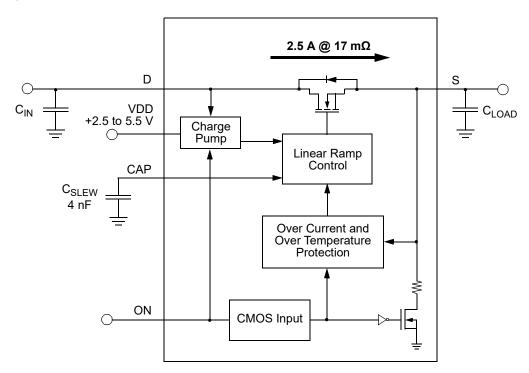

General Description

The SLG5NT1458V is a 17 m Ω 2.5 A single-channel load switch that is able to switch 0.85 V to 5.5 V power rails. The product is packaged in an ultra-small 1.0 x 1.6 mm package.

Features

- 1.0 x 1.6 x 0.55 mm STDFN package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · User selectable ramp rate with external capacitor
- 17 m Ω RDS_{ON} while supporting 2.5 A
- · Discharges load when off
- · Two Over Current Protection Modes
 - · Short Circuit Current Limit
 - · Active Current Limit
- Over Temperature Protection
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -20 °C to 70 °C
- Operating Voltage: 2.5 V to 5.5 V


Pin Configuration

Applications

- · Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

Block Diagram

Pin Description

Pin#	Pin Name	Туре	Pin Description
1	VDD	PWR	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a 0.1 μ F (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG5NT1458V's state machine. ON is a CMOS input with ON_V $_{IL}$ < 0.3 V and ON_V $_{IH}$ > 0.85 V thresholds. While there is an internal pull-down circuit to GND (~4 M Ω), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
3, 4	D	MOSFET	Drain terminal connection of the n-channel MOSFET (2 pins fused for D). Connect at least a low-ESR 0.1 μ F capacitor from this pin to ground. Capacitors used at D should be rated at 10 V or higher.
5, 6	S	MOSFET	Source terminal connection of the n-channel MOSFET (2 pins fused for S). Connect a low-ESR capacitor from this pin to ground and consult the Electrical Characteristics table for recommended C _{LOAD} range. Capacitors used at S should be rated at 10 V or higher.
7	CAP	Input	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V_S slew rate and overall turn-on time of the SLG5NT1458V. For best performance C_{SLEW} value should be \geq 1.5 nF and voltage level should be rated at 10 V or higher.
8	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Туре	Production Flow
SLG5NT1458V	STDFN 8L	Commercial, -20 °C to 70 °C
SLG5NT1458VTR	STDFN 8L (Tape and Reel)	Commercial, -20 °C to 70 °C

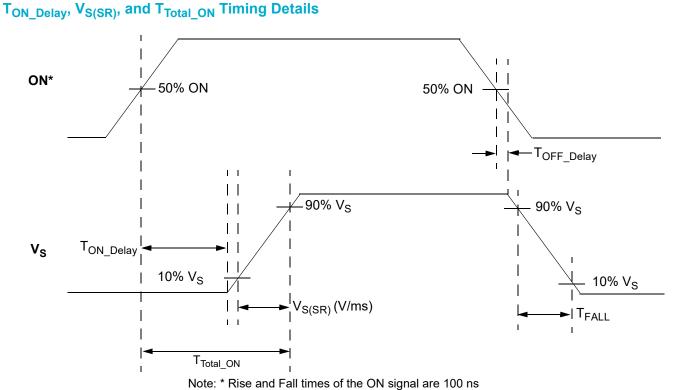
Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply				7	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
MSL	Moisture Sensitivity Level			,		
W _{DIS}	Package Power Dissipation				0.4	W
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 1 ms with 1% duty cycle			3.5	Α
θ_{JA}	Junction to Ambient Thermal Resistance	2-layer FR4 PCB. D and S power plane area = 1" x 1". 1 oz copper min.			72	°C/W
θ_{JC}	Junction to Case Thermal Resistance	2-layer FR4 PCB. D and S power plane area = 1" x 1". 1 oz copper min.		1	70	°C/W

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

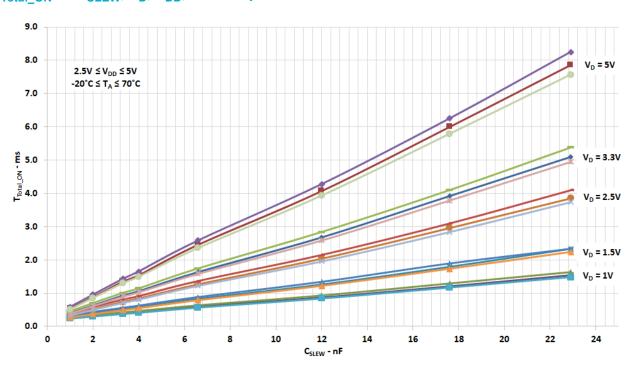
Electrical Characteristics

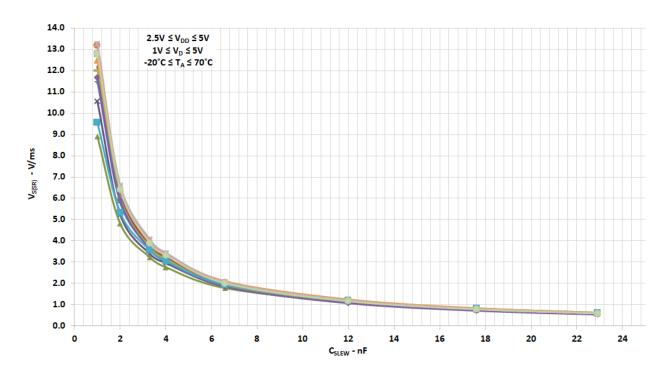
 T_A = -20 °C to 70 °C unless otherwise noted.


Parameter	Description	Min.	Тур.	Max.	Unit		
V _{DD}	Power Supply Voltage	-20 °C to 70 °C	2.5		5.5	V	
loo	Power Supply Current (PIN 1)	when OFF			1	μA	
I _{DD}	Fower Supply Current (FIN 1)	when ON, No load		70	100	μA	
DDC	ON Resistance	T _A = 25 °C, I _{DS} = 100 mA		17	19	mΩ	
RDS _{ON}	ON Resistance	T _A = 70 °C, I _{DS} = 100 mA		18.5	20	mΩ	
MOSFET IDS	Current from D to S	Continuous			2.5	Α	
V _D	Drain Voltage		0.85		V_{DD}	V	
T _{ON_Delay}	ON Delay Time	50% ON to V_S Ramp Start; C _{LOAD} = 10 μF, R _{LOAD} = 20 Ω		300	500	μs	
		50% ON to 90% V _S	Set by	Set by External C _{SLEW} ¹			
T _{Total_ON}	Total Turn On Time	Example: C_{SLEW} = 4 nF, V_{DD} = V_{D} = 5 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω		1.96		ms	
		10% V _S to 90% V _S	Set by External C _{SLEW} ¹			V/ms	
V _{S(SR)}	Slew Rate	Example: C_{SLEW} = 4 nF, V_{DD} = V_{D} = 5 V, C_{LOAD} = 10 μ F, R_{LOAD} = 20 Ω		3.0		V/ms	
C _{LOAD}	Output Load Capacitance	C _{LOAD} connected from S to GND			500	μF	
R _{DISCHRGE}	Discharge Resistance		100	150	300	Ω	
ON_V _{IH}	High Input Voltage on ON pin		0.85		V_{DD}	V	
ON_V _{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V	
	Active Current Limit, I _{ACL}	MOSFET will automatically limit current when V _S > 250 mV		3.7		Α	
I _{LIMIT}	Short Circuit Current Limit, I _{SCL}	MOSFET will automatically limit current when V _S < 250 mV		0.9		Α	
THERMON	Thermal shutoff turn-on temperature			125		°C	

Electrical Characteristics (continued) $T_A = -20 \, ^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$ unless otherwise noted.

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
THERMOFF	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V_S Fall Start; V_{DD} = V_D = 5 V; R_{LOAD} = 20 Ω , no C_{LOAD}	-	8		μs
Notes:						


1. Refer to typical timing parameter vs. C_{SLEW} performance charts for additional information when available.



Typical Performance Characteristics

$T_{Total\ ON}$ vs C_{SLEW} , V_D , V_{DD} , and Temperature

$\mathbf{V_{S}}$ Slew Rate vs. $\mathbf{C_{SLEW}}, \mathbf{V_{DD}},$ and Temperature

SLG5NT1458V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V. Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_{D} less than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_{D} have reached their steady-state values, the load switch timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG5NT1458V Current Limiting Operation

The SLG5NT1458V has two types of current limiting triggered by the output S pin voltage.

1. Standard Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S voltage > 250 mV, the output current is initially limited to the Active Current Limit (I_{ACL}) specification listed in the Electrical Characteristics table. The ACL monitor's response time is very fast and is triggered within a few microseconds to sudden (transient) changes in load current. When a load current overload is detected, the ACL monitor increases the FET resistance to keep the current from exceeding the load switch's I_{ACL} threshold.

However, if a load-current overload condition persists where the die temperature rises because of the increased FET resistance, the load switch's internal Thermal Shutdown Protection circuit can be activated. If the die temperature exceeds the listed THER-M_{ON} specification, the FET is shut OFF completely, thereby allowing the die to cool. When the die cools to the listed THERM_{OFF} temperature threshold, the FET is allowed to turn back on. This process may repeat as long as the output current overload condition persists.

2. Short Circuit Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S voltage < 250 mV (which is the case with a hard short, such as a solder bridge on the power rail), the load switch's internal Short-circuit Current Limit (SCL) monitor limits the FET current to approximately 900 mA (the I_{SCL} threshold). While the internal Shutdown Protection circuit remains enabled and since the I_{SCL} threshold is much lower than the I_{ACL} threshold, thermal shutdown protection may become activated only at higher ambient temperatures.

Power Dissipation

The junction temperature of the SLG5NT1458V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG5NT1458V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD = RDS_{ON} \times I_{DS}^{2}$$

where:

PD = Power dissipation, in Watts (W) RDS_{ON} = Power MOSFET ON resistance, in Ohms (Ω) I_{DS} = Output current, in Amps (A)

and

$$T_J = PD \times \theta_{JA} + T_A$$

where:

 T_J = Junction temperature, in Celsius degrees (°C) θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) T_A = Ambient temperature, in Celsius degrees (°C)

During active current-limit operation, the SLG5NT1458V's power dissipation can be calculated by taking into account the voltage drop across the load switch $(V_D - V_S)$ and the magnitude of the output current in active current-limit operation (I_{ACL}) :

$$PD = (V_D - V_S) \times I_{ACL} \text{ or}$$

$$PD = (V_D - (R_{LOAD} \times I_{ACL})) \times I_{ACL}$$

where:

PD = Power dissipation, in Watts (W) V_D = Input Voltage, in Volts (V) R_{LOAD} = Load Resistance, in Ohms (Ω) I_{ACL} = Output limited current, in Amps (A) V_S = R_{LOAD} x I_{ACL}

For more information on GreenFET load switch features, please visit our website and see App Note "AN-1068 GreenFET and High Voltage GreenFET Load Switch Basics

Layout Guidelines:

- 1.The VDD pin needs a 0.1 μF and 10 μF external capacitors to smooth pulses from the power supply. Locate these capacitors as close as possible to the SLG5NT1458V's PIN1.
- 2. Since the D and S pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
- 3. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output C_{LOAD} low-ESR capacitors as close as possible to the SLG5NT1458V's D and S pins;
- 4. The GND pin should be connected to system analog or power ground plane.
- 5. 2 oz. copper is recommended for high current operation.

SLG5NT1458V Evaluation Board:

A GreenFET Evaluation Board for SLG5NT1458V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS_{ON} evaluation.

Please solder your SLG5NT1458V here

Figure 1. SLG5NT1458V Evaluation Board.

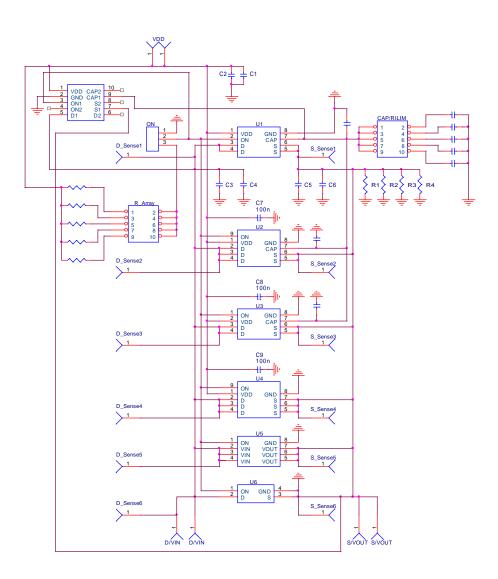
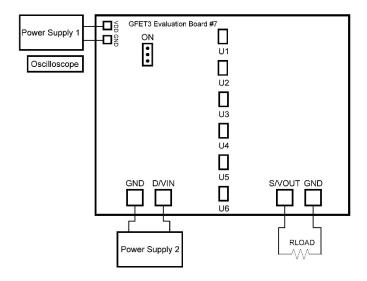
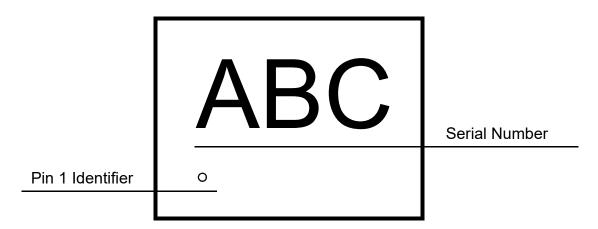


Figure 2. SLG5NT1458V Evaluation Board Connection Circuit.

Basic Test Setup and Connections

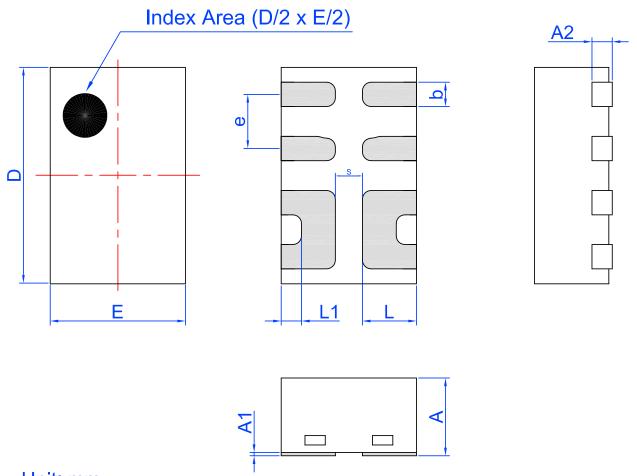



Figure 3. Typical connections for GreenFET Evaluation.

EVB Configuration

- 1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
- 2.Turn on Power Supply 1 and set desired V_{DD} from 2.5 V...5.5 V range;
- 3.Turn on Power Supply 2 and set desired V_D from 0.85 V...5.5 V range;
- 4.Toggle the ON signal High or Low to observe SLG5NT1458V operation.

Package Top Marking System Definition



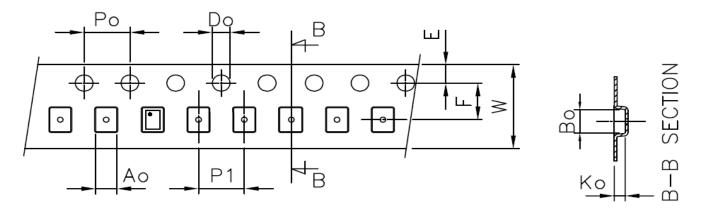
ABC - 3 alphanumeric Part Serial Number where A, B, or C can be A-Z and 0-9

Package Drawing and Dimensions

8 Lead STDFN Package 1.0 x 1.6 mm (Fused Lead)

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
е	().40 BSC	,	S	(0.2 REF	



Tape and Reel Specifications

Dookogo	# of	# of	# of	# of	# of	# of	Nominal	Max Units		Reel &	Leader (min)		Trailer (min)		Tape	Part
Package Type	Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Lengui	Width [mm]	Pitch [mm]					
STDFN 8L 1x1.6mm 0.4P FC Green		1.0 x 1.6 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4					

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Cen- ter	Tape Width
	A0	В0	K0	P0	P1	D0	E	F	W
STDFN 8L 1x1.6mm 0.4P FC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.88 mm³ (nominal). More information can be found at www.jedec.org.

Revision History

Date	Version	Change		
2/7/2022	1.07	Renesas rebranding Fixed typos		
3/30/2020	3/30/2020 1.06 Updated Style and Formatting Updated Pin Discription Updated Charts Added Power Dissipation Section Added Layout Guidelines Fixed typos			
9/5/2016	Updated Power Up/Down Sequencing Considerations 1.05 Updated Current Limiting Description Updated text and parameter names for clarity			
5/25/2016	5/25/2016 1.04 Added MSL			
11/9/2015	1.03	Updated VD min to 0.85 V		

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/