QOCVO.

RFCM5304 5-220MHz SI-BJT INTEGRATED AMPLIFIER

Product Description

The RFCM5304 is an Integrated Reverse Amplifier Module. The part employs Silicon die, a 20dB range variable attenuator, Preamp switch off, interstage port and a power enable feature, has high output capability and is operated from 5MHz to 220MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

21 pin, 11.0 mm x 11.0 mm x 1.375 mm package

Product Features

- Excellent Linearity
- Extremely High Output Capability
- Voltage Controlled Attenuator
- Power Enable Feature
- Preamp Power Off Feature
- Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under all Terminations
- 39dB Typical Gain at 220MHz
- 208mA Typical at 12VDC

Applications

- 5MHz to 220MHz CATV Amplifier For Reverse Channel Systems
- Headend Equipment

Ordering Information

Part No.	Description
RFCM5304SB	Sample bag 5 pcs
RFCM5304SR	7" Reel with 100 pcs
RFCM5304TR7	7" Reel with 250 pcs
RFCM5304PCBA-410	Fully assembled Evaluation Board
RFCM5304PCK-410	Fully assembled Evaluation Board with sample bag

Functional Block Diagram

QOULO

Absolute Maximum Ratings

Parameter	Value / Range			
DC Supply Over-Voltage (5 minutes)	+14V			
Storage Temperature	−40 to 100 °C			
Operating Mounting Base Temperature	−30 to 110 °C			

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Electrical Specifications – tested in evaluation circuit

Parameter	Conditions (V+=12V, TMB=30°C, ZS=ZL=75Ω, ATT=0dB)	Min	Тур	Max	Unit
Supply Current (I _{DD})	Steady state operation, current draw during attenuation state transitions is higher.		205	220	mA
Power Gain	f=5MHz	38.5	39.2	40.5	dB
	f=220MHz	38.3		41.2	dB
Slope [1]	f=5 MHz to 220MHz	-0.2		1.2	dB
Flatness of Frequency response	f=5 MHz to 220MHz			1.0	dB
Input Return Loss	f=5 MHz to 200MHz	20			dB
	f=200MHz to 220MHz	18			dB
Output Return Loss	f=5 MHz to 200MHz	20			dB
	f=200MHz to 220MHz	18			dB
Noise Figure	f=10MHz		2.5	2.8	dB
	f=100MHz		2.9	3.2	dB
	f=220MHz		3.2	3.5	dB
Attenuator range	V+=12V, TMB=30°C, ZS=ZL=75Ω, Att adjust= 0V to 12V	0 to 20			dB
Power enable	Logic high (3.3V) applied to power enable pin [2]		Enable		
Power disable	Logic low (0V) applied to power enable pin [3]		Disable		

[1] The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency

Logic high is defined as power enable voltage >2V Logic low is defined as power enable voltage <0.4V [2] [3]

QOUAD

RFCM5304

Parameter	Conditions (V+=12V, TMB=30°C, ZS=ZL=75Ω, ATT=0dB)	Min	Тур	Max	Unit
СТВ	7 ch flat; VO=50dBmV [4]			-70	dBc
XMOD	7 ch flat; VO=50dBmV [4]			-60	dBc
CSO	7 ch flat; VO=50dBmV [4]			-70	dBc
СТВ	28 ch flat; VO=46dBmV [5]			-63	dBc
XMOD	28 ch flat; VO=46dBmV [5]			-55	dBc
CSO	28 ch flat; VO=46dBmV [5]			-60	dBc
OIP2	Vo=11dBm [6]		65		dBm
OIP3	Vo=11dBm [7]		41.5		dBm

[4] 7 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43.0MHz), +50dBmV/ch flat output level.

[5] 28 channels, NTSC frequency raster: T7-T13 (7.0MHz to 43.0MHz), 2-6 (55.25MHz to 83.25MHz),

A2-11 (121.25MHz to 199.25MHz), +46dBmV/ch flat output level.

[6] 2-tone, 11dBm/tone, f1=99.0MHz, f2=100.0MHz,1 MHz tone spacing, fm=199.0MHz (f1+f2)

[7] 2-tone, 11dBm/tone, f1=199.0MHz, f2=200.0MHz,1 MHz tone spacing, fm=201.0MHz (2xf2-f1)

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by ANSI/SCTE 6.

Composite Triple Beat (CTB) The CTB parameter is defined by ANSI/SCTE 6.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

QOUAD

Evaluation Board Assembly Drawing

Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. A via drill diameter of 0.4mm and a minimum via wall copper plating thickness of 25um is recommended. Open vias are preferred to allow flux and gases to escape during reflow soldering and therefore to minimize voiding. Underneath this via array a heat sink with thermal grease needs to be placed which is able to dissipate the complete module DC power (up to 2.6 Watts). In any case the module backside temperature should not exceed 110 °C.

QOUND

RFCM5304

Evaluation Board Schematic

QOCVO

RFCM5304

Evaluation Board Bill of Materials (BOM)

Ref. Designator	Value, package	Description	Manufacturer	Part Number
C2, C3, C8	0.5 pF, 0402	Capacitor, NP0, 50V, 0.25pF	Murata, Taiyo Yuden	
C4, C5, C6	4.7 nF, 0402	Capacitor, X7R, 50V, 10%	Murata, Taiyo Yuden	
C9	1.0pF, 0402	Capacitor, NP0, 50V, 0.25pF	Murata, Taiyo Yuden	
C14	10nF, 0402	Capacitor, X7R, 25V, 10%	Murata, Taiyo Yuden	
R2, R3, R7, R8	51R, 0402	Resistor, TK100, 1%	various	
R4, R5, R6	0R, 0402	Jumper	various	
L1, L2	56nH, 0402	Inductor, 5%	Taiyo Yuden	HK1005 56NJ-T
L3, L4	47nH, 0402	Inductor, 5%	Taiyo Yuden	HK1005 47NJ-T
FB1	1k5@100MHz, 0603	Impedance Bead, DCR 0.75R, 250mA	Taiyo Yuden	BK1608LM152-T
D1	33V	Transient Suppressor Diode, 5%	Diotec	TGL34-33A
T1	1:1	RF Transformer	Mini-RF	MRFXF0021
T2	1:4	RF Transformer	Mini-RF	MRFXF2753
U1		Amplifier	Qorvo	RFCM5304
C1, C7, C10, C11, C12, C13		DNI		

Notes: Evaluation board PCB: FR4, double sided, 1.5mm, 35um Cu

Pin Configuration

Pin Description

Pin No.	Label	Description		
1	Power Enable	Logic Level (3.3V) Power Enable Control		
2	Att. Adjust	Voltage Adjustable Attenuator		
3	RF IN (+)	RF AMP Positive Input		
4	RF IN (-)	RF AMP Negative Input		
5	N.C.			
6	ST1 OUT (-)	Stage 1 Positive Output		
7	ST1 OUT (+)	Stage 1 Negative Output		
8	ST2 IN (+)	Stage 2 Positive Input		
9	ST2 IN (-)	Stage 2 Negative Input		
10	N.C.			
11	RF OUT (-)	RF AMP Negative Output		
12	12V Out	12V Output		
13	RF OUT (+)	RF AMP Positive Output		
14	N.C.			
15	12V V+	Supply Voltage 12V		
16 – 19	N.C.			
20	12V INT	12V internal		
21	ST1 V+	12V Stage 1		

RFCM5304

QOUNO

Package Outline Drawing (Dimensions in millimeters)

Notes:

- 1. Dimension and tolerance formats conform to ASME Y14.5M-1994.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Co-planarity applies to the exposed ground/thermal pad as well as the contact pins.
- 4. Package body length/width does not include plastic flash protrusion across mold parting line.

RFCM5304

QOUNO

PCB Metal Land Pattern (Dimensions in millimeters)

Note: All dimensions are in millimeters. Angles are in degrees.

QOCVO

RFCM5304

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	1B	JEDEC JS-001	Caution!
ESD-Charged Device Model (CDM)	C3	JEDEC JS-002	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: ENEPIG

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.