
QONO

5MHz to 6GHz Absorptive High Isolation SP3T Switch

Product Overview

The QPC6034 is a Silicon on Insulator (SOI) Single-Pole 3-Throw (SP3T) switch designed for uses in cellular, 3G, LTE and other high-performance communication systems. It offers a high isolation, symmetric throw ports with excellent linearity and power handling capability. No DC blocking capacitors are necessary on the RF ports. The design is non-reflective as such the RF1, RF2, and RF3 ports are terminated with 50 Ω load(s) in the non-throw or OFF state. The QPC6034 is 1.8V positive control logic compatible. It incorporates a single pin to disable the internal Negative Voltage Generator (NVG), and the required negative voltage supply from an off-chip external DC source.

Functional Block Diagram

24-Pin, 4 x 4 mm QFN Package

Key Features

- 5-6000 MHz Operation
- Symmetrical SP3T
- Non-Reflective RF1, RF2, & RF3 Ports & Terminated in ALL-OFF State
- No Blocking Capacitors Necessary Unless DC Voltage on RF line
- High Isolation: 62 dB at 2 GHz
- High Input IP3: +59 dBm
- +1.8 V Logic Compatible

Applications

- Cellular, 3G, 4G, 5G Infrastructure
- WiBro, WiMax, LTE
- High Performance Communication Systems
- Test Equipment

Ordering Information

Part No.	Description
QPC6034TR13	2,500 pieces on a 13" reel (standard)
QPC6034 PCK401	5 MHz – 6GHz Evaluation Board with 5-piece samples

QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch

Absolute Maximum Ratings

Parameter	Rating		
Storage Tempe	−40 to +150 °C		
RF Input Power	v terminated	+37.5 dBm	
RF Input Power, RFX terminated			+29 dBm
Device Voltage	(VDD)		+6 V
Device voltage	(VDD) (VSS)		-6 V
Control Voltage	(V1, V2)	Low / High	-0.2 V / +6 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Electrical Specifications

Recommended Operating Conditions

Parameter	Min	Тур	Мах	Units
Device Voltage (VDD)	+2.7	+5.0	+5.5	V
Device Voltage (VSS), External Negative Voltage Supply	-5.5	-5.0	-2.7	V
Device Voltage (VSS), Internal Negative Voltage Generator		0		V
TCASE (Backside Paddle)	-40		+105	°C
Tj for >10 ⁵ hours MTTF			+125	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Units
Operational Frequency Range		5		6000	MHz
	450 MHz		0.84		dB
	900 MHz		0.86		dB
Insertion Loss (2)	2100 MHz		0.93	1.25	dB
(RFC to RF1/RF2/RF3)	2600 MHz		0.96		dB
	4000 MHz		0.98		dB
	6000 MHz		1.00		dB
	450 MHz		75		dB
	900 MHz		70		dB
Isolation	2100 MHz	50	62		dB
(RFC to RF1/RF2/RF3)	2600 MHz		61		dB
	4000 MHz		61		dB
	6000 MHz		60		dB
	450 MHz		78		dB
	900 MHz		73		dB
Isolation	2100 MHz		65		dB
(RF1/2/3 to RF1/2/3)	2600 MHz		62		dB
	4000 MHz		55		dB
	6000 MHz		48		dB
	450 MHz		29		dB
	900 MHz		27		dB
Return Loss	2100 MHz		24		dB
(RF1/RF2/RF3 ON-State)	2600 MHz		24		dB
	4000 MHz		20		dB
	6000 MHz		14		dB
	450 MHz		29		dB
	900 MHz		27		dB
Return Loss	2100 MHz		30		dB
(RF1/RF2/RF3 OFF-State)	2600 MHz		25		dB
	4000 MHz		30		dB
	6000 MHz		16		dB

Electrical Specifications (Continued)

Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Units
Operational Frequency Range		5		6000	MHz
Input IP2	1.0 GHz		+110		dBm
Input IP3	1.0 GHz, +17 dBm input power per-tone, 1 MHz tone spacing	+55	+59		dBm
Input 1 dB Compression Power			+36		dBm
NVG Spur	Internal NVG ON		-104		dBm
Setting Time	50% V1/V2/V3 to optimum functionality		1	4	μs
Start-up Time	90% VDD to full functionality		5	25	μs
Switching Time	50% control to 10/90% RF		150	500	ns
Supply Current (Ivdd)	VDD 5.0V		90		μA
Control Current, (I _{V1} , I _{V2})	V1, V2 each at 5.0V		1		μA
VSS Current (I _{VSS})	VSS -5.0V, Internal NVG disabled		100		μA
Low Control Voltage (V1, V2)		0		0.63	V
High Control Voltage (V1, V2)	+1.8 V Logic compatible	1.1		VDD	V

Notes:

1. Test conditions unless otherwise noted: VDD = +5 V, V1/V2 = 0/+5.0 V, Temp = +25 °C, 50 Ω system, RF ports DC Voltage 0V, on EVB

2. PCB trace loss deducted

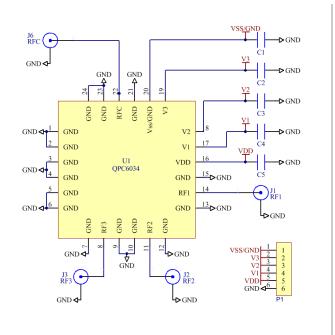
Maximum Operating Power at High Temperature, ≥50 MHz CW

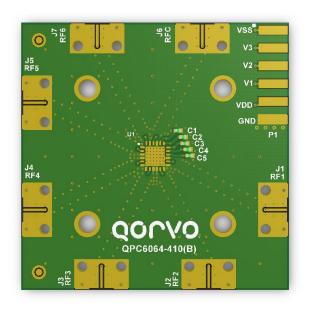
Input Port	State	Power at each port Tc +85°C Tc +105°C		Thermal Resistance, θ_{jc}
RFC, RF1, RF2, or RF3	ON, Active Throw	35.4 dBm	32.2 dBm ⁽¹⁾	56 °C/W
RF1, RF2, or RF3	OFF, 1 port	27.8 dBm	24.8 dBm (3)	66 °C/W
RF1, RF2, RF3	OFF, 2 ports adjacent	26.7 dBm	23.7 dBm (2)(3)	85 °C/W
RF1, RF2, and RF3	OFF, All 3 ports	26.6 dBm	23.6 dBm ⁽³⁾	86 °C/W

Notes:

1. For frequency <50 MHz, the maximum operating power at all temperatures should be at least 2 dB below P1dB refer to performance plot

2. Two ports adjacent being driven simultaneously


3. Internally terminated OFF state

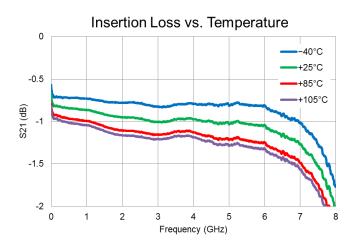

Truth Table

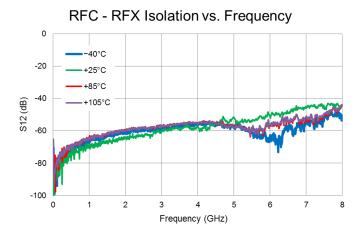
Contro	l Input	Made of Signal Both			
V1	V2	Mode of Signal Path			
0	0	All OFF, RFC Reflective			
1	0	RFC ≒ RF1, Active ON			
0	1	RFC ≒ RF2, Active ON			
1	1	RFC ≒ RF3, Active ON			

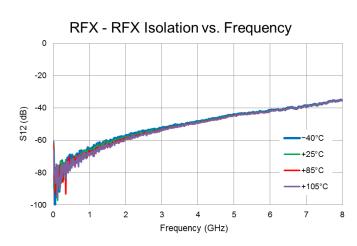
QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch

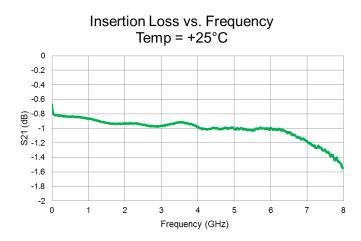
5 MHz to 6 GHz Evaluation Board – QPC6034PCB410

Note: The QPC6064-410 PCB is used within the family of QPC60x4 products

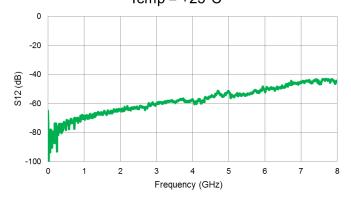

Bill of Material – QPC6034PCB410

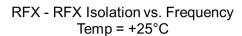

Reference Des.	Value	Description	Manuf.	Part Number
-	-	Printed Circuit Board	Qorvo	QpC6064-410(B)
U1	-	SOI, High Isolation SP3T RF switch	Qorvo	QPC6034
C1, C2, C3, C4, C5	100 pF	CAP, 100 pF, 5%, 50V, C0G, 0402	Taiyo Yuden	RM UMK105 CG101JV-F
J1, J2, J3, J4, J6	SMA	CONN, SMA, EL, FLT VIPER, MAT-21-1038	Amphenol	901-10425
P1	-	CONN, HDR, ST, PLRZD, 6-Pin, 0.100"	AMP	640454-6

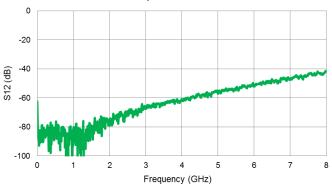

QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch


Performance Plots – QPC6034PCB410

Test conditions unless otherwise noted: VDD = +5.0 V, Temp.=+25 °C, PCB trace loss deducted on Insertion Loss

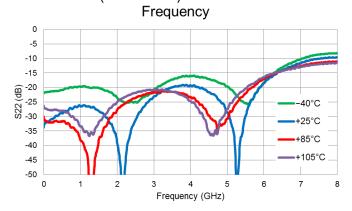


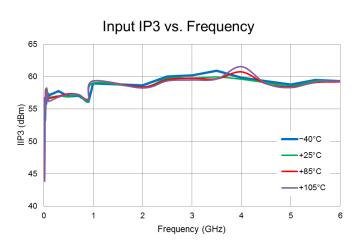


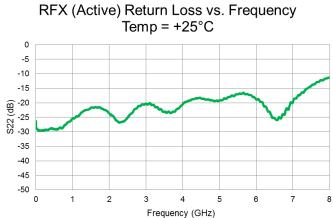


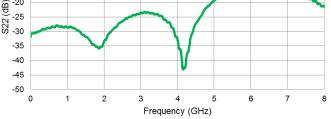
RFC - RFX Isolation vs. Frequency Temp = +25°C

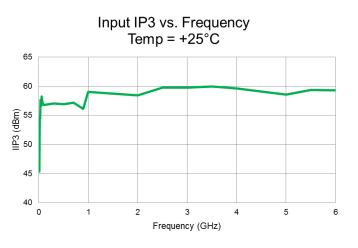


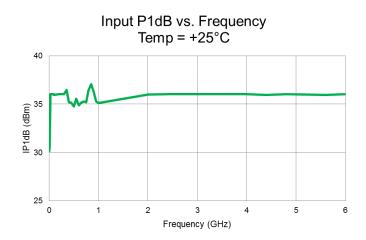


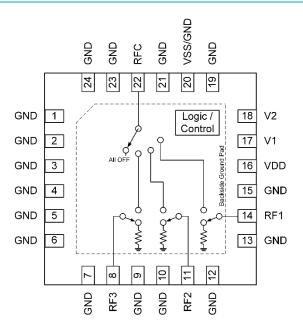

QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch


Performance Plots – QPC6034PCB410 (Continued 1)


RFX (Active) Return Loss vs. Frequency 0 -5 0 -5 -10 -10 -15 -15 -20 (qB) -20 S22 (dB) -25 S22 (-25 -30 40°C -30 +25°C -35 -35 +85°C -40 -40 +105°C -45 -45 -50 -50 1 2 3 4 5 6 7 8 0 0 Frequency (GHz) RFX (Terminated) Return Loss vs.




RFX (Terminated) Return Loss Temp = +25°C

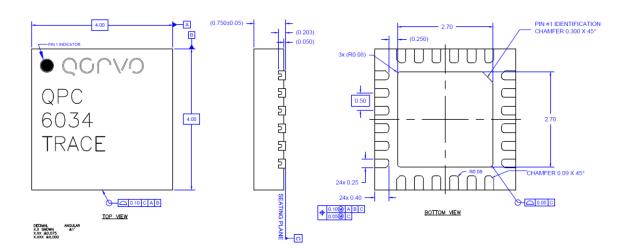

Performance Plots – QPC6034PCB410 (Continued 2)

Test conditions unless otherwise noted: VDD = +5.0 V, Temp.=+25 °C

QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch

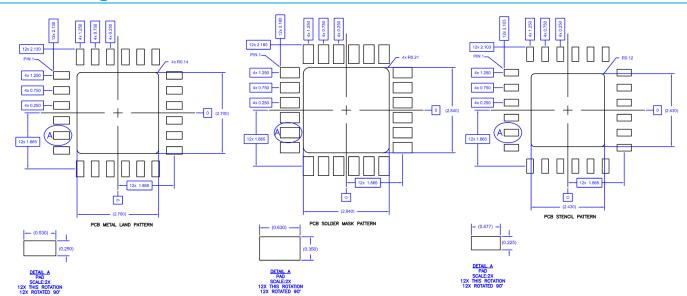
Pad Configuration and Description

Top View


Pad No.	Label	Description
1-7, 9, 10, 12, 13, 15, 19, 21, 23, 24	GND	DC and RF ground, connect to low inductive path to PCB ground
8	RF3	RF Port 3
11	RF2	RF Port 2
14	RF1	RF Port 1
16	VDD	DC Supply Voltage Input
17	V1	Control Input 1
18	V2	Control Input 2
20	VSS/GND	Negative DC Supply Voltage and Internal Negative Voltage Generator (NVG) control input. Provide low inductive ground connection on this pin to enable internal NVG or directly connect -2.7V to -5V external voltage supply to disable the internal NVG. Re-enable internal NVG, VDD cycling required
22	RFC	RF Common Port
Backside Paddle	GND	RF and DC ground. Must be soldered on PCB ground plane over a bed of via holes to minimize inductance and thermal resistance

Package Marking and Dimensions

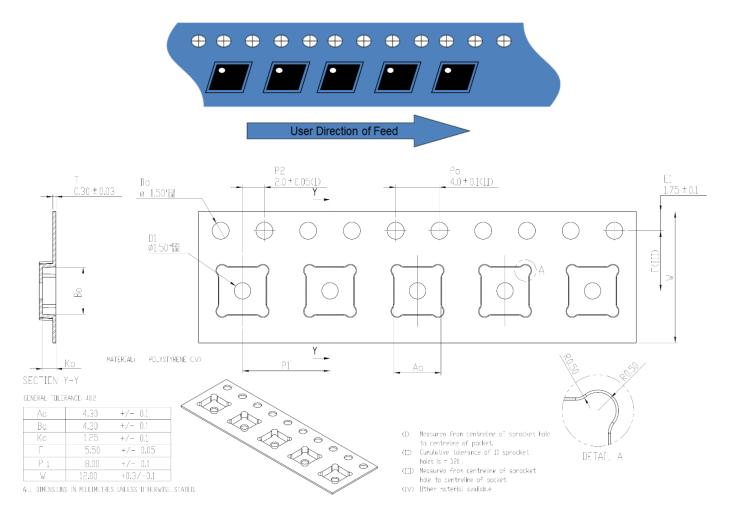
Marking: Part Number - QPC


6034

Trace Code - Assigned by subcontractor

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees. Interpret dimensions and tolerances per ASME Y14.5 2009
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Contact plating: NiPdAu

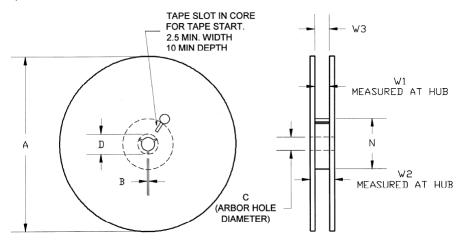

PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.01").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

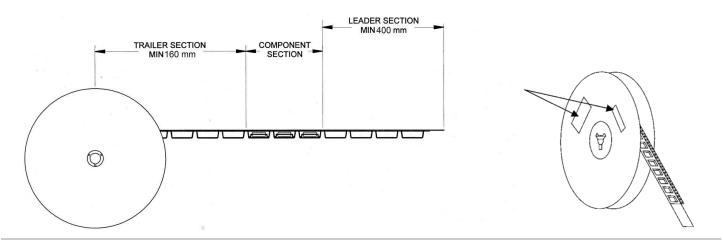
QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch

Tape and Reel Information – Carrier and Cover Tape Dimensions



Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.169	4.30
Covity	Width	B0	0.169	4.30
Cavity	Depth	K0	0.049	1.25
	Pitch	P1	0.314	8.00
Contorling Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centerline Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape Width (Reference Only)		С	0.362	9.20
Carrier Tape Width		W	0.472	12.0

QPC6034 5 MHz to 6 GHz Absorptive High Isolation SP3T Switch


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	А	12.992	330.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
HUD	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information – Tape Length and Label Placement

Notes:

1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.

2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 2	ESDA/JEDEC JS-001-2012	Caution!
ESD-Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 1	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free
- PFOS Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2022 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

