0 to 8). If the pulse width is narrower than the specification, an external interrupt may not be accepted.
- When the effective level or edge of the INTi pin (i = 0 to 8) is changed by the following bits: bits POL, LVS in the INTilC register, the IFSR0i bit (i = 0 to 5) in the IFSR0 register, and the IFSR1j bit (j = i 6; i = 6 to 8) in the IFSR1 register, the corresponding IR bit may become 1 (interrupt requested). When setting the above mentioned bits, preset bits ILVL2 to ILVL0 in the INTilC register to 000b (interrupt disabled). After setting the above mentioned bits, set the corresponding IR bit to 0 (no interrupt requested), then rewrite bits ILVL2 to ILVL0.
- The interrupt input signals to pins INT6 to INT8 are also connected to bits INT6R to INT8R in registers IIO9IR to IIO11IR. Therefore, these input signals, when assigned to the intelligent I/O, can be used as a source for exiting wait mode or stop mode. Note that these signals are enabled only on the falling edge and not affected by the following bit settings: bits POL and LVS in the INTIIC register (i = 0 to 8), IFSR0i bit (i = 0 to 5) in the IFSR0 register, and the IFSR1j bit (j = i 6; i = 6 to 8) in the IFSR1 register.

29.6 Notes on DMAC

29.6.1 DMAC-associated Register Settings

• Set DMAC-associated registers while bits MDi1 and MDi0 in the DMDi register are 00b (DMA transfer disabled) (i = 0 to 3). Then, set bits MDi1 and MDi0 to 01b (single transfer) or 11b (repeat transfer) at the end of the setup procedure. This procedure also applies when rewriting bits UDAi, USAi, and BWi1 and BWi0 in the DMDi register.

- When rewriting the DMAC-associated registers while DMA transfer is enabled, stop the peripherals that can be DMA triggers so that no DMA transfer request is generated, then set bits MDi1 and MDi0 in the DMDi register of the corresponding channel to 00b (DMA transfer disabled).
- Once a DMA transfer request is accepted, DMA transfer cannot be disabled even if setting bits MDi1 and MDi0 in the DMDi register to 00b (DMA transfer disabled). Do not change the settings of any DMAC-associated registers other than bits MDi1 and MDi0 until the DMA transfer is completed.
- After setting registers DMiSL and DMiSL2, wait at least six peripheral bus clocks to set bits MDi1 and MDi0 in the DMDi register to 01b (single transfer) or 11b (repeat transfer).

29.6.2 Reading DMAC-associated Registers

 Use the following read order to sequentially read registers DMiSL and DMiSL2: DM0SL, DM1SL, DM2SL, and DM3SL DM0SL2, DM1SL2, DM2SL2, and DM3SL2

29.7 Notes on Timers

29.7.1 Timer A and Timer B

All timers are stopped after a reset. To restart timers, configure parameters such as operating mode, count source, and counter value, then set the TAiS bit or TBjS bit in the TABSR or TBSR register to 1 (count starts) (i = 0 to 4; i = 0 to 5).

The following registers and bits should be set while the TAiS bit or TBjS bit is 0 (count stops):

- Registers TAiMR and TBjMR
- UDF register
- Bits TAZIE, TA0TGL, and TA0TGH in the ONSF register
- TRGSR register

29.7.2 Timer A

29.7.2.1 Timer Mode

• While the timer counter is running, the TAi register indicates a counter value at any given time. However, FFFFh is read while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

29.7.2.2 Event Counter Mode

While the timer counter is running, the TAi register indicates a counter value at any given time.
 However, FFFFh is read if the timer counter underflows or 0000h if overflows while reloading is in progress. A set value is read if the TAi register is set while the timer counter is stopped.

29.7.2.3 One-shot Timer Mode

- If the TAiS bit in the TABSR register is set to 0 (count stops) while the timer counter is running, the following operations are performed:
 - The timer counter stops and the setting value of the TAi register is reloaded.
 - A low signal is output at the TAiOUT pin.
 - The IR bit in the TAilC register becomes 1 (interrupts requested) after one CPU clock cycle.
- The one-shot timer is operated by an internal count source. When the trigger is an input to the TAilN pin, the signal is output with a maximum one count source clock delay after a trigger input to the TAilN pin.
- The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done:
 - Select one-shot timer mode after a reset.
 - Switch operating modes from timer mode to one-shot timer mode.
 - Switch operating modes from event counter mode to one-shot timer mode.
- If a retrigger occurs while counting, the timer counter decrements by one, reloads the setting value of the TAi register, and then continues counting. To generate a retrigger while counting, wait at least one count source cycle after the last trigger is generated.
- When an external trigger input is selected to start counting in timer A one-shot mode, do not provide an external retrigger for 300 ns before the timer counter reaches 0000h. Otherwise, it may stop counting.

29.7.2.4 Pulse-width Modulation Mode

• The IR bit becomes 1 by any of the settings below. To use the timer Ai interrupt, set the IR bit to 0 after one of the settings below is done (i = 0 to 4):

- Select pulse-width modulation mode after a reset.
- Switch operating modes from timer mode to pulse-width modulation mode.
- Switch operating modes from event counter mode to pulse-width modulation mode.
- If the TAiS bit in the TABSR register is set to 0 (count stops) while PWM pulse is output, the following operations are performed:
 - The timer counter stops.
 - The output level at the TAiOUT pin changes from high to low. The IR bit becomes 1.
 - When a low signal is output at the TAiOUT pin, it does not change. The IR bit does not change, either.

29.7.3 Timer B

29.7.3.1 Timer Mode and Event Counter Mode

• While the timer counter is running, the TBj register indicates a counter value at any given time (j = 0 to 5). However, FFFFh is read while reloading is in progress. When a value is set to the TBj register while the timer counter is stopped, if the TBj register is read before the count starts, the set value is read.

29.7.3.2 Pulse Period/Pulse-width Measure Mode

- While the TBjS bit in the TABSR or TBSR register is 1 (start counter), after the MR3 bit becomes 1 (overflow) and at least one count source cycle has elapsed, a write operation to the TBjMR register sets the MR3 bit to 0 (no overflow).
- Use the IR bit in the TBjIC register to detect overflow. The MR3 bit is used only to determine an interrupt request source within the interrupt handler.
- The counter value is undefined when the timer counter starts. Therefore, the timer counter may overflow before a measured pulse is applied on the initial valid edge and cause a timer Bj interrupt request to be generated.
- When the measured pulse is applied on the initial valid edge after the timer counter starts, an
 undefined value is transferred to the reload register. At this time, a timer Bj interrupt request is not
 generated.
- The IR bit may become 1 (interrupt requested) by changing bits MR1 and MR0 in the TBjMR register after the timer counter starts. However, if the same value is rewritten to bits MR1 and MR0, the IR bit does not change.
- Pulse width is continuously measured in pulse-width measure mode. Whether the measurement result is high-level width or not is determined by a program.
- When an overflow occurs at the same time a pulse is applied on the valid edge, this pulse is not recognized since an interrupt request is generated only once. Do not let an overflow occur in pulse period measure mode.
- In pulse-width measure mode, determine whether an interrupt source is a pulse applied on the valid edge or an overflow by reading the port level in the timer Bj interrupt handler.

29.8 Notes on Three-phase Motor Control Timers

29.8.1 Shutdown

• When a low signal is applied to the $\overline{\text{NMI}}$ pin with the following bit settings, pins TA1OUT, TA2OUT, and TA4OUT become high-impedance: the PM24 bit in the PM2 register is 1 (NMI enabled), the INV02 bit in the INVC0 register is 1 (three-phase motor control timers used), and the INV03 bit is 1 (three-phase motor control timer output enabled).

29.8.2 Register Setting

• Do not write to the TAi1 register before and after timer B2 underflows (i = 1, 2, 4). Before writing to the TAi1 register, read the TB2 register to verify that sufficient time remains until timer B2 underflows. Then, immediately write to the TAi1 register so no interrupt handling is performed during this write procedure. If the TB2 register indicates little time remains until the underflow, write to the TAi1 register after timer B2 underflows.

29.9 Notes on Serial Interface

29.9.1 Changing the UiBRG Register (i = 0 to 10)

• Set the UiBRG register after setting bits CLK1 and CLK0 in the UiC0 register. When these bits are changed, the UiBRG register must be set again.

When a clock is input immediately after the UiBRG register is set to 00h, the counter may become
FFh. In this case, it requires extra 256 clocks to reload 00h to the register. Once 00h is reloaded,
the counter performs the operation without dividing the count source according to the setting.

29.9.2 Synchronous Serial Interface Mode

29.9.2.1 Selecting an External Clock

- If an external clock is selected, the following conditions must be met while the external clock is held high when the CKPOL bit in the UiC0 register is 0 (transmit data output on the falling edge of the transmit/receive clock and receive data input on the rising edge), or while the external clock is held low when the CKPOL bit is 1 (transmit data output on the rising edge of the transmit/receive clock and receive data input on the falling edge) (i = 0 to 10):
 - The TE bit in the UiC1 register is 1 (transmission enabled).
 - The RE bit in the UiC1 register is 1 (reception enabled). This bit setting is not required when only transmitting.
 - The TI bit in the UiC1 register is 0 (data held in the UiTB register).

29.9.2.2 Receive Operation

- In synchronous serial interface mode, the transmit/receive clock is controlled by the transmit control circuit. Set UARTi-associated registers for a transmit operation, even if the MCU is used only for receive operation (i = 0 to 10). Dummy data is output from the TXDi pin while receiving when the TXDi pin is set to output mode.
- When data is received continuously, an overrun error occurs when the RI bit in the UiC1 register is 1 (data held in the UiRB register) and the seventh bit of the next data is received in the UARTi receive shift register. Then, the OER bit in the UiRB register becomes 1 (overrun error occurred). In this case, the UiRB register becomes undefined. If an overrun error occurs, the IR bit in the SiRIC register does not change to 1.

29.9.3 Special Mode 1 (I²C Mode)

• To generate a start condition, stop condition, or restart condition, set the STSPSEL bit in the UiSMR4 register to 0 (i = 0 to 6). Then, wait at least a half clock cycle of the transmit/receive clock to change the condition generate bits (STAREQ, RSTAREQ, or STPREQ bit) from 0 to 1.

29.9.4 Reset Procedure on Communication Error

Operations which result in communication errors such as rewriting function select registers during transmission/reception should not be performed. Follow the procedure below to reset the internal circuit once the communication error occurs in the following cases: when the operation above is performed by a receiver or transmitter or when a bit slip is caused by noise.

A. Synchronous Serial Interface Mode

- (1) Set the TE bit in the UiC1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled) (i = 0 to 10).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to 001b (synchronous serial interface mode).
- (4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

B. UART Mode

- (1) Set the TE bit in the UiC1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the UiMR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the UiMR register to 100b (UART mode, 7-bit character length), 101b (UART mode, 8-bit character length), or 110b (UART mode, 9-bit character length).
- (4) Set the TE bit in the UiC1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled) if necessary.

29.10 Notes on A/D Converter

29.10.1 Notes on Designing Boards

• Three capacitors should be placed between the AVSS pin and pins such as AVCC, VREF, and analog inputs (AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, and AN15_0 to AN15_7) to avoid erroneous operations caused by noise or latchup, and to reduce conversion errors. Figure 29.1 shows an example of pin configuration for A/D converter.

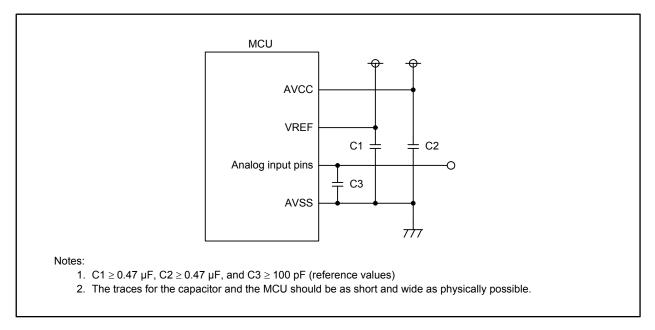


Figure 29.1 Pin Configuration for the A/D Converter

- Do not use AN_4 to AN_7 for analog input if the key input interrupt is to be used. Otherwise, a key input interrupt request occurs when the A/D input voltage becomes VIL or lower.
- When AVCC = VREF = VCC, A/D input voltage for pins AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, and ANEX1 should be VCC or lower.

29.10.2 Notes on Programming

 The following registers should be written while A/D conversion is stopped. That is, before a trigger occurs: AD0CON0 (except the ADST bit), AD0CON1, AD0CON2, AD0CON3, AD0CON4, and AD0CON5.

- When the VCUT bit in the AD0CON1 register is changed from 0 (VREF connected) to 1 (VREF disconnected), wait for at least 1 µs before starting A/D conversion. When not performing A/D conversion, set the VCUT bit to 0 to reduce power consumption.
- Set the port direction bit for the pin to be used as an analog input pin to 0 (input). Set the ASEL bit of the corresponding port function select register to 1 (port is used as A/D input).
- When the TRG bit in the AD0CON0 register is 1 (external trigger or hardware trigger), set the corresponding port direction bit (PD9_7 bit) for the ADTRG pin to 0 (input).
- The ϕ AD frequency should be 16 MHz or lower when VCC is 4.2 to 5.5 V, and 10 MHz or lower when VCC is 3.0 to 4.2 V. It should be 1 MHz or higher when the sample and hold function is enabled. If not, it should be 250 kHz or higher.
- When A/D operating mode (bits MD1 and MD0 in the AD0CON0 register or the MD2 bit in the AD0CON1 register) has been changed, reselect analog input pins by setting bits CH2 to CH0 in the AD0CON0 register or bits SCAN1 and SCAN0 in the AD0CON1 register.
- If the AD0i register is read when the A/D converted result is stored to the register, the stored value may have an error (i = 0 to 7). Read the AD0i register after A/D conversion is completed. In one-shot mode or single sweep mode, read the AD0i register after the IR bit in the AD0IC register becomes 1 (interrupt requested). In repeat mode, repeat sweep mode 0, or repeat sweep mode 1, an interrupt request can be generated each time A/D conversion is completed when the DUS bit in the AD0CON3 register is 1 (DMAC operating mode enabled). Similar to the other modes above, read the AD00 register after the IR bit in the AD0IC register becomes 1 (interrupt requested).
- When an A/D conversion is halted by setting the ADST bit in the AD0CON0 register to 0, the converted result is undefined. In addition, the unconverted AD0i register may also become undefined. Consequently, the AD0i register should not be used just after A/D conversion is halted.
- External triggers cannot be used in DMAC operating mode. When the DMAC is configured to transfer converted results, do not read the AD00 register by a program.
- While in single sweep mode, if A/D conversion is halted by setting the ADST bit in the AD0CON0 register to 0 (A/D conversion is stopped), an interrupt request may be generated even though the sweep is not completed. To halt A/D conversion, disable interrupts before setting the ADST bit to 0.

29.11 Notes on Flash Memory Rewriting

29.11.1 Note on Power Supply

Keep the supply voltage constant within the range specified in the electrical characteristics while a
rewrite operation on the flash memory is in progress. If the supply voltage goes beyond the
guaranteed value, the device cannot be guaranteed.

29.11.2 Note on Hardware Reset

• Do not perform a hardware reset while a rewrite operation on the flash memory is in progress.

29.11.3 Note on Flash Memory Protection

• If an ID code written in an assigned address has an error, any read/write operation on the flash memory in standard serial I/O mode is disabled.

29.11.4 Notes on Programming

- Do not set the FEW bit in the FMCR register to 1 (CPU rewrite mode) in low speed mode or low power mode. In addition, do not change the current mode to wait mode or stop mode during CPU rewrite mode.
- The program, block erase, lock bit program, and protect bit program are interrupted by an NMI, a watchdog timer interrupt, an oscillator stop detection interrupt, or a low voltage detection interrupt. If any of the software commands above are interrupted, erase the corresponding block and then execute the same command again. If the block erase command is interrupted, the lock bit and protect bit values become undefined. Therefore, disable the lock bit, and then execute the block erase command again.
- Do not use CPU rewrite mode in the interrupt handler of non-maskable interrupts.

29.11.5 Notes on Interrupts

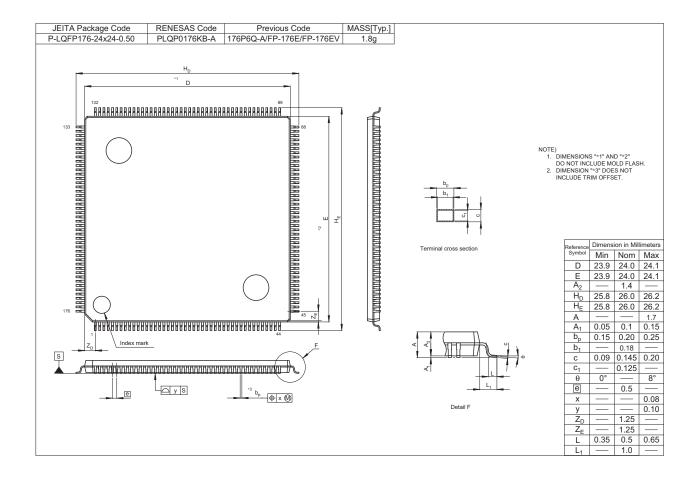
- EW0 mode
 - To use interrupts assigned to the relocatable vector table, the vector table should be addressed in RAM space.
 - When an NMI, watchdog timer interrupt, oscillator stop detection interrupt, or low voltage detection interrupt occurs, the flash memory module automatically enters read array mode. Therefore, these interrupts are enabled even during a rewrite operation. However, the rewrite operation in progress is aborted by the interrupts and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation. Note that the FMR1 register is not reset. Set the SUSEN bit to 0 (suspend function disabled) in an interrupt handler.
 - Instructions BRK, INTO, and UND, which refer to data on the flash memory, cannot be used in this mode.

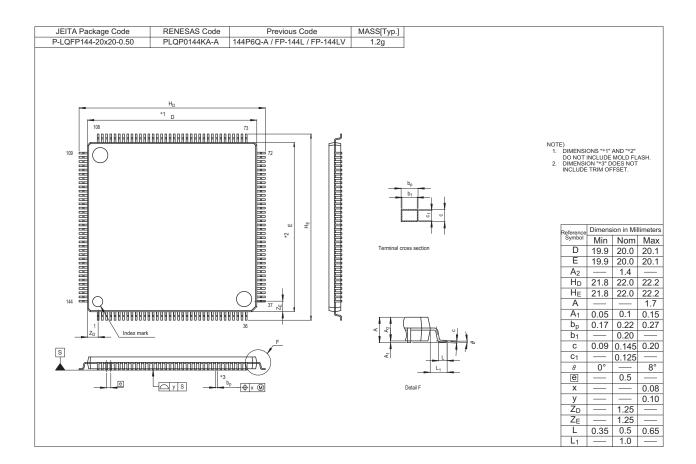
- EW1 mode
 - Interrupts assigned to the relocatable vector table should not be accepted during program or block erase operation in the area in which the relocatable vector table is.
 - The watchdog timer interrupt should not be generated.
 - When an NMI, watchdog timer interrupt, oscillator stop detection interrupt, or low voltage detection interrupt occurs, the flash memory module automatically enters read array mode. Therefore, these interrupts are enabled even during a rewrite operation. However, the rewrite operation in progress is aborted by the interrupts and registers FMR0 and FRSR0 are reset. When the interrupt handler has ended, set the EWM bit in the FMR0 register to 1 (EW1 mode) and the LBD bit in the FMR1 register to 1 (lock bit protection disabled) to re-execute the rewrite operation. Note that the FMR1 register is not reset. Set the SUSEN bit to 0 (suspend function disabled) in an interrupt handler.

29.11.6 Notes on Rewrite Control Program

- EW0 mode
 - If the supply voltage drops during the rewrite operation of blocks having the rewrite control program, the rewrite control program may not be successfully rewritten, and the rewrite operation itself may not be performed. In this case, perform the rewrite operation by serial programmer or parallel programmer.
- EW1 mode
 - Do not rewrite blocks having the rewrite control program.

29.11.7 Notes on Number of Program/Erase Cycles and Software Command Execution Time


 The time to execute software commands (program, block erase, lock bit program, and protect bit program) increases as the number of program/erase cycles increases. If the number of program/ erase cycles exceeds the endurance value specified in the electrical characteristics, it may take an unpredictable amount of time to execute the software commands. The wait time for executing software commands should be set much longer than the execution time specified in the electrical characteristics.


29.11.8 Other Notes

- The minimum values of program/erase cycles specified in the electrical characteristics are the maximum values that can guarantee the initial performance of the flash memory. The program/erase operation may still be performed even if the number of program/erase cycles exceeds the guaranteed values.
- Chips repeatedly programmed and erased for debugging should not be used for commercial products.

Appendix 1. Package Dimensions

R32C/116A Group INDEX

INDEX	DCT0 to DCT328, 16	7
	DDA0 to DDA328, 169	
Α	DDR0 to DDR328, 169	9
^	Debug Flag20	6
A026	DM0IC to DM3IC14	1
	DM0SL to DM3SL163	3
A1	DM0SL2 to DM3SL2164	4
A2	DMA Destination Address Register 28	8
A3	DMA Destination Address Reload Register 2	28
AD00 to AD07300	DMA Mode Register28	
AD0CON0	DMA Source Address Register28	
AD0CON1	DMA Source Address Reload Register 28	
AD0CON2297	DMA Terminal Count Register28	
AD0CON3298	DMA Terminal Count Reload Register 28	
AD0CON4299	DMD0 to DMD328, 167	
AD0CON5299	DP Bit2	
AD0IC141	DSA0 to DSA328, 168	
Address Register26	DSR0 to DSR3	
	DTT236	
В	DVCR	
	DVOIX	J
B Flag27	E	
BCN0IC to BCN6IC 141	-	
BRK Instruction Interrupt 132	EDO0 to EDO0	,
BRK2 Instruction Interrupt 132	EBC0 to EBC311	1
BTSR332	<u>_</u>	
	F	
С	F	
	Fast Interrupt	
C Flag26	FB	
Carry Flag26	FBPM0	
CB01 107	FBPM1453	
CB12 108	FBPM2	
CB23 108	FEBC449	
CCR73	Fixed-point Designation Bit27	
CM074	Flag Register26	
CM175	FLG20	
CM2	Floating-point Overflow Flag2	
CM376	Floating-point Rounding Mode27	
CPSRF77	Floating-point Underflow Flag27	
CRCD	FMCR448	
CRCIN	FMR0450	0
CSOP0106	FMR145	1
CSOP1106	FMSR0452	2
CSOP2107	FO Flag2	7
C3OP2107	FPR0450	0
_	Frame Base Register20	6
D	FU Flag2	7
D.Fl.		
D Flag 26		
_	G	
DA0, DA1316	G	
DA0, DA1	G G0BCR0 to G2BCR0329	9
DA0, DA1316	-	

G0FE to G2FE	338	INT Instruction Interrupt	132
G0FS, G1FS	337	INT0IC to INT8IC	142
G0PO0 to G0PO7	337	INTB	26
G0POCR0 to G0POCR7	335	Interrupt Control Register	141
G0TM0 to G0TM7	334	Interrupt Enable Flag	
G0TMCR0 to G0TMCR7	333	Interrupt request level	142
G0TPR6, G0TPR7	333	Interrupt Response Time	
G1P00 to G1P07		Interrupt Sequence	
G1POCR0 to G1POCR7		Interrupt Stack Pointer	
G1TM0 to G1TM7		Interrupt Types	
G1TMCR0 to G1TMCR7	333	Interrupt Vector Table Base Register	
G1TPR6, G1TPR7		INVC0	
G2BCR1		INVC1	
G2CR		IOBC	
G2MR		IPL2	
G2PO0 to G2PO7		ISP	•
G2POCR0 to G2POCR7		101	20
G2RB		K	
G2RTP		N.	
G2TB		141510	
G21B	303	KUPIC	141
Н		L	
		-	
Hardware Interrupt	133	Low Voltage Detection Interrupt 6	6. 133
		Low Voltage Detector	
1		LVDC	
•		2,00	0-1
I Flag	27	M	
I2CCCR	377		
I2CCR0	375	Maskable Interrupt	131
I2CCR1	380	MOD	
I2CCR2	383	MOD	100
I2CIC	141	N	
I2CLIC	141	N	
I2CMR	389	NIMI (Nice Machalla Interment)	400
I2CSAR	374	NMI (Non Maskable Interrupt)	
I2CSR		Non-maskable Interrupt	131
I2CSSCR	379	_	
I2CTRSR		0	
ICTB2			
IDB0, IDB1		O Flag	27
IEAR		OFS	160
IECR		ONSF	195
IERIF		Oscillator Stop Detection Interrupt	133
IETIF		Overflow Flag	27
IFS0		Overflow Interrupt	132
IFS2			
IFS3		Р	
IFSR0		•	
IFSR1		P0 to P19	187
IIO0IC to IIO11IC	•	P0_0S to P0_7S	
IIO0IC to IIO11IC		P10_0S to P10_7S	
IIO0IR to IIO11IR	151	P1 0S to P1 7S	408

R32C/116A Group

P11_0S to P11_7S		S
P12_0S to P12_7S		
P13_0S to P13_7S		S Flag26
P14_3S to P14_7S		S0RIC to S10RIC141
P15_0S to P15_7S		S0TIC to S10TIC141
P16_0S to P16_7S		Save Flag Register28
P17_0S to P17_7S		Save PC Register28
P18_0S to P18_7S		SB26
P2_0S to P2_7S		Sign Flag26
P3_0S to P3_7S		Single-step Interrupt133
P4_0S to P4_7S		Software Interrupt132
P5_0S to P5_7S	412	SP26
P6_0S to P6_7S	413	Special Interrupt133
P7_0S to P7_7S	414	Stack Pointer
P8_0S to P8_4S, P8_6S, P8_7S	415	Stack Pointer Select Flag27
P9_0S to P9_7S	416	Static Base Register
PAPR	402	SVF28
PAWF	403	SVP28
PBC	103	
PC	26	Т
PCR	435	'
PD0 to PD19	405	TAO to TA 4
Peripheral Interrupt		TA0 to TA4
PLC0		TAOIC to TA4IC
PLC1		TAOMR to TA4MR 193, 199, 202, 205, 207
PM0		TA1, TA2, TA4, TA11, TA21, TA41 232
PM2		TA1MR, TA2MR, TA4MR
PM3		TABSR 193, 211, 234
PRCR	_	TB0 to TB5
PRCR2		TB0IC to TB5IC
PRCR3		TB0MR to TB5MR 210, 213, 215, 217
PRCR4	_	TB2
Processor Interrupt Priority Level 2		TB2MR
Program Counter		TB2SC231
PRR		TBSR
PUR0		TCSPR
PUR1		TRGSR 196, 234
PUR2		
PUR3		U
PUR4		
PUR5		U Flag27
1 010	10 1	U0BRG to U10BRG252
R		U0C0 to U6C0245
N		U0C1 to U6C1247
DODO	00	U0MR to U6MR243
R2R0		U0RB to U6RB253
R3R1		U0SMR to U6SMR249
R6R4		U0SMR2 to U6SMR2250
R7R5		U0SMR3 to U6SMR3251
Register Bank Select Flag		U0SMR4 to U6SMR4252
Register Saving		U0TB to U10TB253
RIPL1, RIPL2 14		U78CON248
RND	27	U7C0 to U10C0246
		U7C1 to U10C1247

R32C/116A Group INDEX

U7MR to U10MR244	4
U7RB to U10RB254	4
U910CON248	8
UDF 194	
Undefined Instruction Interrupt 132	
User Stack Pointer	
USP	
001	J
V	
•	
VCT 28	8
Vector Register	
VRCR	
VICOIC	•
W	
••	
Watchdog Timer Interrupt 133	3
WDC	
WDK	
WDTS	
WD13138	ט
X	
X0R to X15R	0
XYC 320	
Y	
•	
Y0R to Y15R	1
<u>-</u>	•
Z	
Z Flag 26	6
Zero Flag26	

Revision History	R32C/116A Group User's Manual: Hardware
i to violeti i ilotor j	1.626, 1.67, 6.646, 6.64

Day	Pov Date		Description
Rev.	Date	Page	Summary
0.50	Mar 09, 2010	_	Initial release
1.00	Aug 05, 2010		Second edition released
			This manual in general
		_	Applied new Renesas templates and formats to the manual
			Changed company name to "Renesas Electronics Corporation" and
			changed related descriptions due to business merger of Renesas
			Technology Corporation and NEC Electronics Corporation (under Chapters 1, 7, 18, 23, and 28)
			Modified expressions "version N", "version D", and "version P" to "N
			version", "D version", and "P version", respectively (under Chapters 1
			and 28)
		0 5	Chapter 1. Overview
		3, 5	• Specified current consumptions in Tables 1.2 and 1.4 ; Deleted Note 1
		6 8	Corrected package codes in Table 1.5 Deleted Note 1 from Figure 1.2
		20	 Deleted Note 1 from Figure 1.2 Modified expression "fC" in Table 1.15 to "low speed clocks"
		22	• Changed expression "I ² C bus" in Table 1.17 to "I ² C-bus"
			Chapter 4. SFRs
		31, 56	• Changed expressions "I ² C Bus" and "I ² C-Bus" in Tables 4.2 and 4.27
	01,00	to "I ² C-bus"	
		35, 38	Changed register name "Group i Timer Measurement Prescaler
		Register" in Tables 4.6 and 4.9 to "Group i Time Measurement	
			Prescaler Register"
		40	Modified expression "XY Control Register" in Table 4.11 to "X-Y Control Register"
		42	 Changed register name "UART2 Transmission/Receive Mode Register" in Table 4.13 to "UART2 Transmit/Receive Mode Register"; Changed hexadecimal format of reset values for registers TABSR, ONSF, and TRGSR to binary
		44	Modified reset value "X00X X000b" for AD0CON2 register in Table 4.15 to "XX0X X000b"
		55	Changed register name "External Interrupt Source Select Register i" in Table 4.26 to "External Interrupt Request Source Select Register i"
		56	Modified reset values for the following registers in Table 4.27 : I2CSSCR, I2CCR1, I2CCR2, I2CSR, and I2CMR; Added addresses
		"044420h to 0467FFh"; Modified register name "I ² C Bus START	
		Condition/STOP Condition Control Register" to "I ² C-bus START and STOP Conditions Control Register	
			Chapter 5. Resets
		57	Changed expression "operating level" in (2) of B in 5.1 to "operating voltage"
			Chapter 6. Power Management
		61	Modified descriptions "main clock oscillator active" and "PLL clock oscillator active" in Note 2 of Figure 6.2 to "main clock oscillator enabled" and "PLL oscillator enabled"

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Pov Dato			Description
Rev.	Date	Page	Summary
			Chapter 7. Processor Mode
		69	Modified address "44044h" for PM0 in Figure 7.1 to "40044h"
			Chapter 8. Clock Generator
		_	Made minor text modifications to this chapter
			• Modified function descriptions of bits CM05 and CM10 to the following: "main clock oscillator enabled", "main clock oscillator disabled", "PLL oscillator enabled", and "PLL oscillator disabled"
		72	Modified expression "fC" in Figure 8.1 to "low speed clock"; Modified "low speed clock" associated items
		73	Deleted the last sentence from Note 2 in Figure 8.2 ; Added description for bit settings to Note 6
		74	Modified expression "fC" in Figure 8.3 to "low speed clock"; Added Note 8
		75	• Modified bit name of CM10 bit in Figure 8.4 , descriptively; Added Note 4
		76	Added description to Note 1 in Figure 8.6
		78	Modified Note 5 in Figure 8.9; Added Note 8
		79	Added description to Note 1 in Figure 8.10
		83	Changed SEO bit name and its function description in Figure 8.15
		86	Added description of stopping main clock to lines 6 to 7 of 8.2.1
		88, 95,	• Modified expression "fC" in line 1 of 8.6 to "Low speed clocks" and "fC"
		98	in Tables 8.3 to 8.5 and 8.7 to "low speed clock", respectively
		89	• Revised the entire paragraph of 8.7
		90-91	• Revised 8.7.1 entirely
		92-94	 Add state transition for "Main clock stop (damaged)" to Figures 8.17 to 8.19; Added transition flows and conditions partially; Added SEO bit description; Moved figures into 8.7.1
			• Corrected a typo "f(XPLL)" in the third row of Figure 8.17 to "f(PLL)"; Deleted Note 4
			• Corrected "PLC1 = 0Xh" in the first row and the fifth row of Figures 8.17 and Figure 8.19 to "PLC1 = 1Xh"
			• Corrected a typo "CM0 = 1" in the fifth row of Figure 8.18 to "CM05 = 1"; Deleted Note 3
			• Corrected "CM31 = 1" in the first row and "CM10 = 0" in the second row of Figure 8.19 to "CM31 = 0" and "CM10 = 1", respectively; Deleted Note 3
		96	• Revised 8.7.2.4
		97	Added Note 1 to Table 8.6
		98	Modified description in line 1 of 8.7.3
		99	Added interrupt numbers 0 to 63 to line 2 of 8.7.3.3 as factors of exiting stop mode
			Added usage condition to "External interrupt" in Table 8.8
			Chapter 9. Bus
		113	 Added EXMPX bit value to column of each bus format in Table 9.2; Modified function of P4_0 to P4_3 for memory expansion mode to I/O ports only

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Davi	Data	unto.	Description
Rev.	Date	Page	Summary
		121	• Added period of address becoming undefined to "(1) 8-bit data bus" in
			Figure 9.15; Added Note 2
			Changed timing of ALE signal becoming low below Figure 9.15
			Chapter 10. Protection
		_	Changed title of each sub chapter of this chapter
			Chapter 11. Interrupts
		149	Deleted "Bits RLVL2 to RLVL0 in the RIPL2 register" and associated
			signal lines from Figure 11.8 ; Changed expression "DMAC II" to "DMA II transfer complete"
		154	Changed function description of b0 in registers IIO0IR to IIO11IR in
			Figure 11.13; Changed description of Note 3 descriptively
		156	Revised the third bullet point of description in 11.14.3
			Chapter 12. Watchdog Timer
		158	Added Note 1 to Figure 12.2; Modified Note 2 descriptively
		159	Modified Note 3 in Figure 12.3 descriptively
		160	Added description to Note 3 in Figure 12.5
			Chapter 13. DMAC
		162	Modified expression "DMA transfer startup" in Table 13.1 to "DMA
			transfer start-up"
		175	Modified description "peripheral clocks" in the fourth bullet point of
			13.4.1 to "peripheral bus clocks"
			Chapter 16. Timers
		190	Separated signal for overflow or underflow from interrupt signal in
			Figure 16.2
			Chapter 17. Three-phase Motor Control Timers
		225	Changed expressions "Timer A reload control signal is 0" and "Timer A
			reload control signal is 1" for INV13 bit in Figure 17.3 to "Timer A1
			reload control signal is 0" and "Timer A1 reload control signal is 1", respectively
		230	Changed bit functions of bits MR2 and MR3 for TB2MR register in Figure 17.8
		231	Changed function description of PWCON bit for TB2SC register in Figure 17.9
		237	• Changed description of Case 1 for "INV00 = 1, and ICTB2 = 1h" in Figure 17.17
		239	Modified text representation in 17.6.1
			• Modified "overflow" in 17.6.2 to "underflow"
			Chapter 18. Serial Interface
			• Made minor text modifications to this chapter
		244	Deleted "I ² C mode" from "Function" of registers U7MR to U10MR in Figure 18.4
		252, 280	 Corrected a typo "STARREQ" in Note 3 in Figure 18.14 and line 1 of 18.3.2 to "STAREQ"
		253	Modified Note 1 in Figure 18.16
		272, 273	

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Rev. Date			Description
Rev.	Date	Page	Summary
		290	Moved description in the fourth dash in 18.5.2.1 to the second dash
		291	 Added new paragraph for "Reset Procedure on Communication Error" as 18.5.4
			Chapter 21. CRC Calculator
		317	• Corrected a typo "CRC_CCITT" in line 2 of 21. CRC Calculator to "CRC-CCITT"
			Chapter 22. X-Y Conversion
		320, 321	 Changed figure titles "XiR Register" and "YjR Register" for Figures 22.2 and 22.3 to "Registers X0R to X15R" and "Registers Y0R to Y15R", respectively; Changed preposition "to" in between addresses to "-"
			Chapter 23. Intelligent I/O
		_	Made minor text modifications to this chapter
		325, 326	in Figure 23.2 to "the INTO pin or the INT1 pin"
		327	 Corrected a typo "IE_IN" in Figure 23.3 to "IEIN"
		330	 Changed expression "INTi pin" in Figure 23.6 to "INTO/INT1 pin"; Modified Note 3 descriptively
		332	• Corrected "BT0S to BT3S" in (2) of Note 1 in Figure 23.8 to "BT0S to BT2S"
		339	Modified description of "Reset conditions" in Table 23.2
		340	• Changed expression "INTi pin" in Figure 23.18 to "the INT0/INT1 pin"; Moved "i = 0 to 2" to figure title
		342, 343	-
		363	• Deleted Note 1 from 23.4 Group 2 Serial Interface
			Chapter 24. Multi-master I ² C-bus Interface
		_	Modified the entire chapter descriptively
			 Modified expression "general call" to "general call address"
			Modified expression "flag" to "bit" when it is used with bit symbols
			 Modified expressions "standard-mode" and "fast-mode" to "Standard-mode" and "Fast-mode", respectively
			 Modified expression "set to" for the RST bit in the I2CCR0 register to "written with"
		372	• Modified "Bus is busy detector" in Table 24.2 to "Bus busy detector"
		375	 Changed bit name "Transmit/Receive Bit Number Set Bit" in Figure 24.5 to "Transmit/Receive Bit Length Setting Bit"
		376	 Modified expression "slave address data" in line 2 of 24.1.3.3 to "slave address"
			 Modified expression "I²C reset signal" in Figure 24.6 to "I²C-bus interface reset signal"
		377	Modified "ACKCLK bit" in line 2 of 24.1.4 to "ACKD bit"
		378	• Corrected a typo "φΙΙΟ" in line 2 of 24.1.4.2 to "φΙΙC"
			 Modified 24.1.4.3 descriptively; Modified expressions "MSDA pin level" in line 4 and Table 24.4 and "MSDA Pin Levels" for table title of Table 24.4 to "MSDA pin state" and "MSDA Pin States", respectively

_	5 /		Description
Rev.	Date	Page	Summary
		379	 Changed expression "START Condition and STOP Condition" in register name and bit name for I2CSSCR register in Figure 24.8 to "START and STOP Conditions"; Changed expression "I2C Bus-line" to "I2C-bus line"
			• Changed expression "I ² C bus line" in 24.1.5.2 and 24.1.5.3 to "I ² C-bus line"
		380	 Moved "(2)" from "Function" to "Bit Name" in Figure 24.9; Switched Notes 2 and 3
		383	• Changed symbol "/" in function description of bits ICK4 to ICK2 in Figure 24.11 to "divided-by-"
		384	Modified setting value of TOSEL bit in 24.1.7.3
		385	• Moved "(1)", "(2), and "(3)" from "Function" to "Bit Name" in Figure 24.13 ; Added "(1)" to "Function" of bits TRS and MST
		386	 Deleted explanation in parentheses in line 1 of 24.1.8.2 Deleted "data" from line 1 of 24.1.8.3
		387	• Modified "R/W bit" in line 6 of 24.1.8.7 to "R/W bit"
		388	 Modified description "lost byte of data" in the second bullet point of 24.1.8.8 to "corresponding byte"
		392	• Modified "(I ² C-bus interface enabled)" in the last line below Figure 24.18 to "(I ² C-bus interface disabled)"
		394	Modified expression "high period of MSCL" in line 5 in the first paragraph of 24.5 to "high period of MSCL pin"
		395	 Changed "Standard Clock Mode" and "Fast Clock Mode" in Table 24.10 to "Standard-mode" and "Fast-mode" Changed "BBSY flag setting time" in Tables 24.10 and 24.11 to "BBSY bit set/reset time"
		396	Changed parameter "Successful receive interrupt" for I2CCR1 register in Table 24.12 to "Successful data receive interrupt"
		398	• Modified description "For (A) to (C) in the figure, see A to C" in 24.6.2 to "For (A) to (D) in the figure, see A to D"
		400	 Modified expression "Bits to be zero" in Figures 24.25 and 24.26 to "Bits to be reset" Modified "TRX bit" in Figure 24.27 to "TRS bit"; Modified expressions "Bits to be zero" and "Bit to be zero" to "Bits to be reset" and "Bit to be set", respectively; Modified description of TRS bit
		401	Modified "By a program" in Figure 24.28 to "Software wait" Chapter 27. Flash Memory
		442	 Deleted descriptions "erase" and "by using the serial programmer" from "ROM Code Protection" in Table 27.3; Added "erase" to "ID Code Protection" Deleted description "use the serial programmer" from line 3 of 27.2.2
		444	 Assigned "OFS" to the reserved ID code area in address FFFFFEFh in Figure 27.2; Added Note 1
		445	Changed description of lines 5 to 6 in 27.2.5

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Day	Dete		Description
Rev.	Date	Page	Summary
		447	• Changed the following expressions in Table 27.7 : "the program or the block erase command" to "the program command or the block erase command" and "the read status register command" and "the ready status register command" to "the enter read status register mode command"
			• Modified figure number "Figure 27.11" in the last line below Table 27.7 to "Figure 27.12"
		451	• Modified Notes 2 and 3 in Figure 27.8
		454, 457	• Changed expressions "CS0" and "A23 to A0, BC3 to BC0" in Figures 27.13 and 27.14 to "Chip select" and "Address", respectively
			Chapter 28. Electrical Characteristics
		_	Initially added
			Chapter 29. Usage Notes
		519, 520	 Switched table numbers for the following tables: "Read-Modify-Write Instructions" to Table 29.2 and "Registers with Write-only Bit(s)" to Table 29.1
		524	Revised the third bullet point of description in 29.5.3
		525	 Modified description "peripheral clocks" in the fourth bullet point of 29.6.1 to "peripheral bus clocks"
		529	Modified text representation in 29.8.1
			Modified "overflow" in 29.8.2 to "underflow"
		530	• Moved description in the fourth dash in 29.9.2.1 to the second dash
		531	 Added new paragraph for "Reset Procedure on Communication Error" as 29.9.4
			Appendix 1. Package Dimensions
		536, 537	Added a seating plane to the drawing of package dimension
1.10	Sep 28, 2012	-	Third edition released
			This manual in general
		_	Changed document number "REJ09B0575-0100" to "R01UH0213EJ0110"
			Chapter 1. Overview
			Modified wording and enhanced description in this chapter
		2, 4	Modified expressions "Main clock oscillator stop/re-oscillation detection", "calculation transfer", "chained transfer", and "inputs/outputs" in Tables 1.1 and 1.3 to "Main clock oscillator stop/restart detection", "calculation result transfer", "chain transfer", and "I/O ports", respectively
		6	• Completed "on planning" and "under development" phases of versions D and P products in Table 1.5
		9, 15	Changed order of signals in Figures 1.3 and 1.4
		11, 16	• Changed order of timer pins "TB5IN/TA0IN" in Tables 1.7 and 1.11 to "TA0IN/TB5IN"
		24	Added N-channel open drain for pins P2_0 to P2_7 as a selectable
			function in Table 1.19 ; Modified Note 1
			Chapter 2. CPU
		_	Modified wording and enhanced description in this chapter Our and the last "BODO" in line 2 of 2.4.4 to "BODO".
		26	Corrected a typo "R3R0" in line 3 of 2.1.1 to "R3R1"

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Rev.	Date		Description
1167.	Dale	Page	Summary
			Chapter 3. Memory
		_	Modified wording and enhanced description in this chapter
			Chapter 4. SFRs
		35, 36,	Changed hexadecimal format of reset values for registers G1BCR0,
		38	G2BCR0, and G0BCR0 in Tables 4.6, 4.7, and 4.9 to binary
		42	Changed register name "Increment/Decrement Counting Select
			Register" in Table 4.13 to "Increment/Decrement Select Register"
			Chapter 5. Resets
		_	Modified wording and enhanced description in this chapter
			Chapter 6. Power Management
		_	Modified wording and enhanced description in this chapter
		64	Modified VDEN bit name in Figure 6.4 to "Low Voltage Detector"
			Enable Bit"; Modified its function descriptions "low voltage detection
			disabled" and "low voltage detection enabled" to "low voltage detector
			disabled" and low voltage detector enabled", respectively
		66	• Modified description "has re-risen above Vdet(R)" in line 7 of 6.2.1 to
			"rises to or above Vdet(R) again"
			Chapter 7. Processor Mode
		_	Modified wording and enhanced description in this chapter
			Chapter 8. Clock Generator
		_	Modified wording and enhanced description in this chapter
		72	Added BCS bit to Figure 8.1
		74	Modified CM03 bit name "XCIN-XOUT Drive Power Select Bit" in
			Figure 8.3 to "XCIN-XOUT Drive Strength Select Bit"; Added
			description to Note 8
		75	Modified bit name of bits CM16 and CM15 "XIN-XOUT Drive Power
			Select Bit" in Figure 8.4 to "XIN-XOUT Drive Strength Select Bit";
			Modified description of Note 2
		76	Modified function descriptions of CM20 bit in Figure 8.5 to "Disable"
			oscillator stop detection" when it is 0 and "Enable oscillator stop
			detection" when it is 1; Corrected "CM02 bit" in Note 3 to "CM20 bit"
			Modified description of Note 1 in Figure 8.6
		85	Corrected description "When the CSPM bit in the OFS area is 1" in line
			5 of 8.1.4 to "When the WCSS bit in the OFS area is 1 and the WPCS
			bit is 0"; Added description of bit settings of bits PM23 and WDK4 to
			lines 6 to 7; Modified the last sentence
		86	• Deleted the last sentence in parenthesis in 8.2
		95	Modified descriptions in lines 1 to 3 of 8.7.2
			Chapter 9. Bus
		-	Modified wording and enhanced description in this chapter
		104	• Changed mathematical symbol "<" in formulas in 9.3.1 to "≤"
		106-107	Deleted Note 2 from Figures 9.4 to 9.6
		107, 108	• Changed minimum value for registers CB01 and CB12 in Figures 9.7
			and 9.8 to "02h"

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Davi	Data		Description
Rev.	Date	Page	Summary
		108	Changed maximum value for registers CB12 and CB23 in Figures 9.8 and 9.9 to "F8h" in memory expansion mode and "FFh" in microprocessor mode
		107, 108 110	 Modified description of Note 2 in Figures 9.7 to 9.9 Added description "(except for the CSO signal)" to Note 1 in Figure
		110	9.11
		111	 Modified bit names of bits ESUR1 and ESUR0, bits ESUW1 and ESUW0, bits EWR1 and EWR0, and bits EWW1 and EWW0 in Figure 9.12 to "Address Setup Cycles Before Read Setting Bit", "Address Setup Cycles Before Write Setting Bit", "Read Pulse Width Setting Bit", and "Write Pulse Width Setting Bit", respectively
		117	• Modified descriptions "(address setup before \overline{RD})", "(address setup before \overline{WR})", "(\overline{RD} pulse width)", and "(\overline{WR} pulse width)" in the second paragraph of 9.3.5 to "(address setup cycles before read)", "(address setup cycles before write)", "(read pulse width)", and "(write pulse width)", respectively
			Chapter 10. Protection
		_	Made minor text modifications to this chapter
		127	Modified description of Note 1 in Figure 10.1
			Chapter 11. Interrupts
		404	Modified wording and enhanced description in this chapter Modified wording and enhanced description in this chapter
		131 132	Modified description of Note 1 in Figure 11.1 Modified descriptions in the assemble paragraph in (5) of 11.2
		134,	Modified descriptions in the second paragraph in (5) of 11.2 Modified description of items execution in 14.5. Table 14.1. and below.
		135, 142	 Modified description of jump operation in 11.5, Table 11.1, and below Figure 11.4
		145	Moved description of Note 1 to (2) of 11.6.4
		146	Modified description of Note 1 of Table 11.7
		153	Corrected register symbol "IIOiE" in the last line of 11.13 to "IIOiIE"
			Chapter 12. Watchdog Timer
		_	Modified wording and enhanced description in this chapter
		157	• Modified description of lines 4 to 5 in 12. Watchdog Timer; Corrected
			register symbol "WKD" in line 11 to "WDK"
			Chapter 13. DMAC
		400	Modified wording and enhanced description in this chapter Madified descriptions of times and LLART associated intermed.
		162	 Modified descriptions of timer- and UART-associated interrupt requests in "DMAC request sources" in Table 13.1; Modified
			description "more than 00000001h" in "DMA transfer start-up" to "other than 00000000h"
		170	Modified descriptions in 13.1
		171	• Corrected address of external bus "00060000h" in Table 13.5 to "00080000h"
			Chapter 14. DMAC II
		_	 Modified wording and enhanced description in this chapter Modified expressions "calculation transfer" and "chained transfer" to "calculation result transfer" and "chain transfer", respectively
		176	 Corrected source address "FFFFFFFh" in Note 1 of Table 14.1 to "FFFFFFFh"

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Dov	Data		Description
Rev.	Date	Page	Summary
		176	Corrected bit name "IIRLT" in the fifth bullet point of 14.1 to "IRLT"
		178, 179	Changed expression "DMA II transfer complete interrupt vector address" in lines 3 to 4 and the seventh bullet point of 14.1.2 and Figure 14.2 to "jump address for the DMA II transfer complete
		178, 181	interrupt handler"Modified expression "interrupt vector" in Figure 14.2 and line 1 of
			14.1.4 to "interrupt vector space"
		179	 Changed expression "jump address" in the seventh bullet point of 14.1.2 to "start address"
		180	 Changed bit names of OPER bit and bits CNT2 to CNT0 in Figure 14.3 to "Calculation Result Transfer Select Bit" and "Number of Transfers Setting Bit", respectively
		184	Modified descriptions in Figure 14.5
			Chapter 15. Programmable I/O Ports
		_	Modified wording and enhanced description in this chapter
			Chapter 16. Timers
		_	Modified wording and enhanced description in this chapter
		194	 Deleted "Counting" from UDF register name and bit names of bits TA4UD to TA0UD in Figure 16.7
		202	 Changed MR2 bit name "Increment/Decrement Count Switching Source Select Bit" in Figure 16.12 to "Increment/Decrement Switching Source Select Bit"; Corrected bit symbols "TAiTGH and TAiTGL" in Note 5 to "TAjTGH and TAjTGL"
		203	• Corrected pin name "INT2" in Figures 16.13 and 16.14 to "INT2"
		204	• Corrected a typo "TA4NR" in line 3 of 16.1.3 to "TA4MR"
		221	Modified description in 16.3.3.1
			 Modified description "TBjS bit" in the first bullet point of 16.3.3.2 to "TBjS bit in the TABSR or TBSR register"; Modified "TBj" in the eighth bullet point to "timer Bj"
			Chapter 17. Three-phase Motor Control Timers
		_	Modified wording and enhanced description in this chapter
		225	Modified Note 1 in Figure 17.3
		232	Deleted description in line 7 of 17.3
		236	• Corrected bit symbol "INV06" in Note 3 of Figure 17.15 to "INV16"
		237	• Corrected register symbol "INV1" in Note 2 of Figure 17.17 to "INVC1"
			Chapter 18. Serial Interface
		_	Modified wording and enhanced description in this chapter
		245, 246	• Modified CRD bit name in Figures 18.5 and 18.6 to "CTS Function
			Disable Bit"; Modified their function descriptions
		247	 Modified bit description of UiIRS bit when it is 0 in Figure 18.7 to "Transmit buffer is empty (TI = 1)"; Modified bit name of UiLCH bit to "Logic Inversion Select Bit"
		250	 Modified CSC bit name in Figure 18.12 to "Clock Synchronization Bit"; Deleted "of the SCLi is received" from function description of SWC bit
		251	• Corrected "UiBRG count source" in function description of bits DL2 to DL0 in Figure 18.13 to "baud rate generator count source"

Revision History	R32C/116A Group User's Manual: Hardware
------------------	---

Rev.	Date		Description
Rev.		Page	Summary
		252	• Deleted "of the SCLi" from function description of SWC9 bit in Figure
			18.14
		260	• Modified description "Pulse stops because the TE bit is set to 0" in
			Figure 18.21 to "Data is transferred from the UiTB register to the
			UARTi transmit register"; Modified "TXEPT flag" to "TXEPT bit";
			Corrected bit symbol "UiRS" in the fourth dash to "UilRS"
			 Modified "TXEPT flag" in Figure 18.21 to "TXEPT bit"; Corrected bit symbol "UiRS" in the fourth dash to "UiIRS"
		268, 269	 Corrected bit functions of UiIRS bit in the fourth dash in Figures 18.26 and 18.27
		277, 278	• Divided Table 18.11 into Tables 18.11 and 18.12
		277, 273	Chapter 19. A/D Converter
			Modified wording and enhanced description in this chapter
		300	Modified "DMA" in Note 4 of Figure 19.8 to "DMAC"
		302,	Modified "DMA" in the first bullet point in "Reading A/D converted
		304, 305	result" of Tables 19.3, 19.5, and 19.6 to "DMAC"
		305	· · · ·
		303	 Modified description of the number of prioritized pins in line 1 of 19.1.5 and "Function" in Table 19.6
		309	Deleted description "(AN0 to AN7, ANEX0, ANEX1 as analog input
			port)" from line 9 of 19.2.6
		314	• Corrected "AD0i" in the ninth bullet point of 19.3.2 to "AD00"
			Chapter 20. D/A Converter
		_	Made minor text modifications to this chapter
			Chapter 21. CRC Calculator
		_	Made minor text modifications to this chapter
		317	Modified Figure 21.1
		017	Chapter 22. X-Y Conversion
			Made minor text modifications to this chapter
			Chapter 23. Intelligent I/O
			Modified wording and enhanced description in this chapter
		327	Corrected pin name "IE_OUT" in Figure 23.3 to "IEOUT"
			. –
		330	 Changed bit name of bits UD1 and UD0 "Increment/Decrement Counting Control Bit" in Figure 23.6 to "Increment/Decrement Control Bit"
		333	• Deleted Note 3 from Figure 23.9
		340	Added "(INTO or INT1)" to the second bullet point for "Reset
			conditions" in Table 23.2; Changed description of the timer counter to
			start decrementing in the first bullet point of "Other functions"
		351,	• Modified "Input to the IIOi_j pin" in Figures 23.25 to 23.27 "IIOi_j pin"
		353, 356	
		354, 355	Divided Table 23.9 into Tables 23.9 and 23.10
		358, 360	 Corrected "Input to the OUTC2_j pin" in Figures 23.28 and 23.30 to "OUTC2_j pin"
		360	• Deleted the second dash of (A) in Figure 23.30
			Chapter 24. Multi-master I ² C-bus Interface
		_	Modified wording and enhanced description in this chapter
		1	and the second s

Revision History R32C/116A Group User's Manual: Hardware		
	Revision History	R32C/116A Group User's Manual: Hardware

			Description
Rev.	Date	Page	Summary
		372	Deleted slave-transmit mode from "Specification" of "Slave address"
		0.2	match detector" in Table 24.2
			• Modified Figure 24.1
		377	Modified description of Note 1 of Table 24.3
		390	• Corrected bit symbol "STR" in line 8 of 24.2 to "TRS"
		393, 394	• Modified "VIIC" in Figures 24.19 and 24.22 to "\ \ \ \ \ \ \ \ \ \ \ \ \ \
		000, 004	Chapter 26. I/O Pins
		_	Modified wording and enhanced description in this chapter
		404	Deleted ASEL from a factor of pull-up resistor being separated from
		104	peripheral functions in 26. I/O Pins and Figure 26.1
			Modified descriptions "has neither the bit 5 of the function select
			register nor the PDi register" in lines 10 to 11 and "The bit 1 of the
			function select register and the PDi register" in lines 11 to 12 below
			Figure 26.1 to "has no function select register or bit 5 in the PD8
			register" and "The function select register and bit 1 in the PD14
			register", respectively
		405	• Corrected pin symbols "WR/WR0", "BC1/WR1", and "BC2/WR2" in line
			4 of 26.1 to "WR/WR0", "BC1/WR1", and "BC2/WR2", respectively
		408,	• Changed expression "IIOj output" in Figures 26.4, 26.14, and 26.18 to
		419, 423	"IIOj_i output"
		410	• Corrected description "PD3_i register" in line 3 below Figure 27.6 to
			"PD3_i bit"
			Chapter 27. Flash Memory
		_	Modified wording and enhanced description in this chapter
		468	 Corrected register symbol "FMSR" in line 6 of 27.3.6.2 to "FMSR0"
		477	 Modified descriptions of the first bullet points in 27.6.7 and 27.6.8
			Chapter 28. Electrical Characteristics
		-	Modified wording and enhanced description in this chapter
		484	Changed expression "Programming and erasure endurance of flash
			memory" in Table 28.8 to "Program/erase cycles"; Changed its unit
			"times" to "Cycles"
		489, 502	Added "MSCL" and "MSDA" to Tables 28.16 and 28.42
		490	• Modified description "Drive power:" in Table 28.17 to "Drive strength:
			low"
		496, 509	Corrected "INTi" in the title of Tables 28.32 and 28.58 to "INTi"
			Chapter 29. Usage Notes
		_	Modified wording and enhanced description in this chapter
		520, 521	Changed the order of Tables 29.1 and 29.2
		521	Deleted "counting" from UDF register name in Table 29.2
		528	Modified description in 29.7.3.1
			Modified description "TBjS bit" in the first bullet point of 29.7.3.2 to
			"TBjS bit in the TABSR or TBSR register"; Modified "TBj" in the eighth
			bullet point to "timer Bj"
		533	 Corrected "AD0i" in the ninth bullet point of 29.10.2 to "AD00"
		535	• Modified descriptions of the first bullet points in 29.11.7 and 29.11.8

R32C/116A Group User's Manual: Hardware

Publication Date: Rev.0.50 Mar 09, 2010

Rev.1.10 Sep 28, 2012

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

R32C/116A Group

