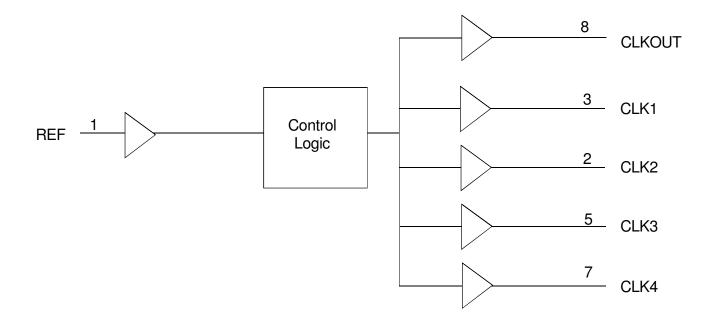


2.5V CLOCK BUFFER

IDT2305NZT

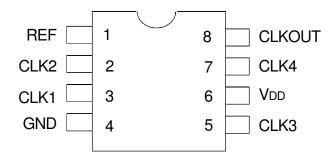

FEATURES:

- · Clock Distribution
- 10MHz to 133MHz operating frequency
- · Distributes one clock input to one bank of five outputs
- Output Skew < 250ps
- · No external RC network required
- Operates at 2.5V VDD
- · Available in SOIC package
- · Available in commercial and industrial temperature range

DESCRIPTION:

The IDT2305NZT is a high-speed clock buffer, designed to address high-speed clock distribution applications. IDT2305NZT accepts one reference input, and drives out five low skew clocks.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JANUARY 2012

PIN CONFIGURATION

SOIC TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VDD	Supply Voltage Range	-0.5 to +4.6	V
VI ⁽²⁾	Input Voltage Range (REF)	-0.5 to +5.5	V
Vı	Input Voltage Range	-0.5 to	V
	(except REF)	VDD+0.5	
lik (Vi < 0)	Input Clamp Current	-50	mA
Io (Vo = 0 to VDD)	Continuous Output Current	±50	mA
VDD or GND	Continuous Current	±100	mA
TA = 55°C	Maximum Power Dissipation	0.7	W
(in still air)(3)			
Tstg	Storage Temperature Range	-65 to +150	°C
Operating	Industrial Temperature	-40 to +85	°C
Temperature	Range		

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- PC Motherboards/Workstations
- · Critical Path Delay Designs

PIN DESCRIPTION

Pin Name	Pin Number	Туре	Functional Description
REF ⁽¹⁾	1	IN	Input reference clock, 3.3V tolerant input
CLK2 ⁽²⁾	2	OUT	Output clock
CLK1 ⁽²⁾	3	OUT	Output clock
GND	4	GND	Ground
CLK3 ⁽²⁾	5	OUT	Output clock
VDD	6	PWR	2.5V Supply
CLK4 ⁽²⁾	7	OUT	Output clock
CLKOUT ⁽²⁾	8	OUT	Output clock

NOTES:

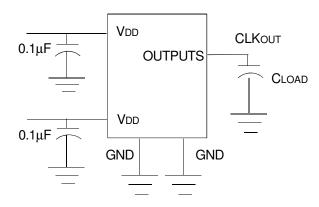
- 1. Weak pull down.
- 2. Weak pull down on all outputs.

OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	2.3	2.7	V
TA	Operating Temperature (Ambient Temperature)	-40	+85	°C
CL	Load Capacitance 10MHz - 133MHz	_	15	pF
CIN	Input Capacitance	_	7	pF

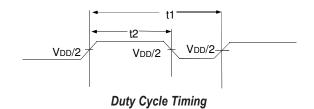
DC ELECTRICAL CHARACTERISTICS

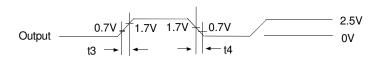
Symbol	Parameter	Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage Level		_	0.7	V
VIH	Input HIGH Voltage Level		1.7	_	V
lıL	Input LOW Current	VIN = 0V	_	50	μΑ
lін	Input HIGH Current	VIN = VDD	_	100	μΑ
Vol	Output LOW Voltage	Standard Drive, IoL = 8mA	_	0.3	V
Voн	Output HIGH Voltage	Standard Drive, IOH = -8mA	2	_	V
ldd_pd	Power Down Current	REF = 0MHz	_	12	μΑ
IDD	Supply Current	Unloaded Outputs at 66.66MHz	_	32	mA

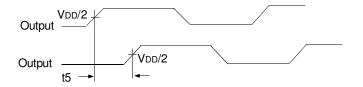

SWITCHING CHARACTERISTICS (1,2)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	15pFLoad	10	_	133	MHz
	Duty Cycle = t2 ÷ t1	Measured at VDD/2, FOUT = 66.66MHz	40	50	60	%
ts	Rise Time	Measured between 0.7V and 1.7V	_	_	2.5	ns
t4	FallTime	Measured between 0.7V and 1.7V	_	_	2.5	ns
t5	Output to Output Skew	All outputs equally loaded	_	_	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDD/2	_	0	8.7	ns
t7	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	_	0	700	ps

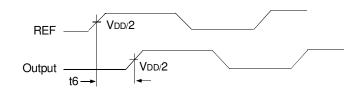
NOTES:

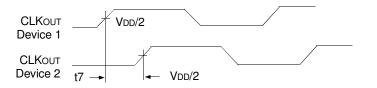

- 1. REF Input has a threshold voltage of VDD/2.
- 2. All parameters specified with loaded outputs.


TEST CIRCUIT

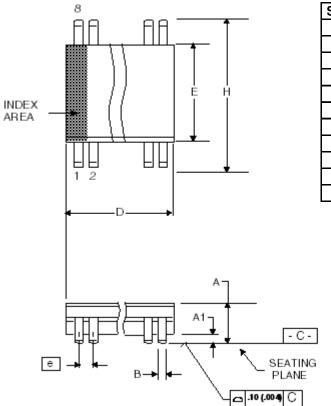

Test Circuit for All Parameters

SWITCHING WAVEFORMS

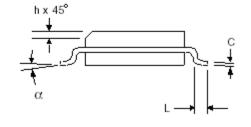



All Outputs Rise/Fall Time

Output to Output Skew



Input to Output Propagation Delay



Device to Device Skew

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

	Millimeters	S	Inches	
Symbol	Min	Max	Min	Max
Α	1.35	1.75	0.0532	0.0688
A1	0.1	0.25	0.004	0.0098
В	0.33	0.51	0.013	0.02
С	0.19	0.25	0.0075	0.0098
D	4.8	5	0.189	0.1968
Е	3.8	4	0.1497	0.1574
е	1.27	BASIC	0.050 BASIC	
Н	5.8	6.2	0.2284	0.244
h	0.25	0.5	0.01	0.02
Ĺ	0.4	1.27	0.016	0.05
а	0°	8°	0°	8°

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
2305NZT-1DCG	Tubes	8-pin SOIC	0 to +70° C
2305NZT-1DCG8	Tape and Reel	8-pin SOIC	0 to +70° C
2305NZT-1DCGI	Tubes	8-pin SOIC	-40 to +85° C
2305NZT-1DCGI8	Tape and Reel	8-pin SOIC	-40 to +85° C

[&]quot;G" after the two-letter package code denotes Pb free configuration, RoHS complaint.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/