
Product Overview

The QPA8840 is a an ultra-linear, 22dB Gain, GaAs amplifier, intended for mid or output stage amplification in CATV infrastructure applications. The QPA8840 operates off a 12 Volt, 425 mA supply. The device features a pushpull cascode design which provides flat gain along with ultra-low distortion from 50MHz to 1.8GHz.

12 pin 6 x 6 Laminate Module

Functional Block Diagram

Key Features

- 50 MHz to 1800 MHz Operation
- 12 V Operation
- Gain: 22 dB Typical
- OP1dB: 32 dBm Typical
- Noise Figure: 3.1 dB Typical
- RoHS Compliant

Applications

- DOCSIS 4.0 Amplifiers
- DOCSIS 4.0 Optical Nodes
- Broadband Hybrid CATV Modules

Ordering Information

Part Number	Description
QPA8840EVB-01	Evaluation Board
QPA8840SB	Sample bag with 5 pieces
QPA8840SR	7" Reel with 100 pieces
QPA8840TR13	13" Reel with 2500 pieces

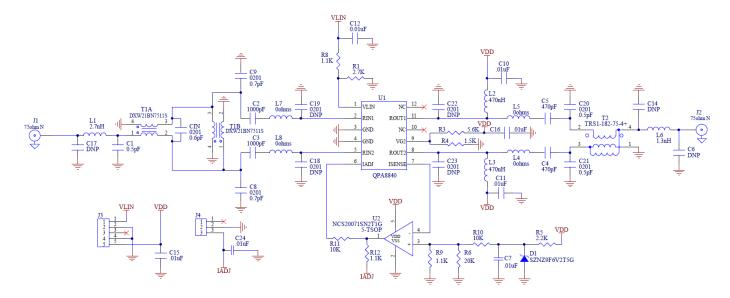
Absolute Maximum Ratings

Parameter	Rating		
Supply Voltage (V _{DD})	+16 V		
Supply Current (IDD)	550 mA		
Maximum Input Level	+70 dBmV		
Operating Temperature Range	-40 to +100 °C		
Storage Temperature Range	−65 to +150 °C		
Maximum Junction Temperature	+150 °C		

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

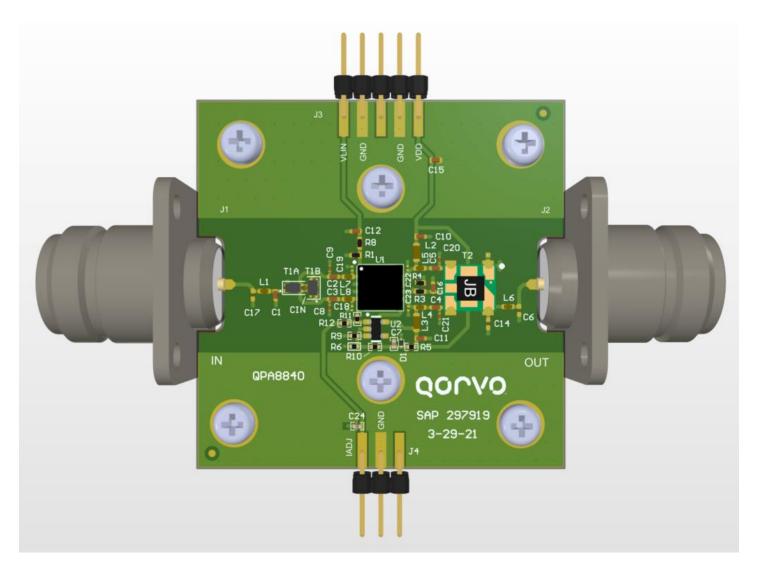
Electrical Specifications at 12 V

Parameter	Condition (1)	Min	Тур	Max	Unit	
Supply Voltage (V _{DD})			12		V	
Supply Current (IDD)			425		mA	
Frequency Range		50		1800	MHz	
Gain			22		dB	
Gain Slope			1		dB	
Reverse Isolation			25		dB	
Input Return Loss			20		dB	
Output Return Loss			18		dB	
	45dB MER, Source Corrected		68.6		dBmV Total Composite	
Роит	42dB MER, Source Corrected		69.3		Power	
Noise Figure	50 – 250 MHz		2.8		dB	
	250 – 1250 MHz		3.1			
	1250 – 1800 MHz		4.2			
OIP2L ⁽²⁾	50 – 250 MHz		82		dBm	
	250 – 1250 MHz		75			
	1250 – 1800 MHz		81			
OIP2U ⁽²⁾	50 – 250 MHz		81		dBm	
	250 – 1250 MHz		67			
	1250 – 1800 MHz		73			
OIP3 ⁽²⁾	50 – 250 MHz		48			
	250 – 1250 MHz		47.7		dBm	
	1250 – 1800 MHz		42.3			
OP1dB	50 – 1250 MHz		32.1		dBm	
OFIOB	1250 – 1800 MHz		30.0			
Thermal Resistance	Өлс		8		°C/W	


Notes:

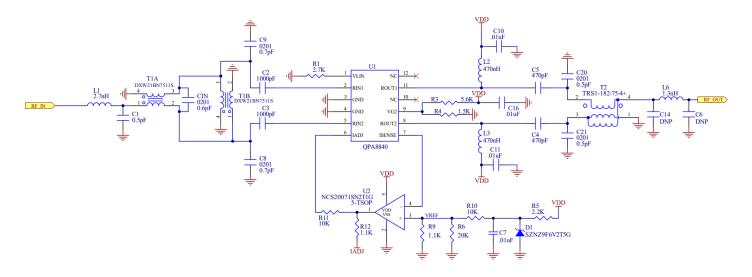
- 1) Typical performance at these conditions: Temp = +25 °C, V_{DD} = +12V, 75 Ω system, Full band unless otherwise noted.
- 2) 15dBm/tone output.
- 3) 108MHz to 1791MHz, 20dB tilt, 280 Ch. SC-QAM, ITU-T J.83, Annex B

Evaluation Board Schematic 50 MHz - 1800 MHz



Reference Designator	Description	Manufacturer	Part Number	
U1	1.8GHz 12 V Power Doubler MMIC 22dB Gain	Qorvo	QPA8840	
U2	IC, OP AMP, GP, 1-CIR, 2.7-36V, 5TSOP	On Semi	NCS20071SN2T1G	
PCB	QPA8840 Evaluation Board Assembly	TTM Technologies	QPA8840-4000(A)	
C1	CAP, 0.5pF, +/-0.25pF, 50V, HI-Q, 0402	Murata	GJM1555C1HR50CB01D	
CIN	CAP, 0.6pF, +/-0.1pF, 25V, HI-Q, 0201	Murata	GJM0335C1ER60BB01D	
C8, C9	CAP, 0.7pF,+/-0.1pF,25V,HI-Q,0201	Murata	GJM0335C1ER70BB01D	
C20, C21	CAP, 0.5pF, +/-0.1pF, 25V, C0G, 0201	Murata	GRM0335C1ER50BA01D	
C7, C10, C11, C12, C15, C16, C24	CAP, 0.01uF, 10%, 50V, X7R, 0402	Murata	GCM155R71H103KA55D	
C2, C3	CAP, 1000pF, 10%, 50V, X7R, 0402	TDK	CGA2B2X7R1H102K050BA	
C4, C5	CAP, 470pF, 10%, 0402, X7R, 50V, NISN	Murata	GCM155R71H471KA37D	
L4, L5, L7, L8	RES, 0 OHM, 5%, 1/10W, 0402	Kamaya	RMC1/16SJPTH	
R4	RES, 1.5K, 5%, 1/16W, 0402	Kamaya	RMC1/16S-152JTH	
R5	RES, 2.2K, 5%, 1/16W, 0402	Kamaya	RMC1/16S-222JTH	
R1	RES, 2.7K, 5%, 1/16W, 0402	Kamaya	RMC1/16S-272JTH	
R3	RES, 5.6K, 5%, 1/10W, 0402	Kamaya	RMC1/16S-562JTH	
R10, R11	RES, 10K, 5%, 1/16W, 0402	Kamaya	RMC1/16S-103JTH	
R6	RES, 20K, 1%, 1/16W, 0402	Vishay	CRCW040220K0FKED	
R8, R9, R12	RES, 1.1K, 5%, 1/16W, 0402	Panasonic	ERJ-2GEJ112	
D1	DIO, ZENR, 6.2V, 5mA ,250mW, SOD-923, SD	On Semi	SZNZ9F6V2T5G	
L1	IND, 2.7nH, +/-0.3nH, M/L, 0402	Murata	LQG15HS2N7S02D	
L6	IND, 1.3nH, ±0.1nH, 1000mA, M/L, 0402	Murata	LQG15HS1N3B02D	
L2, L3	IND, 470nH, 5%, 0.42A, W/W, 0603	Coilcraft	0603LS-471XJLC	
T1A, T1B	BALUN, 1.8GHz, 75 / 75 OHM, 0805	Murata	DXW21BN7511SL	
T2	XFMR, 1:1, 10 – 1800 MHz, 75 OHM, SMD	Minicircuits	TRS1-182-75-4+	
J1, J2	CONN, COAXIAL, SKT, 75 OHM, 1.8GHz, SMD	Huber + Suhner	23_N-75-0-1/133_NE	
J3	CONN, HDR, ST, 5-PIN, 0.100"	Molex	22-28-4053	
J4	CONN, HDR, ST, 3-PIN, 0.100"	Samtec	TSW-103-07-G-S	
Heat Sink	Heatsink 50 x 50 x 40	Alpha Novatech	S08EFV03-A	
Indium Foil	INDIUM, 1"x1", .004" THK, PURE	Indium Corp	KITEA-85350	
Screws C6, C14, C17, C18, C19, C22, C23	SCREW, M3 x 6mm, SHCS, SS, Qty 10 Not Populated	McMaster - Carr	91292A111	

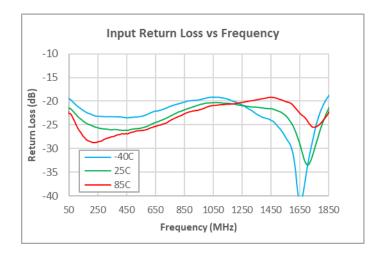
Evaluation Board Assembly Drawing

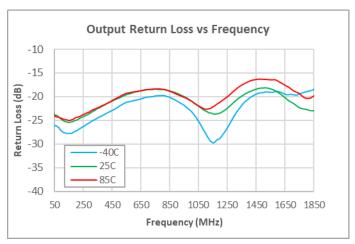


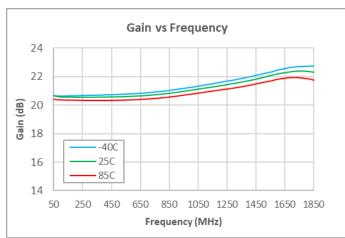
QPA8840 Evaluation Board

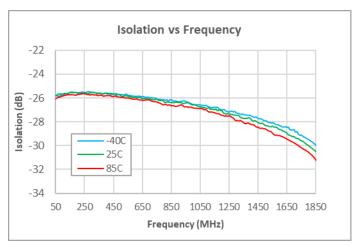
LAYER STACK LEGEND

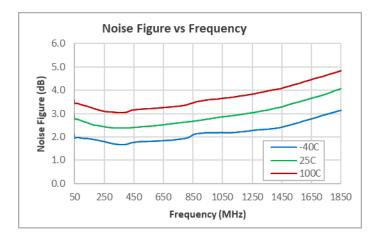
Typical Application Schematic

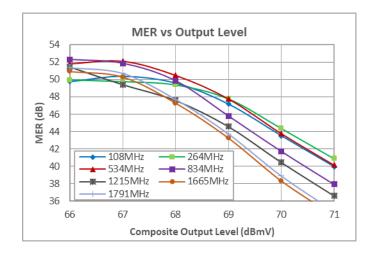


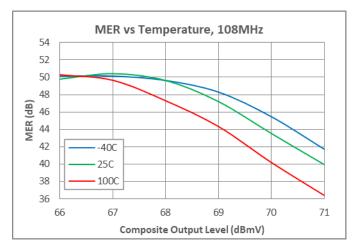

Application Notes:

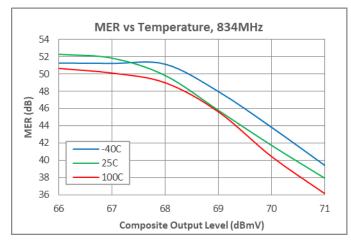

- 1) L1/C1 provide control for input matching with additional trim provided by C8, C9, and CIN. C2/C3 are for DC blocking and not typically adjusted for input matching.
- 2) L6 is used for output matching with additional trimming provided at C20/C21. C4/C5 provide DC blocking and also adds low frequency series impedance for output matching. Depending on the application load impendance, C6 and C14 may be helpful for output matching.
- 3) DC bias is provided through L2/L3 with sufficient local bypassing at C10/C11. Additional bypassing may be needed depending on the ambient noise environment of the application.
- 4) R3/R4 sets the gate bias, VG2, of the cascode and is only adjusted for operating with alternate VDD bias.
- 5) R1 sets the bias current for the internal linearizer which provides a small amount of fixed predistortion at the input proportional to the device current, I_{DD}, to improve the MER capability. The linearizer current is optimized for 12V, 425mA. For other operating bias points, it may be beneficial to reoptimize R1 to peak MER across the full bandwidth of the desired composite load condition.
- 6) U2 is an active bias current control formed by using the ISENSE output and comparing to the reference voltage on U1, Pin 3 (VREF). The output from U2 is fed back into the IADJ pin to keep the current tightly controlled. For most conditions, IDD = VREF/1.4.

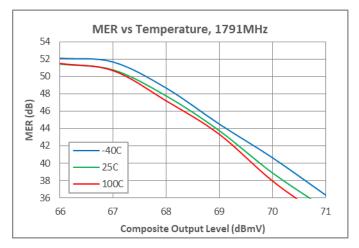



Performance Data

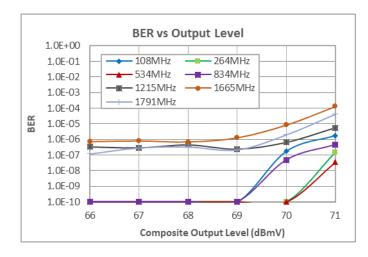


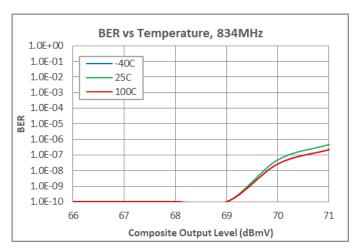

Test Conditions:

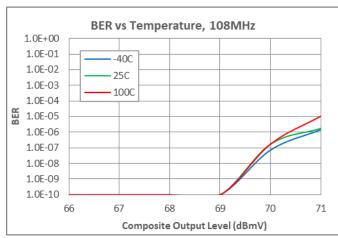

1. Test conditions unless otherwise noted: VDD = +12V, $Z_0 = 75\Omega$

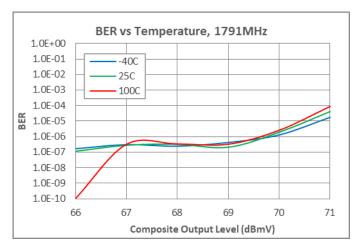


Performance Data

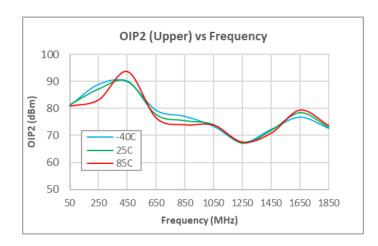


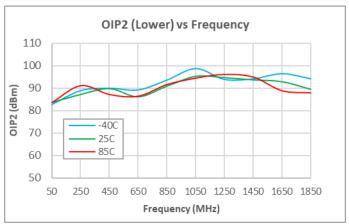

Test Conditions:

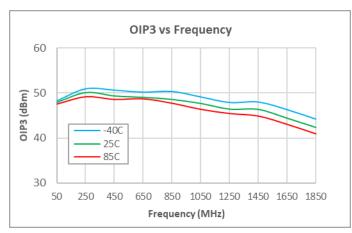

- 1. Test conditions unless otherwise noted: VDD = +12V, $Z_0 = 75\Omega$
- 2. 108 1794 MHz, 280 Ch. SC-QAM, Tilt = 20dB
- 3. MER Source Corrected. Maximum Correction, 4.3dB

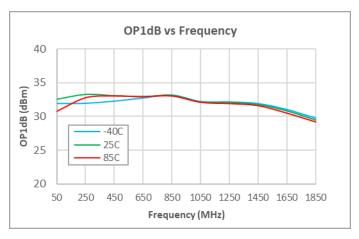


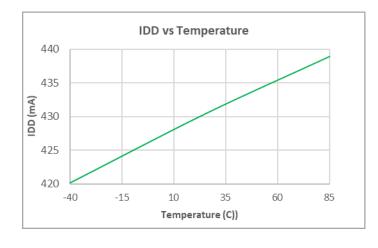
Performance Data

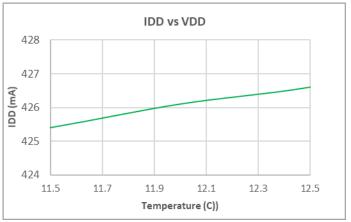


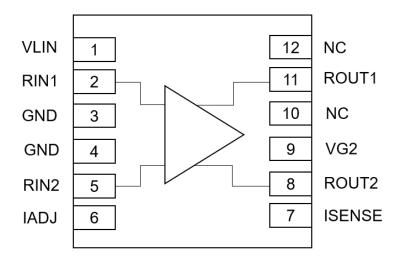

Test Conditions:


- 1. Test conditions unless otherwise noted: VDD = +12V, $Z_0 = 75\Omega$
- 2. 108 1794 MHz, 280 Ch. SC-QAM, Tilt = 20dB
- 3. BER Pre-Correction



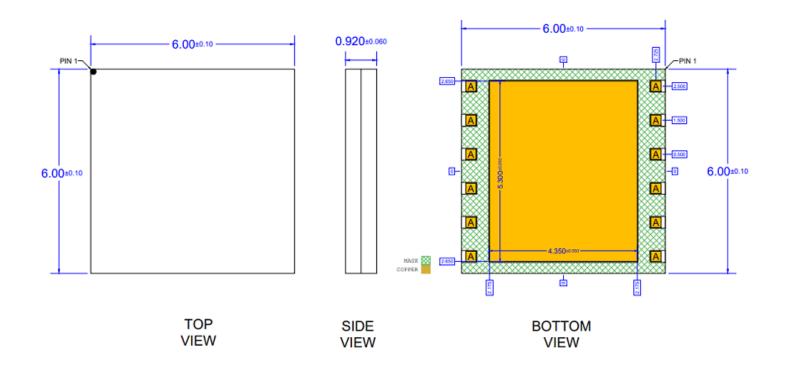

Performance Data





Test Conditions:

- 1. Test conditions unless otherwise noted: VDD = +12V, $Z_0 = 75\Omega$
- 2. OIP2: +12dBm/Tone, $\Delta f = 30MHz$, Full Band
- 3. OIP3: +12dBm/Tone, $\Delta f = 6MHz$, Full Band
- 4. IDD measurements include active bias circuit shown on EVB Schematic on Pg. 3


Pin Configuration and Description

Pin Number	Label	Description
1	VLIN	Linearizer Current Set
2	RIN1	RF Input +
3	GND	Ground
4	GND	Ground
5	RIN2	RF input -
6	IADJ	IDD Current Set
7	ISENSE	Current Sense Connection for Active Bias Circuit
8	ROUT2	RF Output -
9	VG2	2nd Stage Gate Bias
10	NC	No Connection
11	ROUT2	RF Output +
12	NC	No Connection
Paddle	GND	DC/RF/Thermal Ground (maximize vias in this area)

Package Outline

12-Pin 6x6 mm² Laminate Module

Notes:

1. Dimensions in millimeters

Package Marking

Pin 1 Indicator Qorvo Logo - Use Q5D Trace Code to be assigned by subcon

Handling Precautions

Parameter	Rating	Standard	A	
ESD-Human Body Model (HBM)	Class 1B (500V)	ANSI/ESDA/JEDEC JS-001		Caution!
ESD-Charged Device Model (CDM)	Class C3 (1000V)	ANSI/ESDA/JEDEC JS-002	10.4	ESD-Sensitive Device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	100	

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- PFOS Free
- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- SVHC Free

Solderability

Compatible with both lead-free (260 °C max. reflow temp.) and tin/lead (245 °C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: ENEPIG

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163
Web: www.gorvo.com

Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2022 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.