Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT $\mu PD166010$

SINGLE N-CHANNEL HIGH SIDE INTELLIGENT POWER DEVICE

GENERAL DESCRIPTION

The μ PD166010 device is an N-channel high-side switch with charge pump, current controlled input, diagnostic feedback with load current sense and embedded protection functions.

FEATURES

- Built-in charge pump
- · Low on-state resistance
- Short-circuit protection
 - Shutdown by short-circuit detection
- Over-temperature protection
 - Shutdown with auto-restart on cooling
- Small multi-chip package: JEDEC 5-pin TO-252

(MSL: 3, profile acc. J-STD-20C)

- · Built-in diagnostic function
 - Proportional load current sensing
 - Defined fault signal in case of thermal shutdown and/or short circuit shutdown
- AEC Qualified

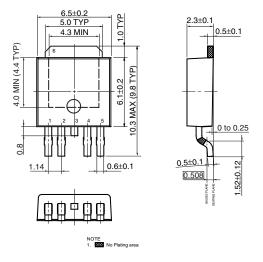
ORDERING INFORMATION

Part Number	Lead plating	Packing	Package
μ PD166010T1F-E1-AY Note	Sn	Tape 2500 p/reel	5-pin TO-252 (MP-3ZK)

Note Pb-free (This product does not contain Pb in the external electrode.)

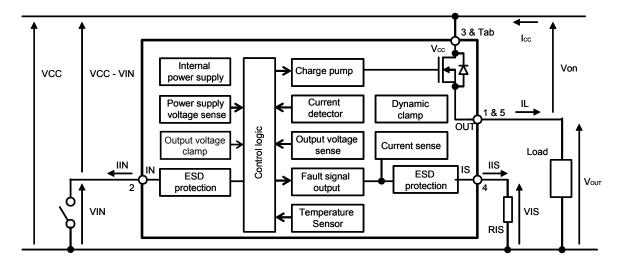
QUALITY GRADE

Part Number	Quality Grade
μ PD166010T1F-E1-AY	Special

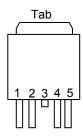

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

APPLICATION

- · Light bulb (to 55 W) switching
- Switching of all types of 14 V DC grounded loads, such as inductor, resistor and capacitor
- · Replacement for fuse and relay


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

PACKAGE DRAWING (unit: mm)



BLOCK DIAGRAM

PIN CONFIGURATION

Pin No.	Terminal Name	Function
1	OUT	Output to load: pin 1 and 5 must be externally shorted.
2	IN	Input; activates the power switch, if shorted to ground.
3	Vcc	Supply Voltage: tab and pin 3 are internally shorted.
4	Is	Sense Output: diagnostic feedback Note
5	OUT	Output to load: pin 1 and 5 must be externally shorted.

Note If current sense and diagnostic features are not used, IS terminal has to be connected to GND via resistor.

ABSOLUTE MAXIMUM RATING (Ta = 25°C, unless otherwise specified)

Parameter	Symbol		Test Conditions	Rating	Unit
Vcc voltage	V _{CC1}			28	٧
Vcc voltage (Load Dump)	V _{CC2}	Rι = 1 Ω, Rι =	1.5 Ω , t _d = 400 ms,	40	V
		$R_{IS} = 1 k\Omega, IN$	= low or high		
Vcc voltage (Reverse polarity)	-Vcc	R _L = 2.2 Ω, 1 n	ninute	-16	V
Load current	l _L	DC, Tc = 25°C		30	Α
Load current (short circuit current)	IL(SC)			Self Limited	Α
Power dissipation	Po	Tc = 25°C		59	W
Inductive load switch-off energy	E _{AS1}	IL = 10 A, Vcc =	= 12 V, Tch,start ≤ 150°C,	50	mJ
dissipation single pulse		refer to page 1	6		
Maximum allowable energy	E _{AS2}	Vcc = 18 V, Tc	h,start \leq 150°C, R _{supply} = 10 m Ω ,	105	mJ
under over load condition		R _{short} = 50 m Ω ,	L _{supply} = 5 μ H, L _{short} = 15 μ H,		
(Single pulse)		refer to page 1	6		
Channel temperature	Tch			-40 to +150	°C
Storage temperature	Tstg			-55 to +150	°C
Electric discharge capability	VESD	НВМ	AEC-Q100-002 std.	2000	V
			R = 1.5 kΩ, C = 100pF		
		MM	AEC-Q100-003 std.	400	V
			R = 0 Ω, C = 200pF		
Voltage of IN pin	VIN	DC		Vcc-28 V	٧
		Reverse polarity condition, 1 minute		Vcc+14 V	٧
Voltage of IS pin	Vıs	DC			٧
		Reverse polari	ty condition, 1 minute	Vcc+14 V	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$	8	_	18	V

Cautions 1. It is assumed that $V_{IN} = 0 V$ when the device is activated.

2. Device operating range is limited by energy dissipation capability of the driver. User must carefully consider worst case load and current conditions in combination of operating voltage.

THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Thermal resistance	Rth(ch-a)	Device on 50 mm x 50 mm x 1.5 mmt epoxy PCB FR-4 with 6 cm² of 70 μm copper area	_	45	55	°C/W
	Rth(ch-c)		_	-	3.17	°C/W

os 3

ELECTRICAL CHARACTERISTICS (Vcc = 12 V, Tch = 25°C, unless otherwise specified)

Parameter	Symbol	Test Co	onditions	Min.	Тур.	Max.	Unit
Required current capability of Input switch	Іін	T _{ch} = -40 to 150°C		-	1.0	2.2	mA
Input current for turn-off	lı∟			-	-	50	μΑ
Standby current	Icc(off)	In = 0 A	Tch = 25°C	_	2.5	5.0	μΑ
			$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$	_	2.5	15.0	μΑ
On state resistance	Ron	I∟ = 7.5 A	Tch = 25°C	_	8	10	mΩ
			T _{ch} = 150°C	_	14	18	
Output voltage drop limitation as small load current	V _{on(NL)}	$T_{ch} = -40$ to 150°C, refer to page 14		_	30	65	mV
Turn on Time	ton	$R_L = 2.2 \Omega$,		_	200	500	μs
Turn off Time	toff	$T_{ch} = -40$ to 150°C, refer to page 15		_	250	600	μs
Slew rate on	dV/dton	25 to 50% Vouτ, $R_L = 2.2 \Omega$,		_	0.2	0.6	V/μs
		$T_{ch} = -40$ to 150°C, refer to page 15					
Slew rate off	-dV/dtoff	50 to 25% Voυτ, $R_L = 2.2 \Omega$,		_	0.2	0.5	V/μs
		$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}, \text{ r}$	efer to page 15				

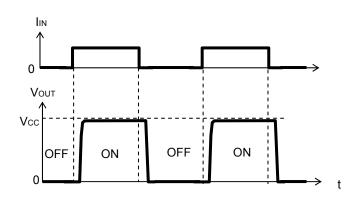
PROTECTION FUNCTIONS (Vcc = 12 V, Tch = 25°C, unless otherwise specified)

Parameter	Symbol	Test C	onditions	Min.	Тур.	Max.	Unit
On-state resistance at reverse battery condition	Ron(rev)	Vcc = -12 V, IL = - < 150 Ω	7.5 A, Ris = 1 k Ω , Rin				
			T _{ch} = 25°C	-	9.5	13	mΩ
			T _{ch} = 150°C	_	16	22	mΩ
Short circuit detection current	IL6, 3(SC)	$V_{CC} - V_{IN} = 6 V$	$T_{ch} = -40^{\circ}C$	_	50	120	Α
		Von = 3 V	T _{ch} = 25°C	_	50	-	
			T _{ch} = 150°C	20	45	_	
	IL6, 6(SC) Note	$V_{CC} - V_{IN} = 6 V$	$T_{ch} = -40^{\circ}C$	_	35	110	
		Von = 6 V	T _{ch} = 25°C	_	35	_	
			T _{ch} = 150°C	10	35	_	
	I _{L12} , 3(SC)	Vcc - Vin = 12 V,	$T_{ch} = -40^{\circ}C$	_	110	180	
		Von = 3 V	T _{ch} = 25°C	76	105	_	
			T _{ch} = 150°C	50	95	_	
	I _{L12, 6(SC)} Note	Vcc - Vin = 12 V,	$T_{ch} = -40^{\circ}C$	_	90	160	
		V _{on} = 6 V	T _{ch} = 25°C	_	85	_	
			T _{ch} = 150°C	40	80	_	
	I _{L12, 12(SC)} Note	Vcc - Vin = 12 V,	T _{ch} = -40°C	_	55	120	
		Von = 12 V	T _{ch} = 25°C	_	50	_	
			T _{ch} = 150°C	10	45	_	
	I _{L18, 3(SC)} Note	Vcc - Vin = 18 V,	$T_{ch} = -40^{\circ}C$	_	130	200	
		Von = 3 V	T _{ch} = 25°C	_	125	_	
			T _{ch} = 150°C	60	110	_	
	I _{L18, 6(SC)} Note	Vcc - Vin = 18 V,	$T_{ch} = -40^{\circ}C$	_	110	170	
		V _{on} = 6 V	T _{ch} = 25°C	_	110	_	
			T _{ch} = 150°C	50	100	-	
	I _{L18, 12(SC)} Note	Vcc - Vin = 18 V,	$T_{ch} = -40^{\circ}C$	_	75	120	
		Von = 12 V	T _{ch} = 25°C	_	70	_	
			T _{ch} = 150°C	30	65	_	
	I _{L18, 18(SC)} Note	Vcc - Vin = 18 V,	$T_{ch} = -40^{\circ}C$	_	50	90	
		Von = 18 V	T _{ch} = 25°C	_	50	_	
			T _{ch} = 150°C	5	45	_	
Output clamp voltage (inductive load switch off)	Von(CL)	IL = 40 mA, Tch = -	-40 to 150°C	30	34	40	V
Over load detection voltage	Von(OvL)	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$		0.65	1	1.45	V
Turn-on check delay after input current positive slope Note	td(OC)	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$		0.9	2.1	3.8	ms
Under voltage shutdown	VcIN(Uv)	T _{ch} = -40°C		_	_	5.8	V
		T _{ch} = 25°C		3.6	4.5	5.4	V
		T _{ch} = 150°C		3.2	_	-	V
Under voltage restart of	VCIN(CPr)	T _{ch} = -40°C		-	_	6.5	V
charge pump		T _{ch} = 25°C		4.1	5.1	6.0	V
		T _{ch} = 150°C		3.7	-	_	V
Thermal shutdown temperature	Tth			150	175	_	°C
Thermal hysteresis	ΔT_{th}			_	10	-	°C

Note Not subject to production test, specified by design.

DIAGNOSTIC CHARACTERISTICS (Vcc = 12 V, Tch = 25°C, unless otherwise specified)

Parameter	Symbol	Test C	onditions	Min.	Тур.	Max.	Unit
Current sense ratio	Kılıs	KILIS = IL/IIS VIS < VOUT - 6 V, IIS	s < Iıs,lim				
		IL = 30 A	T _{ch} = -40°C	8300	9200	11000	
			Tch = 25°C	8300	9200	10600	
			T _{ch} = 150°C	8400	9300	10200	
		I _L = 7.5 A	$T_{ch} = -40^{\circ}C$	7500	9200	11400	
			T _{ch} = 25°C	8000	9300	10800	
			T _{ch} = 150°C	8300	9300	10400	
		I _L = 2.5 A	$T_{ch} = -40^{\circ}C$	7100	10200	13400	
			T _{ch} = 25°C	7700	10000	12500	
			T _{ch} = 150°C	8000	9800	12000	
		I _L = 0.5 A	$T_{ch} = -40^{\circ}C$	5000	12000	21000	
			T _{ch} = 25°C	5500	11500	17000	
			T _{ch} = 150°C	6000	11500	16000	
Sense current offset current	IS,offset	VIN = 0 V, IL = 0 A		_	0.1	1	μΑ
Sense current under fault	Is,fault	Under fault conditi	ons	3.5	6.0	12.0	mA
condition		8 V < Vcc - Vis < 1	2 V,				
		$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$;				
Sense current saturation	Is,lim	$V_{is} < V_{out} - 6 V$,		3.5	7.0	12.0	mA
current		$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$					
Fault sense signal delay after short circuit detection Note	tsdelay(fault)	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$;	_	2	6	μs
Sense current leakage current	lis(LL)	In = 0 A		_	0.1	0.5	μΑ
Current sense settling time	tson(IS)	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C},$		_	250	1000	μs
after input current positive slope		IL = 0 A _ 20 A					
Current sense settling time	Tsic(IS)	$T_{ch} = -40 \text{ to } 150^{\circ}\text{C}$,	-	50	100	μs
during on condition Note		I∟ = 10 A 20 A					


 $\textbf{Note} \ \ \text{Not subject to production test, specified by design}.$

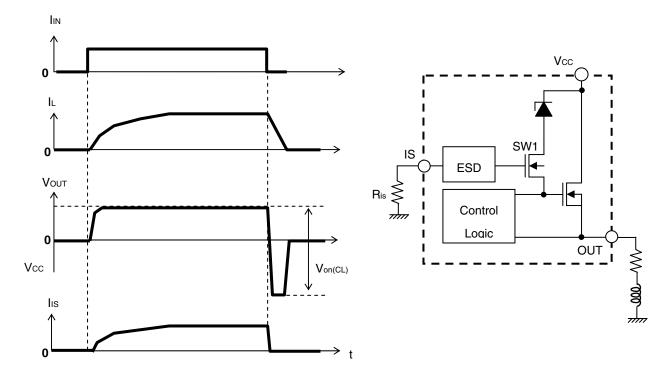
FEATURES DESCLIPTION

Driver Circuit (On-Off Control)

The high-side output is turned on, if the input pin is shorted to ground. The input current is below I_{IH}. The high-side output is turned off, if the input pin is open or the input current is below I_{IL}. R_{CC} is 100 Ω typ. ESD protection diode: 46 V typ.



Switching a resistive load


IIN O Vout Vcc IIs

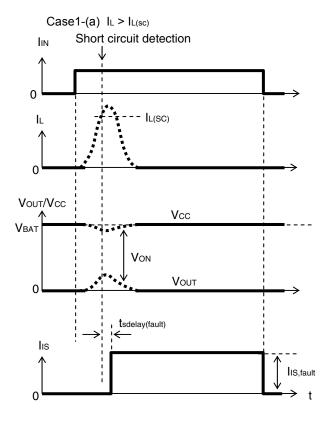
Switching lamps

Switching an inductive load

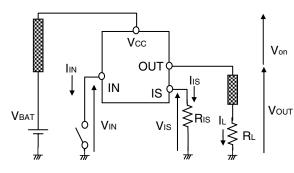
Dynamic clamp operation at inductive load switch off

The dynamic clamp circuit works only when the inductive load is switched off. When the inductive load is switched off, the voltage of OUT falls below 0 V. The gate voltage of SW1 is then nearly equal to GND because the IS terminal is connected to GND via an external resister. Next, the voltage at the source of SW1 (= gate of output MOS) falls below the GND voltage. SW1 is turned on, and the clamp diode is connected to the gate of the output MOS, activating the dynamic clamp circuit.

When the over-voltage is applied to Vcc, the gate voltage and source voltage of SW1 are both nearly equal to GND. SW1 is not turned on, the clamp diode is not connected to the gate of the output MOS, and the dynamic clamp circuit is not activated.


Short circuit protection

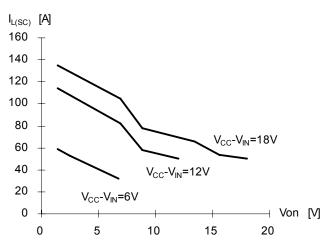
Case 1: IN pin is shorted to ground in an overload condition, which includes a short circuit condition.

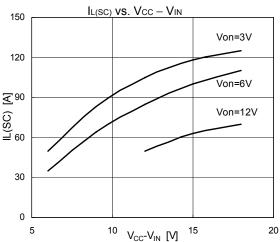

The device shuts down automatically when either or both of following conditions (a, b) is detected.

The sense current is fixed at lis,fault. Shutdown is latched until the next reset via input.

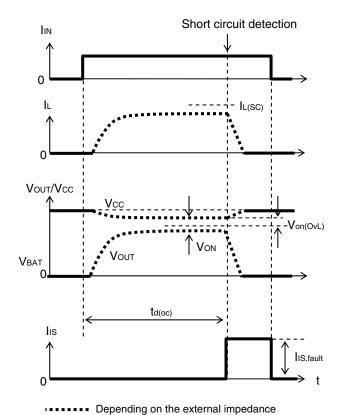
- (a) $I_L > I_{L(SC)}$
- (b) Von > Von(OvL) after td(OC)

(Evaluation circuit)

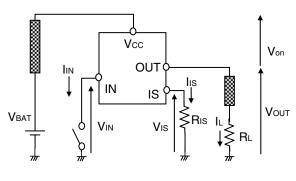

: Cable impedance


 $t_{\text{sdelay(fault)}}$: Fault sense signal delay after short circuit detection $I_{\text{L(SC)}}$: Short circuit detection current

Depending on the external impedance


Typical Short circuit detection current characteristics

The short circuit detection current changes according Vcc voltage and Von voltage for the purpose of to be strength of the robustness under short circuit condition.

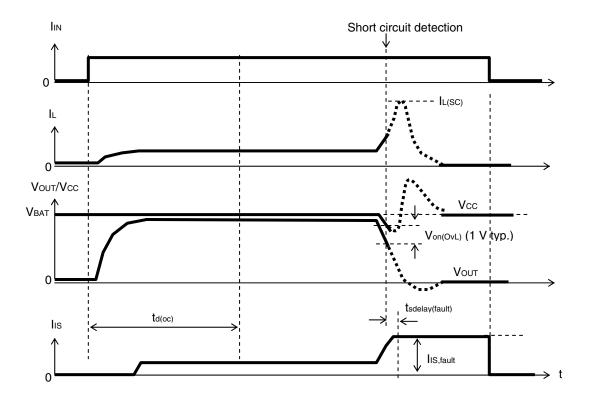


Case1-(b) Von > $V_{On(OvL)}$ after $t_{d(OC)}$

(Evaluation circuit)

: Cable impedance

td(oc): Turn-on check delay after input current positive slope

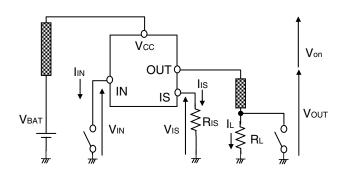

Case 2: Short circuit during on-condition

The device shuts down automatically when either or both of following conditions (a) is detected.

The sense current is fixed at lis,fault. Shutdown is latched until the next reset via input.

(a) Von > $V_{on(OvL)}$ after $t_{d(oc)}$

Case2-(a) Von > Von(OvL) after td(OC)

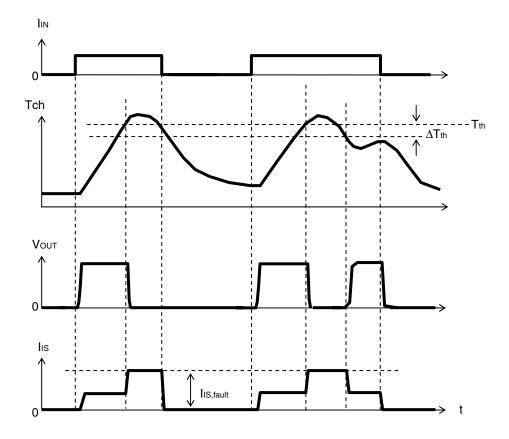

Depending on the external impedance

td(oc): Turn-on check delay after input current positive slope

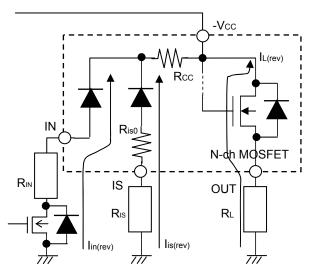
tsdelay(fault): Fault sense signal delay after short circuit detection

IL(SC): Short circuit detection current

(Evaluation circuit)


: Cable impedance

Data Sheet S19689EJ2V0DS 11


Over-temperature protection

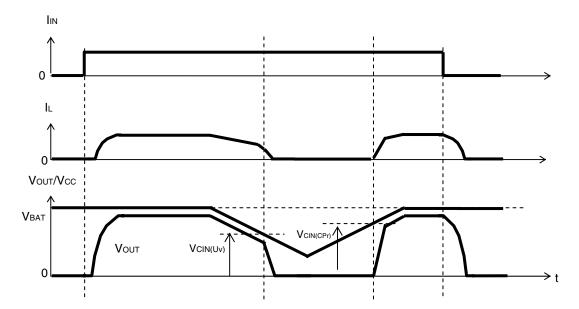
The output is switched off if over-temperature is detected. The device switches on again after it cools down.

Power dissipation under reverse battery condition

In case of reverse battery condition, the internal N-ch MOSFET is turned on to reduce the power dissipation caused by the body diode. Additional power is dissipated by the internal resisters. Following is the formula for estimation of total power dissipation $P_{d(rev)}$ in reverse battery condition.

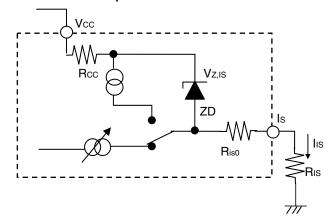
$$\begin{split} P_{d(rev)} &= R_{on(rev)} \ x \ I_{L(rev)^2} \\ &\quad + \left(V_{CC} - V_f - I_{in(rev)} \ x \ R_{IN} \right) \ x \ I_{in(rev)} \\ &\quad + \left(V_{CC} - I_{is(rev)} \ x \ R_{IS} \right) \ x \ I_{is(rev)} \\ I_{in(rev)} &= \left(V_{CC} - 2 \ x \ V_f \right) \ / \left(R_{CC} + R_{IN} \right) \\ I_{is(rev)} &= \left(V_{CC} - V_f \right) \ / \left(R_{CC} + R_{is0} + R_{IS} \right) \end{split}$$

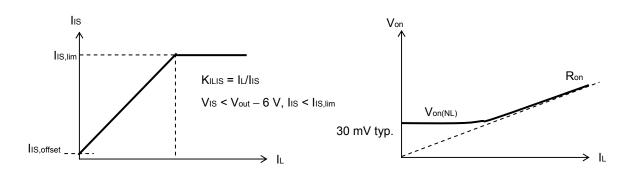
The reverse current through the N-ch MOSFET has to be limited by the connected load.

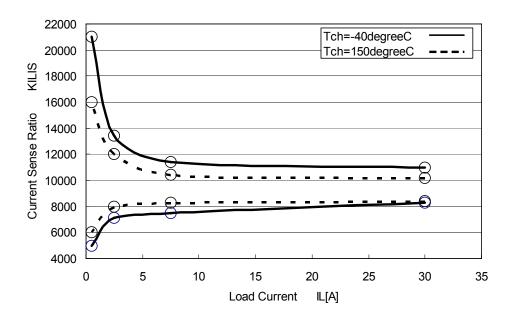

In order to turn on the N-ch MOSFET at reverse polarity condition, the voltage at IN should be around 8 V by using a MOSFET or small diode in parallel to the input switch. RIN should be estimated following formula.

$$Rin < (|Vcc| - 8 V) / 0.08 A$$

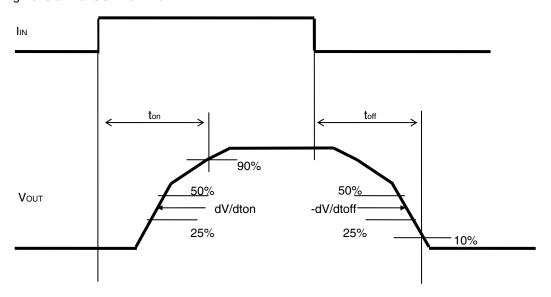
Device behavior at low voltage condition

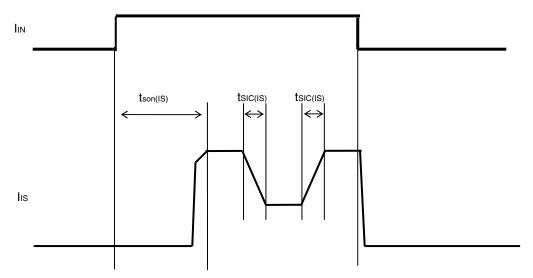

If the supply voltage $(V_{CC} - V_{IN})$ goes below $V_{CIN(UV)}$, the device shuts off the output. If supply voltage $(V_{CC} - V_{IN})$ increases above $V_{CIN(CPr)}$, the device turns on the output automatically. The device stays off if supply voltage $(V_{CC} - V_{IN})$ does not increase above $V_{CIN(CPr)}$ after an under voltage shutdown.


Caution It is assumed that $V_{IN} = 0 V$ when I_{IN} is activated.


Current sense output

Rcc and R_{is0} are 100 Ω typ. $V_{z,i}s=46$ V (typ.), $R_{i}s=1$ $k\Omega$ nominal.

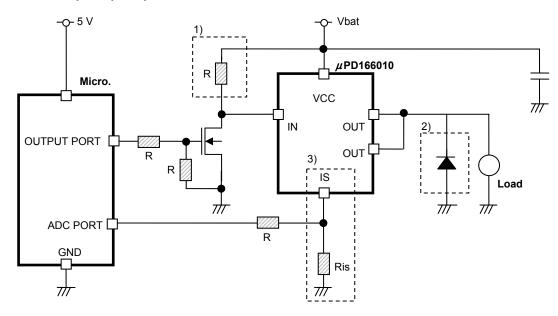

Current sense ratio



Measurement condition

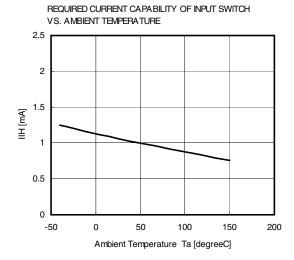
Switching waveform of OUT Terminal

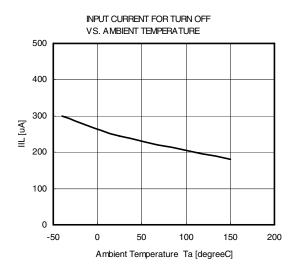
Switching waveform of IS terminal

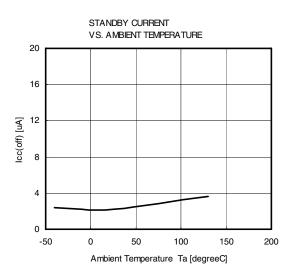


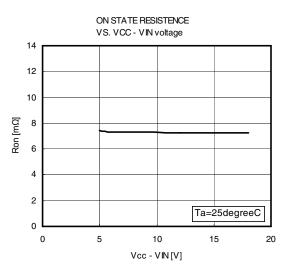
Truth table

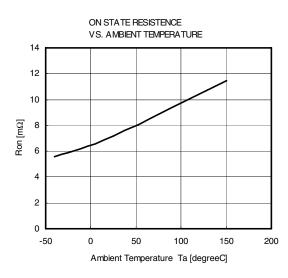
Input Current	State	Output	Sense Current
L	-	OFF	lis(LL)
	Normal Operation	ON	IL/KILIS
Н	Over-temperature or Short circuit	OFF	Is,fault
	Open Load	ON	IS,offset

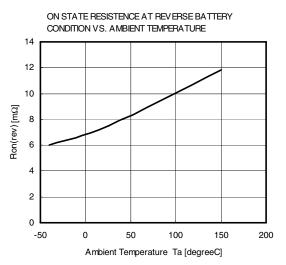

<R> Application example in principle

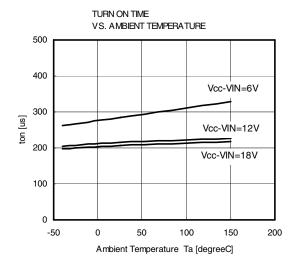


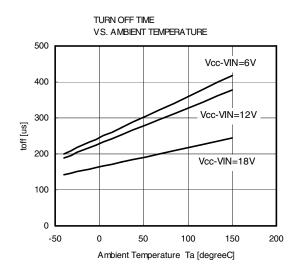

- 1) In order to prevent leakage current through at IN terminal via PCB, it is recommended to pull up the IN terminal to VCC using around 1 to 10 k Ω (approx.) resistor.
- 2) If output current is over destruction current characteristics for inductive load at a single off, it must be connected through an external component for protection purpose.
- 3) If current sense and diagnostic features are not used, IS terminal has to be connected to GND via resistor.

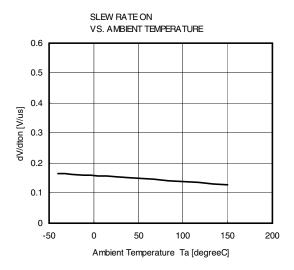


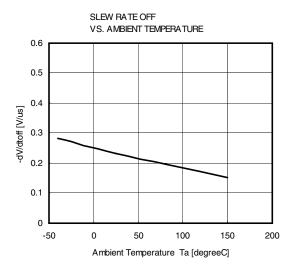

TYPICAL CHARACTERISTICS

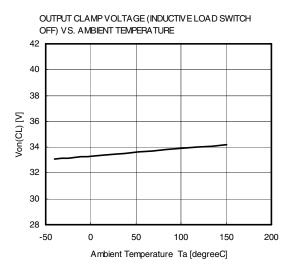


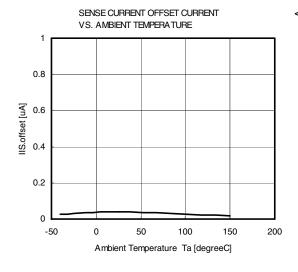


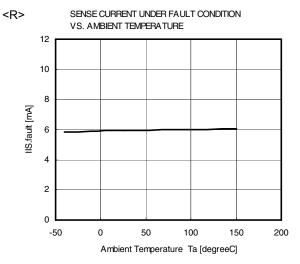


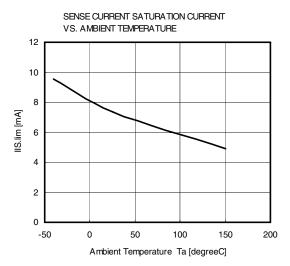


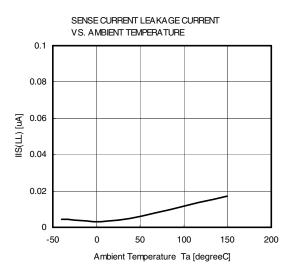


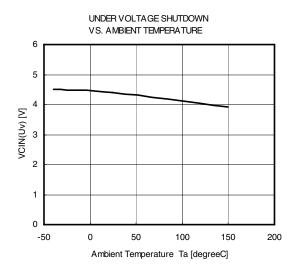


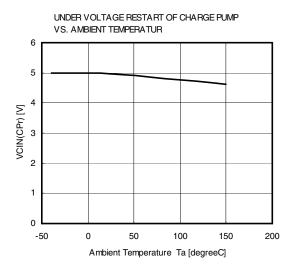




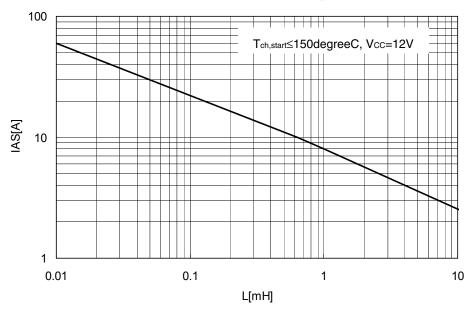




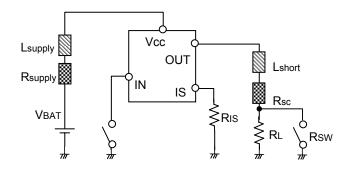








INDUCTIVE LOAD SWITCH-OFF ENERGY DISSIPATION FOR A SINGLE PULSE



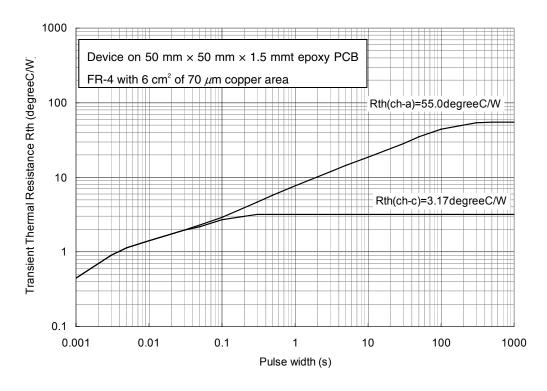
The energy dissipation for an inductive load switch-off single pulse in device (EAS1) is estimated by the following formula as $R_L = 0\Omega$.

$$EAS1 = \frac{1}{2} \cdot I^{2} \cdot L \left(\frac{Von(CL)}{Von(CL) - VCC} \right)$$

MAXIMUM ALLOWABLE SWITCH OFF ENERGY (SINGLE PULSE)

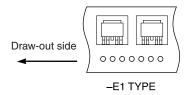
The harness connecting the power supply, the load and the device has a small inductance and resistance. When the device turns off, the energy stored in the harness inductance is dissipated by the device, the harness resistance and the internal resistance of power supply. If the current is abnormally high due to a load short, the energy stored in the harness can be large. This energy has to be taken into consideration for the safe operation. The following figure shows the condition for Eas2, the maximum switch-off energy (single pulse) for abnormally high current.

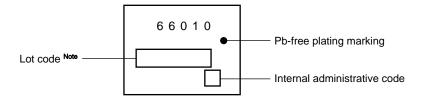
: Cable resistance : Cable inductance


R_{supply} = 10 m Ω , R_{short} = R_{sc} + R_{sw(on)} = 50 m Ω , L_{supply} = 5 μ H, L_{short} = 15 μ H,

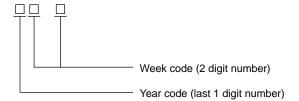
Tch,start ≤ 150°C

THERMAL CHARACTERISTICS


TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH


TAPING INFORMATION

This is one type (E1) of direction of the device in the career tape.



MARKING INFORMATION

This figure indicates the marking items and arrangement. However, details of the letterform, the size and the position aren't indicated.

Note Composition of the lot code

REVISION HISTORY

Revision	Major changes since last version	Page
1st edition	Released 1st edition March 2009	
2nd edition	Released 2nd edition January 2010	
	Revised application example in principle	16
	Revised typical characteristics curve errata	19

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of January, 2010. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

- (Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

(M8E0909E)