High Efficiency 3-Channel Buck Converter with dual LDO

General Description

PV88090 is a power management unit (PMU) optimized for supplying systems with central processing units (CPU), input/output (I/O), and dual data rate (DDR) memory. The target application range covers television, set-up box, wifi routers, and enterprise access point and network addressable servers.

PV88090 features a two-phase buck converter providing up to 9.5 A current, and two one-phase buck converters for dual date rate (DDR) memory and auxiliary power. High efficiency is achieved over a wide load range by using automatic pulse frequency modulation (PFM). All power switches are integrated, eliminating the need for external Schottky diodes are not needed. This optimizes power efficiency and reduces the external component count. Two LDO regulators with programmable output voltage are integrated and provide up to 400 mA . PV88090 provides dynamic voltage control (DVC) via $I^{2} C$ command to support adaptive adjustment of the supply voltage based on the processor loading. All power blocks have over-current circuit protection and the start-up timing can be controlled through the $I^{2} \mathrm{C}$ interface. The supply voltages of PV88090 control can be realized via direct register writes through the $\mathrm{I}^{2} \mathrm{C}$ interface to the operating point of the system
PV88090 includes over-temperature and over-current protection for increased system reliability, without external sensing components. A soft-start mechanism limits the inrush current from the input node and secures a slope-controlled rail activation. A standby mode provides reduced power consumption. Optional standby operation for DDR memory, auxiliary buck, and analog core LDO are configurable in PV88090 for optimizing the power rails. The PV88090is available in a 30-pin QFN package and is specified from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient temperature.

Key Features

■ Input voltage 4.75 V to 5.25 V
■ Three synchronous buck converters with integrated low Ron FET

- Buck1: Programmable output voltage from 0.9 V to 1.3 V with 9.5 A continuous output current, 11 A peak current if standalone
- Buck2: Programmable output voltage from 1 V to 2.5 V with 2 A continuous output current
- Buck3: Programmable output voltage 1.3 V to 3.4 V with 2 A continuous output current
$\square \quad 93$ \% efficiency
- Auto mode on all three buck converters

■ Integrated power switches

- DVC for buck converters
- 2 LDO regulators
- LDO1: 1.05 V to $1.23 \mathrm{~V}, 400 \mathrm{~mA}$ LDO2: 1.8 V to $3.3 \mathrm{~V}, 250 \mathrm{~mA}$
- Adjustable soft-start
- $I^{2} \mathrm{C}$ compatible interface
- $-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ ambient temperature range
- Custom 30-pin FC-MQFN package with thermal pad, 0.5 mm pin pitch

Applications

- Supply for digital television processor
- Power supply for digital set top box (STB)
- Networking home terminal

High Efficiency 3-Channel Buck Converter with dual LDO

System Diagram

Figure 1: System Diagram

High Efficiency 3-Channel Buck Converter with dual LDO

Contents

General Description 1
Key Features 1
Applications 1
System Diagram 2
Contents 3
Figures 5
Tables 5
1 Terms and definitions 6
2 References 6
3 Block Diagram 7
4 Pinout 7
5 Characteristics 9
5.1 Absolute Maximum Ratings 9
5.2 Recommended Operating Conditions 9
5.3 ESD Ratings 10
5.4 Electrical Characteristics 10
5.4.1 Digital I/O 10
5.4.2 ${ }^{12} \mathrm{C}$ Interface 10
5.4.3 Buck Converter Electrical Characteristics 12
5.4.3.1 Buck1 Electrical Characteristics 12
5.4.3.2 Buck2 Electrical Characteristics 12
5.4.3.3 Buck3 Electrical Characteristics 13
5.5 LDO Electrical Characteristics 14
5.5.1 LDO1 14
5.5.2 LDO2. 15
5.5.3 Core LDO Electrical Characteristics 16
5.6 Reference Voltage and Bias Current Generation 16
5.7 Supply Monitoring Electrical Characteristics 16
5.8 Current Consumption 17
5.8.1 Power Use Case 17
6 Functional Description 18
6.1 Control Signals 18
6.1.1 OTP Bank Select - OTPSEL 18
6.1.2 Address Select - ADRSEL 18
6.1.3 Standby Pin - STBY 18
6.1.4 Programming Voltage Input - VPP 18
6.1.5 Single Wire Communication I/O - SWC 18
6.1.6 Interrupt Request - nIRQ 18
6.1.7 $I^{2} \mathrm{C}$ Interface 19
6.1.8 I^{2} CProtocol 19
6.1.9 Dynamic Voltage Control 21
6.2 LDOs 21
6.3 Buck Converters 22

High Efficiency 3-Channel Buck Converter with dual LDO
6.3.1 Buck1 22
6.3.2 Buck2 22
6.3.3 Buck3 23
6.4 Power Modes 23
6.4.1 Normal Mode - Default Power-Up State 23
6.4.2 Normal Mode 23
6.4.3 Standby Mode 23
6.4.4 Power Supply Sequencer 24
6.4.5 Boot Sequence 24
6.5 Monitoring and Interrupts 27
6.6 Power-On-Reset 27
6.7 Reference Voltage and Bias Current Generation 27
6.8 Over-Temperature 27
6.9 Supply Monitoring 27
6.10 Fault Condition 28
7 Register Definitions 29
7.1 Register Page Control 29
7.2 Status and Events 30
7.2.1 Register STATUS_A 30
7.2.2 Register STATUS_B 30
7.2.3 Register EVENT_A 30
7.2.4 Register EVENT_B 31
7.2.5 Register FAULT_LOG 31
7.2.6 Register IRQ_MASK_A 32
7.2.7 Register IRQ_MASK_B 32
7.2.8 Register CONTROL_B 32
7.2.9 Register INTERFACE 33
7.3 Supplies (Bucks and LDOs) 33
7.3.1 Register BUCK1_CONF0 33
7.3.2 Register BUCK1_CONF1 33
7.3.3 Register BUCK2_CONFO 34
7.3.4 Register BUCK2_CONF1 34
7.3.5 Register BUCK3_CONF0 35
7.3.6 Register BUCK3_CONF1 35
7.3.7 Register LDO2 36
7.3.8 Register LDO1a [1.5V Supply] 36
8 Package Information 38
8.1 Package Outlines 38
9 Ordering Information 39
10 Application Information 39
10.1 Capacitors Selection 39
10.2 Inductor Selection 40
11 Layout Guidelines 41

High Efficiency 3-Channel Buck Converter with dual LDO

Figures
Figure 1: System Diagram 2
Figure 2: Block Diagram 7
Figure 3: I2C Interface Timing 11
Figure 4: Timing of the START and STOP conditions 19
Figure 5: Byte Write Operation 19
Figure 6: Examples of Byte Read Operations 20
Figure 7: ${ }^{2} \mathrm{C}$ Page Read 20
Figure 8: ${ }^{2} \mathrm{C}$ Page Write 20
Figure 9: $I^{2} \mathrm{C}$ Repeated Write 21
Figure 10: Smart Mirror ${ }^{\text {TM }}$ Voltage Regulator 21
Figure 11: Boot Sequence 26
Figure 12: Package Outline Drawing 38
Tables
Table 1: Pin Description 7
Table 2: Pin Type Definition 8
Table 3: Absolute Maximum Ratings 9
Table 4: Recommended Operating Conditions 9
Table 5: ESD Characteristics 10
Table 6: Digital I/O Electrical Characteristics 10
Table 7: ${ }^{2} \mathrm{C}$ Interface Electrical Characteristics 10
Table 8: Buck2 Electrical Characteristics 12
Table 9: Buck3 Electrical Characteristics 13
Table 10: LDO1 Electrical Characteristics 14
Table 11: LDO2 Electrical Characteristics 15
Table 12: Core LDO Electrical Characteristics 16
Table 13: Reference Voltage and Bias Current Generation Electrical Characteristics 16
Table 14: Supply Monitoring Electrical Characteristics 16
Table 15: Power Dissipation 17
Table 16: Buck Converter Summary 22
Table 17: Function Block of Mode Operation 23
Table 18: The Start-Up Sequence at POR 24
Table 19: Start-Up Sequence Example from Standby 25
Table 20: Shutdown Sequence Example to Standby 25
Table 21: Functional Block Mode of Monitoring and Interrupts 27
Table 22: Ordering Information 39

High Efficiency 3-Channel Buck Converter with dual LDO

1 Terms and definitions

CCM Continuous Conduction Mode
DCM Discontinuous Conduction Mode
HBM Human Body Model
OTP One Time Programmable
PCB Printed Circuit Board
PG Power Good
PMIC Power Management Integrated Circuit
POR Power On Reset
PVC Power Voltage Converter
PWC Power Cycle

2 References

[1] UM10204 ${ }^{2}$ ² bus specification and user manual
[2] PV88080 High Efficiency Advanced Feature 4-Channel PMIC datasheet

High Efficiency 3-Channel Buck Converter with dual LDO

3 Block Diagram

Figure 2: Block Diagram

4 Pinout

Table 1: Pin Description

Pin No.	Pin Name	Type (Table 2)	Description
1	VDD2	PWR	Supply voltage for Buck2 To be connected to VDD after input capacitor
2	VSS12	GND	Ground voltage for Buck2 and Buck1 phase1
3	VDD1	PWR	Supply voltage Buck1 To be connected to VDD after input capacitor
4	VSS13	GND	Ground voltage for Buck3 and Buck1 phase2
5	VDD3	PWR	Supply voltage for Buck3 To be connected to VDD after input capacitor
6	ADDRSEL	DI	$\mathrm{I}^{2} \mathrm{C}$ alternate address select
7	OTPSEL	DI	OTP page select (high end / low end)
8	VDLDO1	PWR	Supply voltage for LDO1
9	VDLDO1	PWR	Supply voltage for LDO1
10	LDO1	AO	LDO1 output
11	VDLDO2	PWR	Supply voltage for LDO2
Datasheet			Revision 2.6 04-Aug-2017

High Efficiency 3-Channel Buck Converter with dual LDO

Pin No.	Pin Name	Type (Table 2)	Description
12	LDO2	AO	LDO2 output
13	FB3	AI	Feedback node Buck3
14	VPP	PWR	OTP programming voltage input Connect to VSS in application
15	nIRQ	DO	Interrupt line towards the host
16	VDDIO	PWR	Supply voltage for I/O rail
17	STBY	DI	System standby signal
18	SWC	DIO	Connect to VSS for normal application
19	LX3	AO	Switching node for Buck3
20	LX1B	AO	Switching node for Buck1 phase 2
21	LX1A	AO	Switching node for Buck1 phase 1
22	LX2	AO	Switching node for Buck2
23	DVDD	AIO	Core digital supply voltage
24	FB2	PWR	Feedback node Buck2
25	VDD	AI	Supply voltage
26	FB1	AO	Voltage reference decouple
27	VREF	GND	Quiet ground
28	VSS	DIO	I2C data
29	SDA	DI	I2C clock
30	SCL		

Table 2: Pin Type Definition

Pin Type	Description	Pin Type	Description
DI	Digital input	AI	Analog input
DO	Digital output	AO	Analog output
DIO	Digital input/output	AIO	Analog input/output
DIOD	Digital input/output open drain	BP	Back drive protection
PU	Pull-up resistor (fixed)	SPU	Switchable pull-up resistor
PD	Pull-down resistor (fixed)	SPD	Switchable pull-down resistor
PWR	Power	GND	Ground

High Efficiency 3-Channel Buck Converter with dual LDO

5 Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Parameter	Description	Conditions	Min	Max	Unit
$\mathrm{T}_{\text {sTG }}$	Storage temperature		-60	+165	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {VDD }}$	Power supply input VDD, VDD1, VDD2, VDD3	STBY $=0$ and VIN ramp < 1 V/ $\mu \mathrm{s}$	-0.3	5.5	V
VVLDo2	Power supply input VLDO2		-0.3	5.5	V
VVDLDO1	Power supply input VDLDO1		-0.3	2.75	V
VDVDD	Power supply input DVDD	-0.3	5.5	V	
VLX	Power supply input LX1A, Lx1B, LX2, LX3		-0.3	5.5	V
VVREF	Power supply input VREF	-0.3	2.75	V	
VIN_MAX	Maximum input voltage ADRSEL, OTPSEL, SCL, SDA, SWC, STBY		-0.3	V VDD +	V

5.2 Recommended Operating Conditions

Table 4: Recommended Operating Conditions

Parameter	Description	Conditions	Min	Typ	Max	Unit
T_{A}	Ambient temperature		-40		+85	${ }^{\circ} \mathrm{C}$
VVDD	Power supply input VDD, VDD1, VDD2, VDD3		4.75		5.25	V
VVLDo2	Power supply input VDLDO2			3.5	3.6	V
VDDIO	Power supply input VDDIO			3.4	V	
VVDLDO1	Power supply input VDLDO1			1.7	V	
VIN_MAX	Maximum input voltage ADRSEL, OTPSEL, SCL, SDA, SWC, STBY				VVDD + 0.3	V
I/O pins					V	

High Efficiency 3-Channel Buck Converter with dual LDO

5.3 ESD Ratings

Table 5: ESD Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
V $_{\text {ESD_HBM }}$	ESD protection	Human Body Model (HBM)			2	kV
VESD_CDM	ESD protection	Charge Device Model (CDM)			500	V

5.4 Electrical Characteristics

5.4.1 Digital I/O

Unless otherwise noted, the following is valid for $\mathrm{Ta}=25^{\circ} \mathrm{C}$, VDD $=5 \mathrm{~V}$. Table 6: Digital I/O Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
V_{IH}	Input high voltage ADRSEL, OTPSEL, SWC, STBY, SCL, SDA	VDDCORE mode	0.7*V ${ }^{\text {dvdD }}$		V ${ }_{\text {dio }}$	V
		VDDIO mode	$0.7 * V_{\text {dolo }}$			
VIL	Input low voltage ADRSEL, OTPSEL, SWC, STBY, SCL, SDA	VDDCORE mode	-0.3		0.3*Vdvdd	V
		VDDIO mode			$0.3 *{ }^{\text {V }}$ DIIO	
Vor	Output high voltage nIRQ, SWC	@ 1 mA	0.8*V ${ }_{\text {ddo }}$		$V_{\text {dolo }}$	V
VoL	Output low voltage nIRQ, SWC, SDA	@ 1 mA	0		$0.2^{*} \mathrm{~V}$ Ddio	V
Rpu	Pull-up resistor ADRSEL, OTPSEL			10		k Ω

5.4.2 I ${ }^{2} \mathrm{C}$ Interface

Unless otherwise noted, the following is valid for $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}$.

Table 7: I $^{2} \mathrm{C}$ Interface Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max
tBuF	Bus free time from STOP to START condition		0.5		
CB	Bus line capacitive load				150
Standard/Fast/Fast+ Mode	pF				
fCLK	Clock frequency at pin CLK		1		1000
tsu_STA	START condition set-up time		0.26		
th_STA	START condition hold time		0.26		

High Efficiency 3-Channel Buck Converter with dual LDO

Parameter	Description	Conditions	Min	Typ	Max	Unit
tw_CL	Clock LOW duration		0.5			$\mu \mathrm{s}$
tw_CH	Clock HIGH duration		0.26			$\mu \mathrm{s}$
t_{R}	Rise time at pin clk and data	Input requirement			1000	ns
tF	Fall time at pin clk and data	Input requirement			300	ns
tsu_D	Data set-up time		50			ns
th_D	Data hold time		0			ns

High Speed Mode

fCLK_HS	Clock frequency at pin CLK	1		3400	kHz
tsu_STA_Hs	START condition set-up time		160		
tH_STA_Hs	START condition hold time		160		
tw_CL_Hs	Clock LOW duration		160		
tw_CH_Hs	Clock HIGH duration		60		
tR_Hs	Rise time at pin clk and data	Input requirement			160
tf_Hs	Fall time at pin clk and data	Input requirement			160
tsu_D_Hs	Data set-up time		10		
tH_D_Hs	Data hold time		0		
tsu_sTo_Hs	STOP condition set-up time		160		ns

Figure 3: I2C Interface Timing

High Efficiency 3-Channel Buck Converter with dual LDO

5.4.3 Buck Converter Electrical Characteristics

5.4.3.1 Buck1 Electrical Characteristics

Unless otherwise noted, the following is valid for $\mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{VDD}=5 \mathrm{~V}$, Cout $=2 \times 47 \mu \mathrm{~F}$, local sensing

Parameter	Description	Conditions	Min	Typ	Max	Unit
VDD	Input voltage		4.75		5.25	V
COUT	Output Capacitance	(including voltage and temperature coefficient)	60	$\begin{gathered} 100 \\ (2 \times 47) \end{gathered}$	400	$\mu \mathrm{F}$
Lbuck 1	Inductor value	Including current \& temperature dependence	-30\%	1.5	+30\%	$\mu \mathrm{H}$
VBUCK1	Output Voltage	$\begin{aligned} & \hline \text { IOUT }=\mathrm{IMAX} \\ & \text { Step }=6.25 \mathrm{mV} \end{aligned}$	0.9		1.3	V
VBUCK1_Acc	Output Voltage Accuracy	$\begin{aligned} & \text { VOUT }=1 \mathrm{~V} \\ & \text { IOUT }=1 / 21 \mathrm{IMAX} \end{aligned}$	-3		3	\%
VBUCK1_RPL	Output Voltage Ripple	IOUT = IMAX			30	mVpp
VTRLoad	Load regulation transient	$\begin{aligned} & \text { IOUT }=1 / 4 \mathrm{Imax} \text { to } \mathrm{Imax} \\ & \text { Tr } \mathrm{rtf}=25 \mathrm{Sec} \\ & \text { VOUT }=1 \mathrm{~V}, \mathrm{~L}=1.5 \mu \mathrm{H} \\ & \hline \end{aligned}$		25		mV
VTR ${ }_{\text {line }}$	Line regulation transient	$\begin{aligned} & \hline \mathrm{VDD}=4.75 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{Tr}=\mathrm{Tf}=10 \mathrm{uSec} \\ & \mathrm{IOUT}=8500 \mathrm{~mA} \text { (Dual) } \\ & \text { IOUT }=5000 \mathrm{~mA} \text { (Single) } \\ & \hline \end{aligned}$		10		mV
$\mathrm{Imax}_{\text {max }}$	Output Current	Single Phase Dual Phase	$\begin{aligned} & 5000 \\ & 9500 \end{aligned}$			mA
ІІıм	Peak Inductor Current Limit (programmable)	BUCK1_SYNC_ILIM=1111	-20\%	7040	+20\%	$\begin{gathered} \mathrm{mA} / \\ \text { phase } \end{gathered}$
IQFF	Quiescent current in OFF mode				15	$\mu \mathrm{A}$
F	Switching frequency			1.0		MHz
D	Switching duty cycle		10		95	\%
Rpd	Output Pull Down Resistor	Can be switched off via BUCK1_PD_DIS			200	Ω
RpMOS	On resistance pMOS	Per phase include pin and routing			0.062	Ω
RnMOS	On resistance nMOS	Per phase include pin and routing			0.025	Ω

5.4.3.2 Buck2 Electrical Characteristics

Unless otherwise noted, the following is valid for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Cout $=2 \times 47 \mu \mathrm{~F}$, local sensing.

Table 8: Buck2 Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
$V_{D D}$	Input voltage		4.75		5.25	V
Cout	Output capacitance	Including voltage and temperature coefficient	60	100 (2×47)	400	$\mu \mathrm{~F}$

High Efficiency 3-Channel Buck Converter with dual LDO

Parameter	Description	Conditions	Min	Typ	Max	Unit
Lвuck2	Inductor value	Including current and temperature dependence	-30\%	1.5	+30\%	$\mu \mathrm{H}$
V Buck2	Output voltage	$\begin{aligned} & \text { lout }=I_{\text {max }} \\ & \text { Step }=6.25 \mathrm{mV} \end{aligned}$	1.0		2.19	V
		$\begin{aligned} & \text { lout }=I_{\mathrm{MAX}} \\ & \text { Step } 12.5 \mathrm{mV} \end{aligned}$	2.2		2.5	V
VBUCK2_ACC	Output voltage accuracy	lout $=1 / 2 \mathrm{lmax}$	-3		3	\%
VBUCK2_RPL	Output voltage ripple	$\begin{aligned} & \text { IOUT }=I_{\text {MAX }} \\ & \text { VOUT }=1.0 \mathrm{~V} \end{aligned}$			30	mVpp
$V_{\text {trload }}$	Load regulation transient	$\begin{aligned} & \text { lout }=1 / 4 \mathrm{I}_{\mathrm{max}} \text { to } \mathrm{I}_{\mathrm{max}} \\ & \mathrm{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \mathrm{~V} \text { OUt }=1 \mathrm{~V} \\ & \mathrm{~L}=1.5 \mu \mathrm{H} \end{aligned}$		25		mV
$V_{\text {trline }}$	Line regulation transient	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \text { lout }=2000 \mathrm{~mA} \end{aligned}$		10		mV
$\mathrm{Imax}^{\text {a }}$	Output current		2000			mA
ILIm	Peak Inductor Current Limit (programmable)	Buck2_sync_ilim = 11	-20\%	4189	+20\%	mA
lafF	Quiescent current in OFF mode				2	$\mu \mathrm{A}$
F	Switching frequency			1		MHz
D	Switching duty cycle		10		95	\%
RPD	Output pull-down resistor	Can be switched off via BUCK2_PD_DIS			200	Ω
Rpmos	On resistance PMOS	Include pin and routing			0.125	Ω
Rnmos	On resistance NMOS	Include pin and routing			0.050	Ω

5.4.3.3 Buck3 Electrical Characteristics

Unless otherwise noted, the following is valid for $T_{A}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Cout $=2 \times 47 \mu \mathrm{~F}$, local sensing.

Table 9: Buck3 Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
$V_{D D}$	Input voltage		4.75		5.25	V
Cout	Output capacitance	Including voltage and temperature coefficient	60	$\begin{gathered} 100 \\ (2 \times 47) \end{gathered}$	400	$\mu \mathrm{F}$
Lbuck3	Inductor value	Including current and temperature dependence	-30\%	1.5	+30\%	$\mu \mathrm{H}$
V ${ }_{\text {buck }}$	Output voltage	$\begin{aligned} & \text { lout }=I_{\text {max }} \\ & \text { Step } 6.25 \mathrm{mV} \end{aligned}$	1.3		2.19	V
		$\begin{aligned} & \text { lout = lmax } \\ & \text { Step } 12.5 \mathrm{mV} \end{aligned}$	2.2		3.4	V
Vвискз_ACC	Output voltage accuracy	$\begin{aligned} & l_{\text {lout }}=1 / 2 I_{\text {MAX }} \text { note: } V_{\text {BUCK }}=< \\ & 2.5 \mathrm{~V} \end{aligned}$	-3		3	\%

High Efficiency 3-Channel Buck Converter with dual LDO

Parameter	Description	Conditions	Min	Typ	Max	Unit
VBUCK1_RPL	Output voltage ripple	$\begin{aligned} & \text { lout }=I_{\text {MAX }} \\ & \text { Vout }=1.0 \mathrm{~V} \end{aligned}$			30	mV
Vtrload	Load regulation transient	$\begin{aligned} & \text { lout }=1 / 4 \operatorname{lmax} \text { to } \operatorname{Imax} \\ & \mathrm{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \text { Vout }=1 \mathrm{~V} \\ & \mathrm{~L}=1.5 \mu \mathrm{~h} \end{aligned}$		10		mV
$V_{\text {trline }}$	Line regulation transient	$\begin{aligned} & \mathrm{V} \mathrm{DD}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \text { lout }=2000 \mathrm{~mA} \end{aligned}$	2000			mA
$I_{\text {max }}$	Output current		250			mA
lıim	Peak Inductor Current Limit (programmable)	Buck2_sync_ilim = 11	-20 \%	4189	+20 \%	mA
IafF	Quiescent current in OFF mode				2	$\mu \mathrm{A}$
F	Switching frequency			1		MHz
D	Switching duty cycle		10		95	\%
RpD	Output pull-down resistor	Can be switched off via BUCK2_PD_DIS			200	Ω
Rpmos	On resistance PMOS	Include pin and routing			0.125	Ω
Rnmos	On resistance NMOS	Include pin and routing			0.05	Ω

5.5 LDO Electrical Characteristics

5.5.1 LDO1

Unless otherwise noted, the following is valid for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{VDLDO1}=1.5 \mathrm{~V}$, Cout $=2.2 \mu \mathrm{~F}$, local sensing.

Table 10: LDO1 Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
VDLDO1	Input voltage Note 1			1.5	2.2	V
VLDO1	Output voltage	lout $=1$ max	1		1.25	V
V LDO1_ACC	Output voltage accuracy	lout $=1 / 2 l_{\text {max }}$	-3		+3	\%
Cout	Output capacitance	Including voltage and temperature coefficients		2.2		$\mu \mathrm{F}$
$I_{\text {max }}$	Maximum output current	$\begin{aligned} & \text { Vout }=1.05 \mathrm{~V} \\ & \text { V out }=1.2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 400 \\ & 300 \end{aligned}$	mA
Ishort	Short circuit current		500			mA
Vdropout	Dropout voltage	lout = Imax			200	mV
Vsline	Static line regulation	$\begin{aligned} & \text { VDLDO1 = } 1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \text { lout }^{2} I_{\text {max }} \end{aligned}$		5	20	mV
Vsload	Static load regulation	lout $=1 \mathrm{~mA}$ to $\mathrm{Imax}^{\text {a }}$		5	20	mV

High Efficiency 3-Channel Buck Converter with dual LDO

Parameter	Description	Conditions	Min	Typ	Max	Unit
$V_{\text {trline }}$	Line transient response	$\begin{aligned} & \text { VDLDO1 }=1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \mathrm{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \text { lout }=l_{\text {max }} \end{aligned}$		5		mV
$V_{\text {trload }}$	Load transient response	$\begin{aligned} & \text { VDLDO1 }=1.5 \mathrm{~V} \\ & \mathrm{tr}=\mathrm{tf}=1 \mu \mathrm{~s} \\ & \text { lout }=1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{MAX}} \end{aligned}$		25		mV
PSRR		$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V} \\ & \text { lout }=1 / 2 \mathrm{I}_{\text {MAX }} \end{aligned}$	50	60		dB
N	Output noise	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\ & \text { VDLDO1 }=1.5 \mathrm{~V} \\ & \text { lout }^{2} 5 \mathrm{~mA} \text { to } \mathrm{I}_{\text {MAX }} \end{aligned}$		80		$\mu \mathrm{Vrms}$
Roff	Output Pull down resistor	Can be switched off via LDO1a_PD_DIS		100		Ω

Note 1 1.2 V output voltage is not supported below VDLDO1 $=1.4 \mathrm{~V}$ due to drop out voltage limitation.

5.5.2 LDO2

Unless otherwise noted, the following is valid for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {dLoo }}=3.5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}$, local sensing.

Table 11: LDO2 Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
Voldoz	Input voltage			3.5	3.6	V
VLDO2	Output voltage	Iout $=1$ max		1.8	3.3	V
VLDO2_ACC	Output voltage accuracy	Iout $=1 / 2 \mathrm{Imax}^{\text {a }}$	-3		+3	\%
Cout	Output capacitance	Including voltage and temperature coefficients		1		$\mu \mathrm{F}$
$I_{\text {max }}$	Maximum output current				250	mA
ISHORT	Short circuit current		300			mA
Voropout	Dropout voltage	Iout $=1$ max			1.2	V
Vsline	Static line regulation	$\begin{aligned} & \text { VDLDO2 }=3.4 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \text { Iout }=I_{\text {MAX }} \end{aligned}$		5	20	mV
Vsload	Static load regulation	lout $=1 \mathrm{~mA}$ to $\mathrm{Imax}^{\text {a }}$		5	20	mV
$V_{\text {trline }}$	Line transient response	$\begin{aligned} & \text { VDLDO1 }=1.4 \mathrm{~V} \text { to } 1.6 \mathrm{~V} \\ & \operatorname{tr}=\mathrm{tf}=10 \mu \mathrm{~s} \\ & \text { lout }=\operatorname{lmax} \end{aligned}$		5	20	mV
$\mathrm{V}_{\text {trload }}$	Load transient response	$\begin{aligned} & \text { VDLDO1 = } 1.5 \mathrm{~V} \\ & \mathrm{tr}=\mathrm{tf}=1 \mu \mathrm{~s} \\ & \text { lout }=1 \mathrm{~mA} \text { to } \mathrm{Imax}^{2} \end{aligned}$		25	50	mV
PSRR		$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V} \\ & \text { lout }^{2}=1 / 2 \mathrm{I}_{\mathrm{MAX}} \end{aligned}$	50	60		dB

High Efficiency 3-Channel Buck Converter with dual LDO

Parameter	Description	Conditions	Min	Typ	Max	Unit
N	Output noise	$\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz VLDO2 $=3.5 \mathrm{~V}$ lout $=5 \mathrm{~mA}$ to ImAX	80		$\mu \mathrm{Vrms}$	
Roff	Output pull-down resistor	Can be switched off via LDO2_PD_DIS		100		Ω

5.5.3 Core LDO Electrical Characteristics

Unless otherwise noted, the following is valid for $T_{A}=25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Cout $=1 \mu \mathrm{~F}$, local sensing.
Table 12: Core LDO Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
VDVDD	Input voltage	lout $=0 \mathrm{~mA}$ to Imax	2.45	2.5	2.55	V
Cout	Output capacitance	Including voltage and temperature coefficients		1		$\mu \mathrm{~F}$
$I_{\text {max }}$	Maximum output current				4	mA

5.6 Reference Voltage and Bias Current Generation

Unless otherwise noted, the following is valid for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Cout $=0.1 \mu \mathrm{~F}$, local sensing.
Table 13: Reference Voltage and Bias Current Generation Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
$V_{\text {REF }}$	Reference Voltage		-1%	1.2	$+1 \%$	V
$T_{\text {REF }}$	Reference Temperature Coefficient				100	$\mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$
	Decoupling Capacitor			0.1		$\mu \mathrm{~F}$

5.7 Supply Monitoring Electrical Characteristics

Table 14: Supply Monitoring Electrical Characteristics

Parameter	Description	Conditions	Min	Typ	Max	Unit
VDD_FAULT	VDD fault			4.5		V
VDDI__FAULT	VDDIO fault			2.4		V
Tovr	Critical temperature			140	155	${ }^{\circ} \mathrm{C}$
	Temperature hysteresis			25		${ }^{\circ} \mathrm{C}$

High Efficiency 3-Channel Buck Converter with dual LDO

5.8 Current Consumption

The 2-layer PCB layout was secured with 2 oz copper on the bottom layer of the PCB. The top layer only consisted of traces for signal routing.

The 4-layer PCB layout was also secured with 2 oz copper in the middle (ground) layer. The top layer only consisted of traces for signal routing.

The table below shows the results of several thermal experiments conducted with the PV88090. The best thermal performance can be achieved with more copper area for heat dissipation and increased thermal vias.

5.8.1 Power Use Case

Package 30-pin FC-MQFN 4.5x7mm
Board technology
High power
Low power
PCB FR4 with 2 Oz Copper Thickness
4-layer 240 mm * 200 mm

Ambient temperature $65^{\circ} \mathrm{C}$

Table 15: Power Dissipation

			High Power Dissipation		Low Power Dissipation	
Block	Function	Voltage (V)	TYPE1	TYPE2	TYPE 1	TYPE 2
Buck1	CORE	1, 1.2	$8500(\mathrm{~mA})$ (2-phase)	$\begin{gathered} 9500(\mathrm{~mA}) \\ (2-\text { phase }) \end{gathered}$	$\begin{aligned} & 5000(\mathrm{~mA}) \\ & \text { (1-phase) } \end{aligned}$	5000 (mA) (1-phase)
Buck2	AUX	$\begin{gathered} 1.0,1.2,1.8 \\ 2.5 \end{gathered}$	$\begin{aligned} & 2000 \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 1600 \\ & (\mathrm{~mA}) \end{aligned}$	0	$\begin{aligned} & 2000 \\ & (\mathrm{~mA}) \end{aligned}$
Buck3	MEMORY	1.5	$\begin{gathered} \hline 2000+ \\ \text { LDO1 } \\ (\mathrm{mA}) \\ \hline \end{gathered}$	$\begin{gathered} 1600+ \\ \text { LDO1 } \\ (\mathrm{mA}) \text { Note } 2 \end{gathered}$	$\begin{aligned} & 1000 \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & 1000 \\ & (\mathrm{~mA}) \end{aligned}$
LDO2	EMMC	1.8	0	0	250(mA)	250(mA)
LDO1	ANA1V05	1.2, 1.05	400 ((mA))	400 ((mA))	0	0

Note 2 Increased Buck3 current from 1600 to 2000 (+ LDO1) in use case High Power Dissipation B exceeds the power budget based on the existing power estimate and package thermal data. To be reviewed based on thermal performance of revised package.

High Efficiency 3-Channel Buck Converter with dual LDO

6 Functional Description

6.1 Control Signals

6.1.1 OTP Bank Select - OTPSEL

The OTPSEL pin is an input with pull-up which allows selection between two OTP start-up conditions. With this configurable start-up condition, the PV88090 is compatible with two generations of system on a chip (SOC) with different and mutually exclusive start-up conditions.
After the initial boot with the selected OTP settings, the SOC can customize the PV88090 configuration as required.
The OTPSEL input and pull-up are enabled and latched before each OTP read. The input and pull-up are then disabled to save power.
The OTPSEL pin should be tied to VSS to select start-up state 0 , and leave no connection to select start-up state 1.

6.1.2 Address Select - ADRSEL

The ADRSEL pin is an input with pull-up which modifies the $I^{2} \mathrm{C}$ address. Bit 2 of the $I^{2} \mathrm{C}$ address takes the value of the ADRSEL pin.

6.1.3 Standby Pin - STBY

The STBY pin controls the power-up sequence of a system containing PV88090. If STBY is set to low, the system follows through the power-up sequence to active mode. If STBY is set to high, the system follows through the power-down sequence to standby mode. STBY should be low at powerup so that the system boots when power is applied.

6.1.4 Programming Voltage Input - VPP

The VPP pin must be connected to VSS on the application board.

6.1.5 Single Wire Communication I/O - SWC

The SWC I/O pin is a single wire communication interface used by the PV88090 to communicate the timing of the power-up and power-down sequences and to handle fault conditions.
Normal communication on the interface is a short low pulse. An error condition is indicated by a long pulse. Pulse widths are selectable.
The single wire interface can be disabled (swi_en=0). In this case the sequencing will not wait for a response from the other chip.

6.1.6 Interrupt Request - nIRQ

The nIRQ is an active low output signal which indicates that an interrupt causing event has occurred and status information is available in the related registers. Such information can be temperature, voltage, and over-current fault conditions.
When an event bit is set, the nIRQ signal is asserted (unless masked by a bit in the IRQ mask register). The nIRQ will not be released until the event registers have been cleared by writing a 1 to the related register for the bit to be cleared. The event registers should be written in page/repeated mode because the nIRQ will not be cleared until all registers with an asserted event have been reset. New events that occur during register writing will be held until all the event registers have been written. Then they are passed to the event register, ensuring the SOC does not miss them.

High Efficiency 3-Channel Buck Converter with dual LDO

6.1.7 $\quad I^{2} \mathrm{C}$ Interface

The $\mathrm{I}^{2} \mathrm{C}$ interface provides access to control and status registers. The interface supports operations compatible to standard, fast, fast-plus, and high-speed mode of the $\mathrm{I}^{2} \mathrm{C}$ bus specification.

Communication on the $I^{2} \mathrm{C}$ bus is always between two devices, one acting as the master and the other as the slave. PV88090 will only operate as a slave. The $\mathrm{I}^{2} \mathrm{C}$ interface has direct access to two pages of the PV88090 register map (up to 256 addresses).

SCL carries the $I^{2} \mathrm{C}$ clock and SDA carries the bi-directional data. The ${ }^{2} \mathrm{C}$ interface is open drain supporting multiple devices on a single line. The bus lines have to be pulled high by external pull-up resistors ($2 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$). The attached devices only drive the bus lines low by connecting them to ground. As a result, two devices cannot conflict if they drive the bus simultaneously. In standard/fast mode the highest frequency of the bus is 400 kHz . The exact frequency can be determined by the application and it does not have any relation to the PV88090 internal clock signals. PV88090 will synchronize with the host clock speed within the described limitations and will not initiate any clock arbitration or slow down.

If SDA is stuck the bus clears after receiving 9 clock pulses. Operation in high speed mode at 3.4 MHz requires a minimum 1.8 V interface supply voltage and a mode change in order to enable spike suppression and slope control characteristics compatible to the $I^{2} \mathrm{C}$ specification.

6.1.8 I²CProtocol

All data is transmitted across the $\mathrm{I}^{2} \mathrm{C}$ bus in 8 bit groups. To send a bit the SDA line is driven to the intended state while the SCL is low. Once the SDA has settled, the SCL line is brought high and then low. This pulse on SCL clocks the SDA bit into the receiver's shift register.

A two-byte serial protocol is used containing one byte for address and one byte data. Data and address transfer is transmitted MSB first for both read and write operations. All transmission begins with the START condition from the master during which the bus is in IDLE state (the bus is free). It is initiated by a high-to-low transition on the SDA line while the SCL is in the high state. A STOP condition is indicated by a low-to-high transition on the SDA line while the SCL is in the high state. The START and STOP conditions are illustrated in Figure 4.

Figure 4: Timing of the START and STOP conditions
The $I^{2} \mathrm{C}$ bus is monitored by PV88090 for a valid slave address whenever the interface is enabled. It responds immediately when it receives its own slave address. The acknowledge is achieved by pulling the SDA line low during the following clock cycle: white blocks marked with A in the following figures.

The protocol for a register write from master to slave consists of a START condition, a slave address, a read/write-bit, 8-bit address, 8-bit data, and a STOP condition. PV88090 responds to all bytes with an ACK.

Figure 5: Byte Write Operation

High Efficiency 3-Channel Buck Converter with dual LDO

When the host reads data from a register it first has to write access PV88090 with the target register address and then read access PV88090 with a repeated START, or alternatively a second START condition. After receiving the data the host sends NACK and terminates the transmission with a STOP condition.

$\begin{array}{ll}\mathrm{S}=\text { START condition } & \mathrm{A}^{*}=\text { Acknowledge (low) } \\ \mathrm{Sr}=\text { Repeated START condition } & \mathrm{A}^{*}=\text { No Acknowledge }\end{array}$
$\mathrm{P}=\mathrm{STOP}$ condition $\quad \mathrm{W}=\mathrm{Write}$ (low)

$$
R=\text { Read (high) }
$$

Figure 6: Examples of Byte Read Operations
Consecutive (page) read-out mode is initiated from the master by sending an ACK instead of NACK after receiving a byte, see Figure 7. The $I^{2} \mathrm{C}$ control block then increments the address pointer to the next register address and sends the data to the master. This enables an unlimited read of data bytes until the master sends a NACK directly after receiving the data, followed by a subsequent STOP condition. If a non-existent $I^{2} \mathrm{C}$ address is read-out then the PV88090 will return code zero.

S	SLAVEadr	W	A	REGadr	A		P
	7-bits	1-bit 8-bits					

$$
\begin{aligned}
& \square \text { Master to Slave } \square \\
& \mathrm{S}=\text { START condition } \\
& \mathrm{Sr}=\text { Repeat START condition } \\
& \mathrm{P}=\mathrm{STOP} \text { condition }
\end{aligned}
$$ Slave to Master

$$
\begin{array}{ll}
A^{*}=\text { Acknowledge (low) } \\
A^{*}=\text { No Acknowledge } & \\
W=\text { Write (low) } & R=\text { Read (high) }
\end{array}
$$

Figure 7: $I^{2} \mathrm{C}$ Page Read
The slave address after the repeated START condition must be the same as the previous slave address.

Consecutive (page) write mode is supported if the master sends several data bytes following a slave register address. The $I^{2} \mathrm{C}$ control block then increments the address pointer to the next ${ }^{2} \mathrm{C}$ address, stores the received data, and sends an ACK until the master sends a STOP condition. The page write mode is illustrated in Figure 8.

Figure 8: ${ }^{2}{ }^{2} \mathrm{C}$ Page Write

High Efficiency 3-Channel Buck Converter with dual LDO

Via control WRITE_MODE a repeated write mode can be enabled. In this mode, the master can execute back-to-back write operations to non-consecutive addresses. This is achieved by transmitting register address and data pairs. The data will be stored in the address specified by preceding byte. The repeated write mode is illustrated in Figure 9.

Figure 9: $\mathrm{I}^{2} \mathrm{C}$ Repeated Write
If a new START or STOP condition occurs within a message, the bus will return to IDLE-mode.

6.1.9 Dynamic Voltage Control

All buck converters can be controlled by DVC. The buck converters feature a voltage ramping feature that enables smooth transition from one voltage setting to another.

All output voltages can be controlled with SW via the $\mathrm{I}^{2} \mathrm{C}$ interface (VBUCK $<x>$). The $\mathrm{I}^{2} \mathrm{C}$ interface is operational when the device is in active mode.

6.2 LDOs

All LDOs employ Dialog Semiconductor's Smart Mirror dynamic biasing technology, see Figure 10, the illustrator which maintains high performance over a wide range of operating conditions and a power saving mode (sleep mode) to minimize the quiescent current during very low output current. The circuit technique offers significantly higher gain bandwidth performance than conventional designs, enabling higher power supply rejection performance at higher frequencies. PSRR is maintained across the full operating current range however quiescent current consumption is scaled to demand providing improved efficiency when current demand is low.

Figure 10: Smart Mirror ${ }^{\text {TM }}$ Voltage Regulator
LDO1 provides the analog 1.05 V supply voltage (or 1.2 V depending on the system). To limit power dissipation the input voltage to LDO1 is the DDR voltage, typically 1.5 V . In standby mode the DDR voltage availability is not guaranteed. Therefore, the input voltage to the LDO switches to VDLDO2 during standby. The current in standby mode is reduced to 100 mA . During standby mode the output stage from VDLDO1 must be disabled such that reverse current does not flow from VDLDO2 to VDLDO1 (requires bulk switch on P -channel).

High Efficiency 3-Channel Buck Converter with dual LDO

6.3 Buck Converters

DC-DC converters Buck1 to Buck3 are high efficiency synchronous step-down regulators operating at 1 MHz frequency and providing individual output voltages with $\pm 3 \%$ accuracy. The default output voltages of these regulators are loaded from OTP and can be programmed in 6.25 mV or 12.5 mV steps. The selectable switching frequency is high enough to allow the use of a $1.5 \mu \mathrm{H}$ inductor. The operating mode of the buck converter is selected in the buck control register bits. The Buck3 converter can be forced to operate in either synchronous mode (PWM) or sleep mode (PFM). Additionally, the Buck3 converter has an automatic mode where it will switch between PWM and PFM modes depending on the load current. In PFM mode an internal zero crossing comparator is used to time the NFET turn-off, so an external Schottky diode is not needed. The quiescent current for all these DC-DC converters in PFM mode is $25 \mu \mathrm{~A}$. The DC-DC single-phase converters feature a programmable pull-down resistors, which can be either enabled or disabled when the buck converted is powered down.Bucks 1 and 2 operate in PWM only. Buck3 operates in PWM in active mode, in PFM, if enabled, in standby mode, and also supports auto mode.

Table 16: Buck Converter Summary

Block	Vout (V)	Iout (mA)	External Components	Control
Buck1 Dual Phase Single Phase	0.9 to 1.3	PWM: 9500 PWM: 5000	$\begin{gathered} \mathrm{L}=1.5 \mu \mathrm{H} \\ \text { Cout }>60 \mu \mathrm{~F} \end{gathered}$	$1^{2} \mathrm{C}$
Buck2	1.0 to 2.5	PWM: 2000	$\begin{gathered} \mathrm{L}=1.5 \mu \mathrm{H} \\ \text { Cout }>60 \mu \mathrm{~F} \end{gathered}$	$1^{2} \mathrm{C}$
Buck3	1.3 to 3.4	PWM: 2000	$\begin{gathered} \mathrm{L}=1.5 \mu \mathrm{H} \\ \text { Cout }>60 \mu \mathrm{~F} \end{gathered}$	$1^{2} \mathrm{C}$

6.3.1 Buck1

Buck1 has two switch banks. It can be configured as a one-phase buck using one of the switch banks (requires one external inductor), or as a two-phase buck using both switch banks (requires two external inductors, one driven by each switch bank).

The operating mode selection is determined by the system power calculation and the bill of materials (BOM). The power dissipation of the two-phase buck is reduced compared to the one-phase as the on resistance of the pass switches is halved.

For a high-end product (for example 9.5 A) it is expected to operate in two-phase.
For a low-end product (for example 5 A) there are two options:

- operate in one-phase mode and require only one inductor dissipating more power in Buck1
- operate in two-phase mode and require an extra inductor but save on power in Buck1, use the saved power enhance Buck2's bandwidth

6.3.2 Buck2

Buck2 is a single-phase buck converter with a configurable output voltage (1.0 V to 2.5 V), 2 A maximum current (typically). The maximum current is dependent on the system power dissipation calculation.

Buck2 operates in forced PWM mode when enabled.

High Efficiency 3-Channel Buck Converter with dual LDO

6.3.3 Buck3

Buck3 supplies the power to the DDR memory and to the LDO1. During normal mode it is always enabled and will run in forced PWM mode. During standby mode Buck3 may be enabled to supply the DDR memory standby current. In this mode it should operate in a low power discontinuous mode.

The Buck3 converter has an automatic mode where it will switch between PWM and PFM modes depending on the load current.

6.4 Power Modes

The power modes are illustrated in Table 17.

6.4.1 Normal Mode - Default Power-Up State

PV88090 enters the default power-up state at start-up when VDD exceeds the POR threshold.
In normal mode Bucks 1 and 3 (Core, Memory) and LDOs 1 and 2 (ANACORE, EMMC) are enabled.
Buck2 is disabled by default but can be enabled by $\mathrm{I}^{2} \mathrm{C}$ control.
After start-up the SoC will either enable standby mode, or configure the normal operation mode with the $I^{2} \mathrm{C}$ interface.

6.4.2 Normal Mode

After the first start-up the SOC can configure which blocks are active in normal mode with the $\mathrm{I}^{2} \mathrm{C}$ interface.

6.4.3 Standby Mode

Standby mode is entered when the STBY input pin is driven to the LDO1 voltage. In standby mode the device enters a low power state.

The memory supply from Buck3 is optionally maintained depending on OTP/I ${ }^{2} \mathrm{C}$ setting.
When the STBY pin is driven to low the system will restart in normal mode.
Table 17: Function Block of Mode Operation

Block	Function	Normal Mode	Standby Mode
Buck1	CORE	Enabled OTP configurable: - Two-phase (high end), onephase (low end) - Voltage $=1.0 \mathrm{~V}$ (high end)/1.2 V (low end)	Off
Buck2	I/O 3.3V	${ }^{2}{ }^{2} \mathrm{C}$ (default off) Voltage $\mathrm{I}^{2} \mathrm{C}$ (default 1.0 V)	
Buck3	MEMORY	Enabled Voltage $\mathrm{I}^{2} \mathrm{C}$ (default 1.5 V)	${ }^{2}{ }^{2} \mathrm{C}$ (default off) Voltage $\mathrm{I}^{2} \mathrm{C}$ (default 1.5 V)
LDO1	1.5 V	Enabled (high end)/off (low end) Voltage OTP/I ${ }^{2} \mathrm{C}$ (default 1.05 V)	$1^{2} \mathrm{C}$ enabled (high end)/off (low end) (default) Voltage OTP/I2C (default 1.05 V)
LDO2	EMMC	OTP $/{ }^{2} \mathrm{C}$ enabled (high end)/off (low end)	Off
Serial Control	$1^{2} \mathrm{C}$	Enabled	Enabled
Enable Control	STBY PIN	Enabled	Enabled

High Efficiency 3-Channel Buck Converter with dual LDO

Block	Function	Normal Mode	Standby Mode
Interrupt	nIRQ PIN	Enabled	Enabled
Reference		Enabled	Enabled
Trimmed OSC		Enabled	Enabled
Int Dig Supply		Enabled	Enabled

6.4.4 Power Supply Sequencer

The PV88090 start-up is supplied controlled by a sequencer that contains a programmable step timer, a variable ID array of time slot pointers, and three predefined pointers (SYSTEM_END, POWER_END, and MAX_COUNT). The sequencer is able to control up to six IDs (three buck converters, three LDOs), which can be grouped in three power domains. The power domains are configurable and their limits are defined by the location pointers SYSTEM_END, POWER_END, and MAX_COUNT.
The lowest level power domain SYSTEM starts at step 1 and ends at the step that is defined by the location pointer SYSTEM_END. The second level domain POWER starts at the successive step and ends at POWER_END. The values of pointer SYSTEM_END, POWER_END, and MAX_COUNT are predefined in OTP registers and must be configured as SYSTEM_END < POWER_END < MAX_COUNT.

The SYSTEM domain can be viewed as a basic set of supplies that are mandatory to power up the application. The second (POWER) domain includes additional supplies that are required to wake the application and put PV88090 into active mode.
Up to three buck converters and three LDOs can be assigned unique sequencer IDs. The power-up sequence is then defined by an OTP register bank that contains a series of supplies (and other features), which are pointing to a sequencer time slot. Several supplies can point to the same time slot, and thereby enable them in parallel. Time slots that have no IDs pointing towards them are dummy steps that do nothing but insert a configurable time delay. Supplies that are not pointing towards a sequencer time slot (with a step number greater than zero and less than MAX_COUNT) will not be enabled by the power sequencer and have to be controlled individually by the host (via the power manager interface).
The delay between the sequencer steps is controlled via a 4-bit, OTP-programmable, timer unit (SEQ_TIME) with a default delay of $128 \mu \mathrm{~s}$ per step (minimum $32 \mu \mathrm{~s}$ and maximum 8 ms).
Asserting control register bit SHUTDOWN forces PV88090 to power down to step 0 and then enter reset mode.

6.4.5 Boot Sequence

The SOC power-on-reset (POR) at switch on is timed from standby 3.3 V and is 100 ms . The PV88090 start-up sequence must complete within the POR.

Table 18: The Start-Up Sequence at POR

	Event	Action
	Reset mode	
1	VDD > POR	VREF START to PV88090
	Threshold and STBY = 0	
2	VDDIO good on	PV88090 loads OTP settings
	PV88090 Detects START	PV88090 starts Buck1
		PV88090 starts Buck2
		PV88090 starts Buck3
		PV88090 starts LDO1 (Analog 1.05/1.2)
		PV88090 starts LDO2 (EMMC)

High Efficiency 3-Channel Buck Converter with dual LDO

	Event	Action
3		Default normal mode
4	$\mathrm{I}^{2} \mathrm{C}$ write	Enable/disable block with $\mathrm{I}^{2} \mathrm{C}$ control

The SOC initiates wake-up from standby mode by taking STBY low. The start-up time before boot is timed by the SOC and is 100 ms . The PV88090start-up sequence must complete this time.

Table 19: Start-Up Sequence Example from Standby

	Event	Action
1	Standby mode	STBY =0
2	STBY =0	1. starts Buck1 2. starts Buck2 3. starts Buck3 or switches Buck3 to PWM mode if already active 4. PV88090starts LDO1 (analog 1.05 V/1.2 V) or switches supply from VDDLDO to Buck3 if LDO1 was active in standby. PV88090 starts LDO2 (EMMC)
3		Normal mode
4	$I^{2} \mathrm{C}$ write	Enable/disable block under IC control

Blocks can be set to active in normal mode by setting the appropriate BLOCK_EN register bit via $I^{2} \mathrm{C}$.
Table 20: Shutdown Sequence Example to Standby

	Event	Action
	Normal mode	
1	STBY =1	1. detects START signal
3	PV88090	PV880902. enters disable mode 3. disables LDO2 (EMMC) PV880904. disables LDO1 (analog 1.05 V/1.2 V)
		5. PV88090disables Buck3 or switches Buck3 to low power mode if enabled in standby.
6. PV88090disables Buck2		
7. PV88090disables Buck1		

Blocks may be set to remain active in standby mode by setting the appropriate BLOCK_STBY register bit via $\mathrm{I}^{2} \mathrm{C}$.
If the STBY bit is flipped during a power-up/-down sequence the sequence should be reversed safely. If STBY $=0$ the delay time before SOC boot must still be met.

High Efficiency 3-Channel Buck Converter with dual LDO

Figure 11: PV88090 Boot Sequence

High Efficiency 3-Channel Buck Converter with dual LDO

6.5 Monitoring and Interrupts

An interrupt is generated if the chip detects an over-current on an LDO, or a SWITCH, or an overtemperature condition, and if the interrupt mask is set for that bit.

Table 21: Functional Block Mode of Monitoring and Interrupts

	Voltage Good	Over-Current
V $_{\text {REF }}$	Start sequence status bit	N/A
DVDD Supply	Start sequence status bit	N/A
Bucks	Start sequence status bit	N/A
VDDIO	Start sequence	N/A
LDOs	Start sequence status bit	Interrupt after start-up
Over-temperature	N/A	Interrupt

6.6 Power-On-Reset

The main POR signal is directly dependent on DVDD voltage. The logic generating the POR signal is controlled by two comparators - one monitoring the upper 2.35 V (nominal) POR threshold and the other the lower 2.0 V threshold. Both comparators use node VREF as input reference which means the upper threshold is affected by the untrimmed bandgap variation.

The internal LDO is only enabled after the VREF voltage has been ramped up after a VDD supply connection. A dedicated VDD comparator monitors the VDD voltage and gates all start-up activities if it is below 2.5 V . This comparator is only active during the start-up sequence.

6.7 Reference Voltage and Bias Current Generation

The VREF voltage reference, bias current, and internally regulated DVDD (2.5 V) supply are permanently enabled after the VDD supply reaches 2.5 V . The internal bandgap circuit and the VREF buffer provide 1.2 V reference with a low ($<100 \mathrm{ppm}$) temperature coefficient. The current bias is derived from the VREF voltage across an internal trimmed resistor to provide a reference current which is scaled appropriately to provide the bias current for the blocks. The internal resistor is made up of a combination of resistor types with different temperature coefficients to keep the current flat over temperature for setting current limits.

6.8 Over-Temperature

The over-temperature circuit monitors the junction temperature. A fault condition is generated if the junction temperature exceeds the critical temperature (Tovz). The fault condition remains asserted until the temperature drops below a safe threshold.

6.9 Supply Monitoring

The 5 V VDD supply is monitored by the $V_{D D}$ fault comparator. The circuits remain in the reset state until 5 V has been established (Vddfault low). If the 5 V Vdd supply falls below the $\mathrm{V}_{\text {ddfault }}$ threshold the input supply is too low, and a fault condition is generated. The $V_{\text {DDo }}$ voltage is monitored and if it is below VDDIOFAULT the $I^{2} \mathrm{C}$ interface and the single wire communications is disabled.

High Efficiency 3-Channel Buck Converter with dual LDO

6.10 Fault Condition

A fault condition is generated by:

- An over-temperature event
- An LDO over-current event
- An under-voltage of the 5 V supply

If a fault condition is detected the chip will signal to the other chip, then follow its power-down sequence without waiting for the other chip to complete its part. At the end of the power-down sequence the chip will move to the reset state.

In the reset state the registers, apart from the fault log, will be reset and the OTP will be reloaded at start-up.

PV88090

High Efficiency 3-Channel Buck Converter with dual LDO

7 Register Definitions

7.1 Register Page Control

Status / Configuration									
Register	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS_A	0x0001	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	$\underset{P}{\text { OVER_TM }}$	VDD_FLT
STATUS_B	0x0002	Reserved	Reserved	Reserved	Reserved	Reserved	LDO1a_OK	LDO2_OK	Reserved
EVENT_A	0x0003	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	$\underset{M P}{E _O V E R _T}$	E_VDD_FLT
EVENT_B	0x0004	Reserved	Reserved	Reserved	Reserved	Reserved	$\underset{\text { AIL }}{\substack{\text { E_LDO1a_F }}}$	$\underset{\text { AIL }}{\text { E_LDO2_F }}$	Reserved
FAULT_LOG	0x0005	Reserved	Reserved	Reserved	Reserved	Reserved	$\underset{\text { LT }}{\text { VDDIO_FAU }}$	$\underset{M P}{\text { OVER_TE }}$	VDD_FAULT
IRQ_MASK_A	0x0006	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	$\underset{M P}{M _O V E R _T}$	M_VDD_FLT
IRQ_MASK_B	0x0007	Reserved	Reserved	Reserved	Reserved	$\begin{gathered} \text { M_LDO1a_ } \\ \text { FAIL } \end{gathered}$	$\underset{\text { AIL }}{M \text { LDO_F }}$	$\underset{\text { AIL }}{\mathrm{M} \text { LDO2_F }}$	Reserved
CONTROL_B	0x0009	SHUTDO WN	Reserved (Set to 0)	Reserved	$\begin{gathered} \text { I2C_SPEE } \\ \text { D } \end{gathered}$	Reserved	Reserved (Set in OTP)	Reserved	Reserved
INTERFACE	0x000C	$\mathrm{I}^{2} \mathrm{C}$ Sla	address set	OTP	Reserved	Reserved	Reserved	Reserved	Reserved
Supplies									
Register	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BUCK1_CONF0	0x0018	$\underset{N}{\text { BUCK1_E }}$	VBUCK1						
BUCK1_CONF1	0×0019	$\begin{gathered} \text { BUCK1_P } \\ \text { D_DIS } \end{gathered}$	BUCK1_SYNC_ILIM					Reserved (Set to 0x2)	
BUCK2_CONF0	0x001B	$\underset{N}{\text { BUCK2_E }}$	VBUCK2						
BUCK2_CONF1	0x001C	Reserved	Reserved (Set in OTP)		Reserved	BUCK2_SYNC_ILIM		Reserved	
BUCK3_CONF0	0x001D	$\begin{gathered} \text { BUCK3_E } \\ \mathrm{N} \end{gathered}$	VBUCK3						
BUCK3_CONF1	0x001E	Reserved	Reserved (Set in OTP)		Reserved	BUCK3_SYNC_ILIM		Reserved	
LDO2	0x001F	$\begin{gathered} \text { LDO2_PD } \\ \text { _DIS } \end{gathered}$	LDO2_EN			VLDO2			
LDO1a	0x0020	$\begin{gathered} \text { LDO1a_P } \\ \text { D_DIS } \end{gathered}$	$\underset{\mathrm{N}}{\mathrm{LDO1a} \text { _E }}$			VLDO1a			

High Efficiency 3-Channel Buck Converter with dual LDO

7.2 Status and Events

7.2.1 Register STATUS_A

Address	Name		POR	value	Status				
0x0001	STATUS_A		0x00						
7	6			5	4	3	2	1	0
Reserved	Reserved		Reserved		Reserved	Reserved	Reserved	OVER_TMP	VDD_FLT
Field name	Bits	Type	POR		Description				
OVER_TMP	[1]	RO	0x0	Indicates Over Temperature Status Over Temperature Detected					
				Value	Description				
				0x0	0:Normal				
				0x1	1:Over Temperature Fault				
VDD_FLT	[0]	RO	0x0	Indica	tes VDD below	VDD_FA	Thresho		
				Value	Description				
				0x0	0:Normal				
				0x1	1:Low VDD Fault				

7.2.2 Register STATUS_B

Address	Name [POR value				Status				
0x0002	STATUS_B		0×00						
7	6		5		4	3	2	1	0
Reserved	Reserved		Reserved		Reserved	Reserved	LDO1A_OK	LDO2_OK	Reserved
Field name	Bits	Type	POR Description						
LDO1A_OK	[2]	RO	0x0	Indicates LDO1 (VDLDO1) Fault Status					
				Value	Description				
				0x0	0:Normal				
				0x1	1:LDO2 (VDLDO1) Fault				
LDO2_OK	[1]	RO	0x0	Indica	tes LDO2 Faul	Status			
				Value	Description				
				0x0	0:Normal				
				0x1	1:LDO2 Fault				

7.2.3 Register EVENT_A

Address	Name		POR value		IRQ event					
0x0003	EVENT_A		0×00							
7	6		5		4	3	2	1	0	
Reserved	Reserved		Reserved		Reserved	Reserved	Reserved	E_OVER_TMP	E_VDD_FLT	
Field name	Bits	Type	[POR]				cription			
E_OVER_TMP [1]		RW W1CL	0x0	Event caused by Over Temperature Status (Write 1 to clear)						
		Value		Description						
		0x0		0:Normal						
		0x1		1:Event Over Temperature						
E_VDD_FL	T [0]		RW	0×0 Event caused by VDD below VDD_FAULT Threshold						

High Efficiency 3-Channel Buck Converter with dual LDO

| | W1CL | | Value Description
 0×0 O:Normal
 $0 x 1$ $1:$ Event Low VDD |
| :--- | :--- | :--- | :--- | :--- |

7.2.4 Register EVENT_B

Address	Name POR value					IRQ event					
0x0004	EVENT_B			0×00							
7	6			5		4	3	2	1	0	
Reserved	Reserved			Reserved		Reserved	Reserved	E_LDO1A_FAIL	E_LDO2_FAIL	Reserved	
Field name [Bits Type		[Bits]	Type	[POR] Description							
E_LDO1A_FAIL		[2]	RW W1CL	0x0	Event caused by LDO1 (VDLDO1) Fault Status (Write 1 to clear)						
		Value			\| Description						
		0x0			0:Normal						
		0x1			1:Event LDO1 (VDLDO1) Fault						
E_LDO2_FAIL			[1]	RW W1CL	0x0	Even (Writ	nt caused by ite 1 to clear)	22 Fault			
		Value				Description					
		0x0				0:Normal					
		0×1				1:Event LDO2 (VDLDO2) Fault					

7.2.5 Register FAULT_LOG

Address	Name		POR value						
0x0005 FAU	FAULT_LOG		0×01						
7	6		5		4	3	2	1	0
Reserved	Reserved		Reserved		Reserved	Reserved	VDDIO_FAULT	OVER_TEMP	VDD_FAULT
Field name	Bits	Type	POR						
VDDIO_FAULT		RW W1CL	0x0	Power Down by VDDIO_FAULT (Write 1 to clear)					
				Value	Description				
				0x0	0:Normal				
				0x1	1:Fault				
OVER_TEMP	[1]	RW W1CL	0x0	Power Down by Junction Over Temperature Detection (Write 1 to clear)					
				Value	Description				
				0×0	0:Normal				
				0x1	1:Fault				
VDD_FAULT	[0]	RW W1CL		Power Down by VDD Under Voltage Detection (Write 1 to clear)					
				Value	Description				
				0×0	0:Normal				
				0x1	1:Fault				

High Efficiency 3-Channel Buck Converter with dual LDO

7.2.6 Register IRQ_MASK_A

Address	Name		POR value		Typical OTP value : OTP 0x04				
0x0006 IRQ_MASK_A	RQ_MASK_A		0x00						
7	6		5		4	3	2	1	0
Reserved R	Reserved		Reserved		Reserved	Reserved	Reserved	M_OVER_TMP	M_VDD_FLT
Field name	Bits	Type	[POR]				cription		
M_OVER_TMP	[1]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	nIRQ Mask - Over Temperature Fault					
				Value	Description				
				0x0	0:nIRQ from Over Temp Event				
				0x1	1:Mask nIRQ from Over Temp Event				
M_VDD_FLT	[0]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	nIRQ_Mask - VDD below VDD_FAULT Threshold					
				Value	Description				
				0x0	0:nIRQ from VDD_FAULT Event				
				0×1	1:Mask nIRQ from VDD_FAULT Event				

7.2.7 Register IRQ_MASK_B

Address 0×0007	Name			POR value		Typical OTP value : OTP 0x00					
	IRQ_MASK_B			0×00							
7	6			5		4	3	2	1	0	
Reserved	Reserved			Reserved		Reserved	Reserved	\|M_LDO1A_FAIL	M_LDO2_FAIL	Reserved	
Field nan		Bits	Type	POR\|		Description					
M_LDO1A_FAIL		[2]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	nIRQ Mask - LDO1 (VDLDO1) Fail						
		Value			Description						
		0x0			0:nIRQ from LDO1 (VDLDO1) Fault Event						
		0x1			1:Mask nIRQ from LDO1 (VDLDO1) Fault Event						
M_LDO2_FAIL			[1]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0×0	nIRQ Mask - LDO2 Fail					
		Value				Description					
		0x0				0:nIRQ from LDO2 Fault Event					
		0x1				1:Mask nIRQ from LDO2 Fault Event					

7.2.8 Register CONTROL_B

Address 0×0009	Name		[POR value		Typical OTP value : 0x20					
	CONTROL_B		0x24							
7	6		5		4	3	2	1	0	
SHUTDOWN	Reserved		Reserved		I2C_SPEED	Reserved	Reserved	Reserved	Reserved	
Field name	Bits	Type	\|POR	Description						
SHUTDOWN	[7]	$\begin{aligned} & \text { RW } \\ & \text { RTO } \\ & \hline \end{aligned}$	0x0	If written to ' 1 ' the Sequencer powers down to RESET Mode. Automatically cleared (back to 0) before leaving RESET mode						
I2C_SPEED	[4]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	I2C DATA READ Speed						
				Value			Description			
				$\begin{aligned} & 0 \times 0 \\ & \text { (POR) } \end{aligned}$	$0: 400 \mathrm{kHz}$					
				0x1	1:1.1 MHz					

High Efficiency 3-Channel Buck Converter with dual LDO

7.2.9 Register INTERFACE

7.3 Supplies (Bucks and LDOs)

7.3.1 Register BUCK1_CONFO

Address	Name			POR value		Typical OTP value (High End) 0×40 (Low End) 0×60									
0x0018	BUCK1_CONF0			0×50											
7	6			5		4	3	2	1	0					
BUCK1_EN	VBUCK1														
Field name	Bits	\| Type		POR	\| Description										
BUCK1_EN	[7]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	Value	Description										
				0×0	0: BUCK1 Disabled										
				0x1 1	1: BUCK1 Enabled										
VBUCK1	[6:0] ${ }^{\text {R }}$	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0×50	Buck1 Target Voltage.	Target Voltage. Description										
				Value											
				0x30 0	0.9V										
													
				0×401	1 V										
				0x60 1	1.2V										
				\ldots...	...										
				0x70 1	1.3V										

7.3.2 Register BUCK1_CONF1

High Efficiency 3-Channel Buck Converter with dual LDO

		OTP		Value	Description
				0x0	0: Enable Pull Down Resistor
				0x1	1: No Pull Down Resistor in OFF Mode
BUCK1_SYNC_ILIM	[6:2]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x2	BUCK1 Peak Current Limit Peak current is DC current + Inductor Ripple	
				Value	Description
				0x0	00000: 220 mA
				0x1	00001: 440mA
				\&	...
				0x30	11110: 6820mA
				0x31	11111: 7040mA

7.3.3 Register BUCK2_CONFO

7.3.4 Register BUCK2_CONF1

Address Name POR value|Typical OTP value : 0×29

High Efficiency 3-Channel Buck Converter with dual LDO

0x001C BUCK2_CONF1			0x29						
7 - 6	6		5	4		3	2	1	0
Reserved	Reserved			Reserved		BUCK2_SYNC_IIIM		Reserved	
Field name	Bits \|Type ${ }^{\text {POR }}$			Description					
BUCK2_SYNC_ILIM	[3:2]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x2	BUCK2 Peak Current Limit Peak current is DC current + Inductor Ripple					
				Value		Description			
				0x0	00: 14				
				0x1	01: 23				
				0x2	10: 32				
				0x3	11:41				

7.3.5 Register BUCK3_CONFO

Address	Name			OR value	Typical OTP value : 0×10				
0x001D	BUCK3_CONF0			0×50					
7	6			5	4	3	2	1	0
BUCK3_EN	VBUCK3								
Field name	Bits	Type	POR	Description					
BUCK3_EN	[7]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	Value	Description				
				0×0	0: BUCK3 Disabled				
				0x1 1: BUCK3 Enabled	1: BUCK3 Enabled				
VBUCK3	[6:0]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x50	Buck Target Voltage.					
				Value	Description (BUCK3_VDAC_RANGE=0,BUCK3_VRANGE_GAIN=0)				
				0x70 1	1110000: 1.3V				
				\cdots...	..				
				0x7E 1	1111110: 1.3875V				
				0x7F 1	1111111:1.39375V				
				Value	Description (BUCK3_VDAC_RANGE=1,BUCK3_VRANGE_GAIN=0)				
				0×0	0000000: 1.4V				
				0×1 000	0000001: 1.40625V				
				\ldots...	...				
				0x10 0	0010000: 1.5V				
							
				0×30	0110000: 1.7V				

7.3.6 Register BUCK3_CONF1

High Efficiency 3-Channel Buck Converter with dual LDO

| | | | $\&$ $10: 3291 \mathrm{~mA}$
 0×30 $11: 4189 \mathrm{~mA}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

7.3.7 Register LDO2

Address	Name		POR	value	Typical OTP value : 0x0C			
0x001F	LDO2		0x00					
7	6			5	4	2	1	0
LDO2_PD_DIS	LDO2_EN		VLDO2					
Field name	Bits \|	Type	[POR					
LDO2_PD_DIS	[7]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	LDO2 Pull down disable.				
				Value	Description			
				0x0	0: Enable Pull Down Resistor			
				0×1	1: No Pull Down Resistor in OFF Mode			
LDO2_EN	[6]	$\begin{aligned} & \text { RW } \\ & \text { OTP } \end{aligned}$	0x0	LDO2 Enable				
				Value	Description			
				0x0	$0:$ LDO2 Disabled			
				0x1	1: LDO2 Enabled			
VLDO2	[5:0] P	RW	0×0	LDO2	voltage			
				Value	\| Description			
				0x0	000000: 1.20V			
				0x1	000001: 1.25V			
				0×2	000010: 1.30V			
						
				0×28	101000: 3.20V			
				0×29	101001: 3.25V			
				$0 \times 2 \mathrm{~A}$	101010: 3.30V			
				0x2B	101011: 3.35V			

7.3.8 Register LDO1a [1.5V Supply]

High Efficiency 3-Channel Buck Converter with dual LDO

| | $\quad \|$$0 \times 11$ $001111: 1.075 \mathrm{~V}$
 0×12 $001111: 1.100 \mathrm{~V}$
 0×13 $001111: 1.125 \mathrm{~V}$
 0×14 $001111: 1.150 \mathrm{~V}$
 0×15 $001111: 1.175 \mathrm{~V}$
 0×16 $001111: 1.200 \mathrm{~V}$
 0×17 $001111: 1.225 \mathrm{~V}$ |
| :--- | :--- | :--- |

High Efficiency 3-Channel Buck Converter with dual LDO

8 Package Information

8.1 Package Outlines

$\underline{\underline{\text { BOTTOM VIEW }}}$

Symbol	Dimension in mm			Dimension in inch		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.50	0.577	0.60	0.020	0.023	0.024
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.127 REF			0.005 REF		
b	0.20	0.25	0.30	0.008	0.010	0.012
b1	0.45	0.50	0.55	0.018	0.020	0.022
b2	0.70	0.75	0.80	0.028	0.030	0.031
b3	0.95	1.00	1.05	0.037	0.039	0.041
D	4.43	4.50	4.57	0.174	0.177	0.180
E	6.93	7.00	7.07	0.273	0.276	0.278
e	0.50 BSC			0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
R	0.10	--	0.15	0.004	---	0.006
aad	0.15			0.006		
bbb	0.10			0.004		
ccc	0.10			0.004		
ddd	0.05			0.002		
eee	0.08			0.003		

1. CONTROLLING DIMENSION : MILLIMETER
2. REFERENCE DOCUMENT: JEDEC MO-220.

Figure 12: PV88090 Package Outline Drawing

High Efficiency 3-Channel Buck Converter with dual LDO

9 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the packing method. The xx represents a placeholder for the specific OTP variant. For details and availability, please consult Dialog Semiconductor's customer support portal or your local sales representative.

Table 22: Ordering Information

Part Number (Note 3)	Package Information	Package Description	Pack Outline
PV88090-xxFQ1	30-pin FC-MQFN	Waffle tray	Figure 12
PV88090-xxFQ2	30-pin FC-MQFN	Tape and Reel	Figure 12

Note $3 x x$ is the OTP variant. Please refer the detail information in OTP variant application note AN-PV-07.

Figure 13: PV88090 Package Markings
Where zzzz = first z is wafer fab, second z is assembly supplier, third and fourth z are unique lot identifiers.

10 Application Information

10.1 Capacitors Selection

Ref	Value	Tol.	Size $(\mathbf{m m})$	Height $(\mathbf{m m})$	Temp. Char.	Rating (V)	Part
VLDO2	$2 \times 1 \mu \mathrm{~F}$	$\pm 10 \%$	0603	0.9	X5R	10	GRM188R61A105KA61D
VLDO1	$1 \mu \mathrm{~F}$	$\pm 10 \%$	0603	0.9	X5R	10	GRM188R61A105KA61D
VDLDO1	$2.2 \mu \mathrm{~F}$	$\pm 10 \%$	0603	0.9	X5R	10	GRM188R61A225KE34
VBuck1	$2 \times 100 \mathrm{nF}$	$\pm 10 \%$	0402	0.55	X7R	16	GRM155R71C104KA88D
	$2 \times 10 \mu \mathrm{~F}$	$\pm 10 \%$	0805	1.35	X5R	16	GRM21BR61C106KE15L
	$2 \times 47 \mu \mathrm{~F}$	$\pm 20 \%$	0805	1.45	X5R	10	GRM21BR61A476ME15
VBuck2	100 nF	$\pm 10 \%$	0402	0.55	X7R	16	GRM155R71C104KA88D
	$10 \mu \mathrm{~F}$	$\pm 10 \%$	0805	1.35	X5R	16	GRM21BR61C106KE15L
	$2 \times 47 \mu \mathrm{~F}$	$\pm 20 \%$	0805	1.45	X5R	10	GRM21BR61A476ME15

High Efficiency 3-Channel Buck Converter with dual LDO

VREF VDDIO	100 nF	$\pm 10 \%$	0402	0.55	X5R	10	GRM155R61A104KA01D
VDD VDVDD	$1 \mu \mathrm{~F}$	$\pm 10 \%$	0603	0.9	X5R	10	GRM188R61A105KA61D

10.2 Inductor Selection

Ref	Value	ISAT (A)	IRMS (A)	$\begin{gathered} \text { DCR (Typ) } \\ (\mathrm{m} \Omega) \end{gathered}$	$\begin{gathered} \text { Size } \\ (\mathrm{W} \times \mathrm{L} \times \mathrm{H}) \\ (\mathrm{mm}) \end{gathered}$	Part
Buck1 Buck2 Buck3	$1.5 \mu \mathrm{H}$	$\begin{gathered} 11.5 \\ 10 \end{gathered}$	$\begin{aligned} & 11 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.7 \\ 12 \end{gathered}$	$7.1 \times 6.5 \times 3$	TDK SPM6530T-1R5M Sunlord WPL6530H1R5MT
		$\begin{gathered} 11.5 \\ 10 \end{gathered}$	$\begin{aligned} & 11 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.7 \\ 12 \end{gathered}$	$7.1 \times 6.5 \times 3$	TDK SPM6530T-1R5M Sunlord WPL6530H1R5MT
		$\begin{gathered} 11.5 \\ 10 \end{gathered}$	$\begin{aligned} & 11 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.7 \\ 12 \end{gathered}$	$7.1 \times 6.5 \times 3$	TDK SPM6530T-1R5M Sunlord WPL6530H1R5MT

High Efficiency 3-Channel Buck Converter with dual LDO

11 Layout Guidelines

Figure 14: PCB Layout for PV88090

High Efficiency 3-Channel Buck Converter with dual LDO

Status Definitions

Revision	Datasheet Status	Product Status	Definition
$1 .<n>$	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
$2 .<n>$	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
$3 .<n>$	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
$4 .<n>$	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.
All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.
© 2017 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)
Dialog Semiconductor (UK) LTD
Phone: +44 1793757700
Germany
Dialog Semiconductor GmbH
Phone: +49 $7021805-0$
The Netherlands
Dialog Semiconductor B.V.
Phone: +31 736408822
Email:
enquiry@diasemi.com

North America
Dialog Semiconductor Inc. Phone: +1 4088458500

Japan
Dialog Semiconductor K. K. Phone: +81 354254567

Taiwan
Dialog Semiconductor Taiwan Phone: +886 281786222

Web site:
www.dialog-semiconductor.com

Singapore
Dialog Semiconductor Singapore Phone: +65 64849929

Hong Kong
Dialog Semiconductor Hong Kong
Phone: +852 37695200
Korea
Dialog Semiconductor Korea
Phone: +82 234698200

China (Shenzhen)
Dialog Semiconductor China Phone: +86 75529813669
China (Shanghai)
Dialog Semiconductor China
Phone: +86 2154249058

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

