QONO

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

General Description

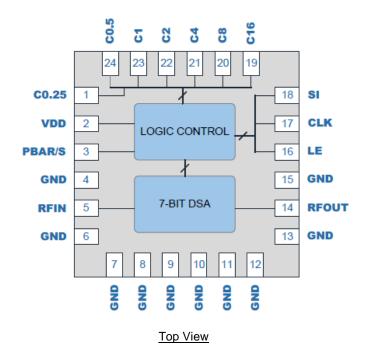
Qorvo's RFSA3714 is a 7-bit digital step attenuator (DSA) that features high linearity over the entire 31.75dB gain control range with 0.25dB steps. The RFSA3714 features three modes of control: serial, latched parallel, and direct parallel programming. The RFSA3714 has a low insertion loss of 1.5dB at 2GHz. Patent pending circuit architecture provides Overshoot-free transient switching performance. The RFSA3714 is available in a 4mm x 4mm QFN package.

RFSA3714

24 Pad 4.0mm x 4.0mm x 0.85mm QFN Package

Product Features

- 7-Bit, 31.75dB Range, 0.25dB Step
- Patent Pending Circuit Architecture
- Overshoot-free Transient Switching Performance
- Frequency Range 50MHz to 6000MHz
- High Linearity, IIP3 >55dBm
- Serial and Parallel Control Interface
- Fast Switching Speed, <120nsec
- Single Supply 3V to 5V Operation
- RF Pins Have No DC Voltage, Can be DC Grounded Externally
- Power-up Default Setting Is Maximum Attenuation


Applications

- 2G through 4G Base Stations
- Point-to-Point
- WiFi
- Test Equipment

Ordering Information

Part No.	Description
RFSA3714SQ	Sample bag with 25 pieces
RFSA3714SR	7" Reel with 100 pieces
RFSA3714TR13	13" Reel with 2500 pieces
RFSA3714PCK-410	50MHz to 6000MHz PCBA with 5-piece sample bag

Functional Block Diagram

RFSA3714

50MHz to 6000MHz, Digital Step Attenuator

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40 to +150 °C
RF Input Power at RFIN, T=105 °C	+30 dBm
RF Input Power at RFOUT, T=105 °C	+27 dBm
Supply Voltage (V _{DD})	-0.5V to +6 V
All Other DC and Logic Pins (1)(2)	-0.5V to +6 V

Notes:

1. Supply Voltage Must Be Applied Prior to Any Other Pin Voltages.

2. Not to exceed V_{DD}.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Electrical Specifications

Recommended Operating Conditions

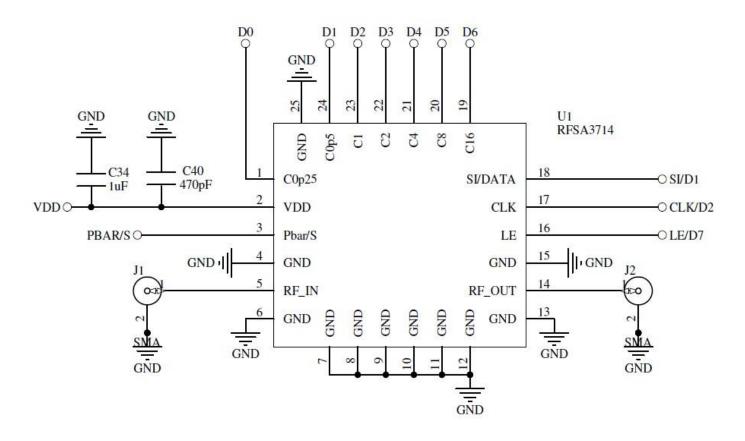
Parameter	Min	Тур	Max	Units
Temperature Range (1)	-40		+105	°C
Junction Temperature			+125	°C
Supply Voltage	2.7		5.5	V

Notes:

1. RF Input Power Handling Derates Above 105°C

Parameter	rameter Conditions (1)				Units
	General Performance				
Supply Current	Steady state operation, current draw during attenuation state transitions is higher.		180		μA
Thermal Resistance	At maximum attenuation state with RF power applied to the RFIN pin		55		°C/W
RF Input Power at RFIN Pin	Continuous operation at +105°C case			+27	dBm
RF Input Power at RFOUT Pin	temperature			+20	dBm
	RF Performance				
Frequency Range		50		6000	MHz
Insertion Loss	2000MHz, 0dB attenuation		1.5		dB
Attenuation Range	0.25dB step size		31.75		dB
	50 MHz to 2.7 GHz	±(0.15 + 2%)			dB
Absolute Attenuation Error	2.7 GHz to 4 GHz	±(0.15 + 3 %))	dB
	4 GHz to 6 GHz	±(0.25 + 5 %)			dB
Input IP3			+55		dBm
Input P0.1dB			+30		dBm
Return Loss			15		dB
Input and Output Impedance			50		Ω
	General Performance				
Switching Speed	50% control to 10%/90% RF		120		nsec
Successive Step Phase Delta	2000MHz		2		Deg
	Control			`	
Digital Logic Low		0		0.63	V
Digital Logic High		1.17		5.5 ⁽²⁾	V

Notes:

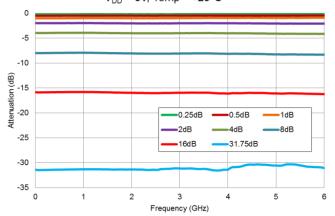

1. Typical performance at these conditions: Temp = 25°C, 2000MHz, 5V Supply Voltage

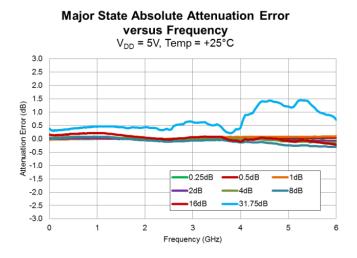
2. Digital Logic High not to exceed $V_{\text{DD.}}$

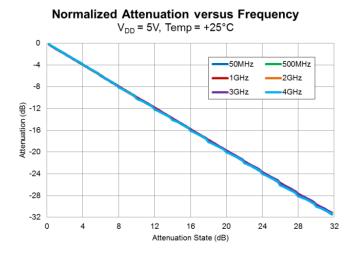
RFSA3714

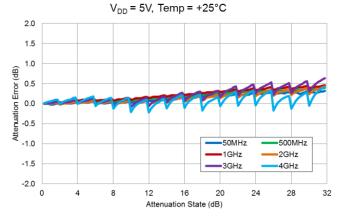
50MHz to 6000MHz, Digital Step Attenuator

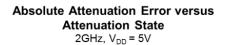
Typical Application Schematic

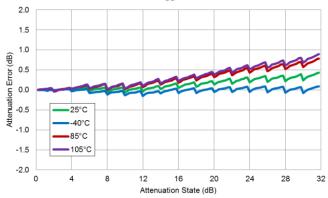



RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

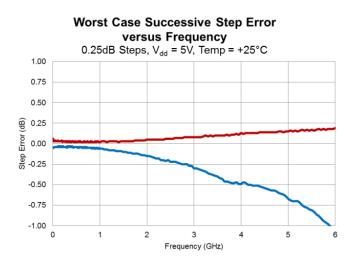

Performance Plots

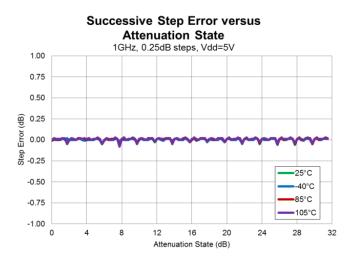

Normalized Attenuation versus Frequency V_{DD} = 5V, Temp = +25°C

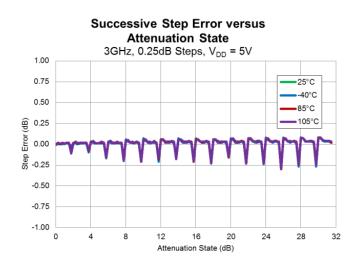


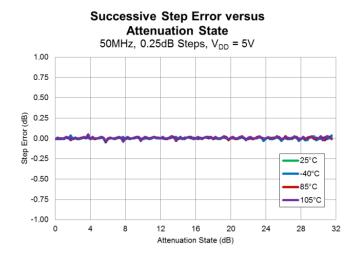


Absolute Attenuation Error versus Attenuation State

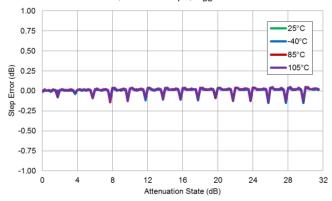


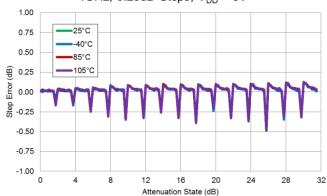




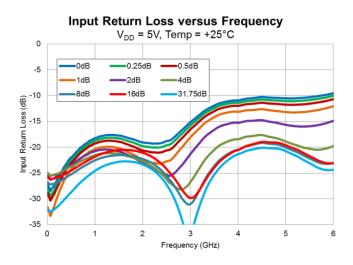

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Performance Plots

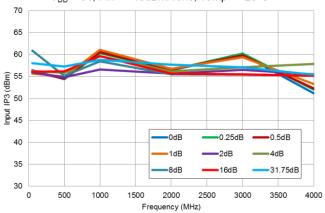


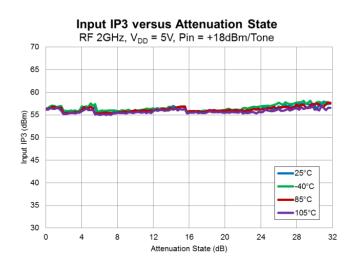


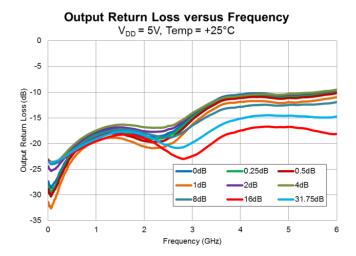
Successive Step Error versus Attenuation State 2GHz, 0.25dB Steps, V_{DD} = 5V

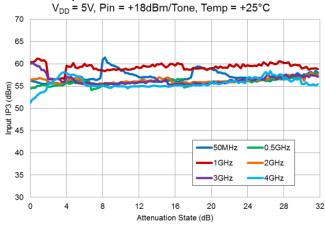


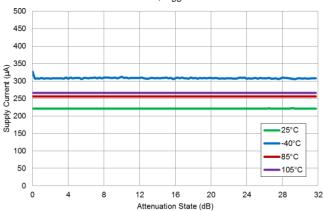
Successive Step Error versus Attenuation State 4GHz, 0.25dB Steps, V_{DD} = 5V



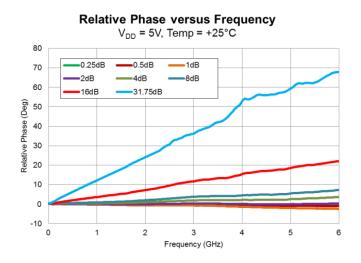

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator


Performance Plots

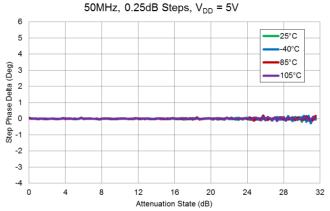

Input IP3 versus Frequency V_{DD} = 5V, Pin = +18dBm/Tone, Temp = +25°C

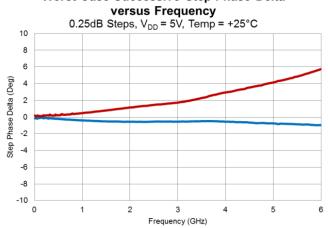


Input IP3 versus Attenuation State

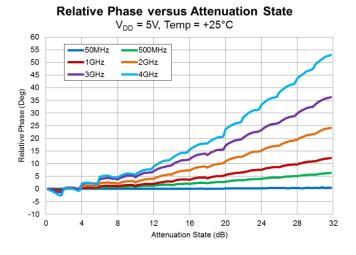


Supply Current versus Attenuation State RF 2GHz, V_{DD} = 5V

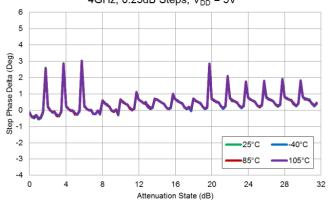



RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

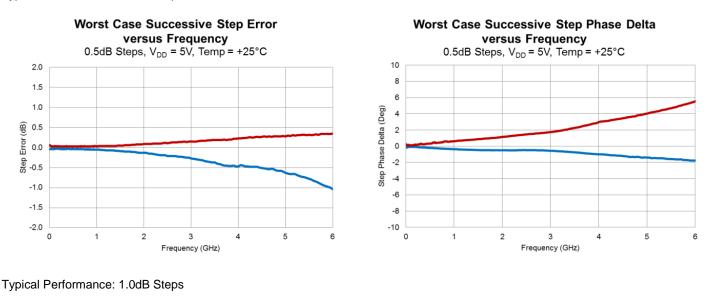
Performance Plots

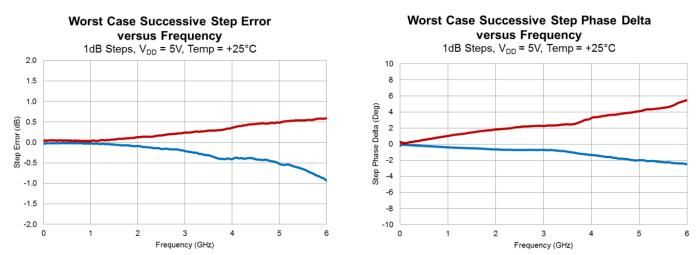


Successive Step Phase Delta versus **Attenuation State**



Worst Case Successive Step Phase Delta

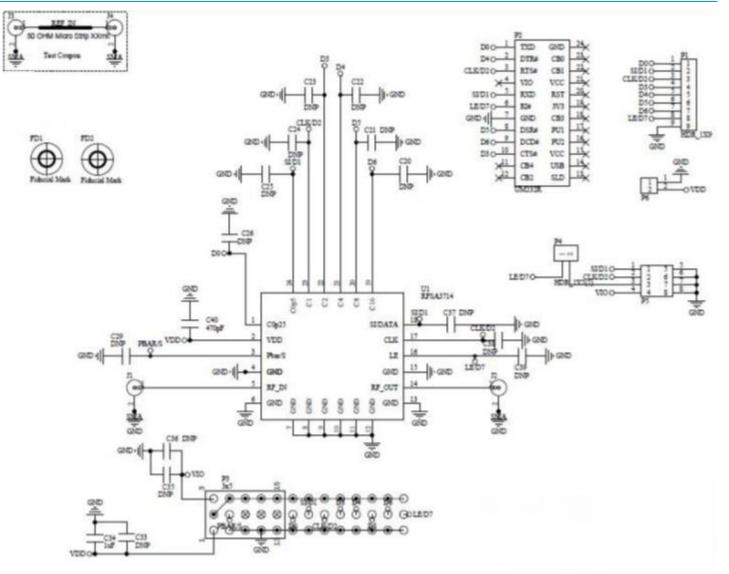

Successive Step Phase Delta versus **Attenuation State** 4GHz, 0.25dB Steps, V_{DD} = 5V



RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Performance Plots

Typical Performance: 0.5dB Steps


Notes:

- 1. Top 2 Plots: Attenuator remains monotonic if step error is less than +0.5dB.
- 2. Bottom 2 Plots: Attenuator remains monotonic if step error is less than +1.0dB.

RFSA3714 6000MHz Digital Stop Attonuator

50MHz to 6000MHz, Digital Step Attenuator

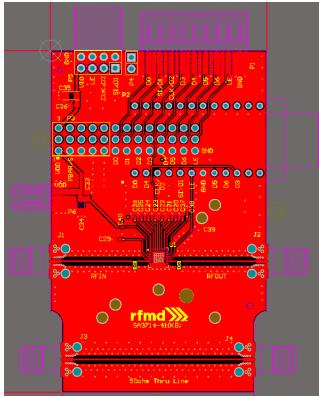
Evaluation Board Schematic 50MHz to 6000MHz Application Circuit

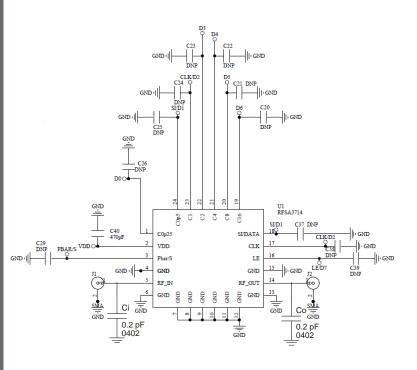
RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Evaluation Board Bill of Materials (BOM) 50MHz to 6000MHz Application Circuit

Reference Des.	Value	Description	Manuf.	Part Number
		SA3714-410	Dynamic Details (DDI) Toronto	SA3714-410(B)
U1		Digital Step Attenuator 50MHz to 6000MHz	Qorvo	RFSA3714SB
C34	1uF	CAP, 10%, 25V, X7R, 1206	Taiyo Yuden (USA), Inc.	CE TMK316BJ105KL-T
J1 – J4		CONN, SMA, END LNCH, UNIV, HYB MNT	Molex	SD-7351-4000
P1		CONN, HDR, ST, 9-PIN, 0.100"	Samtec Inc.	TSW-109-07-G-S
P2		CONN, SKT, 24-PIN DIP, 0.600", T/H	Aries Electronics Inc.	24-6518-10
M1 ⁽¹⁾		MOD, USB TO SERIAL UART, SSOP-28	Future Technology Devices Int'l	UM232R
P3 ⁽²⁾		CONN, HDR, ST, 3 x 5, 0.100", T/H	Samtec Inc.	TSW-105-07-L-T
P4		CONN, HDR, ST, 2-PIN, 0.100:	Samtec Inc.	TSW-102-07-G-S
P5		CONN, HDR, 2 x 4, RA, 0.100, T/H	Samtec Inc.	TSW-104-08-G-D-RA
P6		CONN, HDR, ST, PLRZD, 2-PIN, 0.100"	ITW Pancon	MPSS100-2-C
C40	470pF	CAP, 5%, 50V, C0G, 0402	Murata Electronics	GRM1555C1H471JA01D
S1 – S2 ⁽²⁾		Jumper, 2-Pin	3M Interconnect Solutions	929950-00
C20 – C26, C29, C33, C35 – C39, S6		DNP		

Notes:

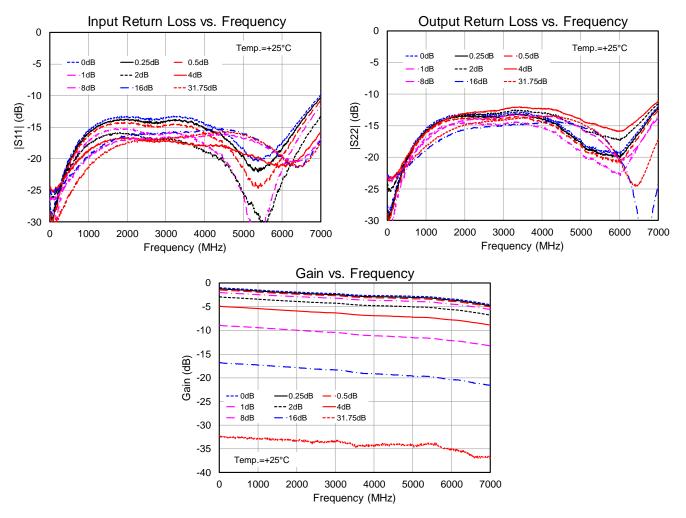

1. M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2.


2. Jumpers S1 and S2 should be installed on P3.

Application for Enhanced Return Loss from 4 GHz to 6 GHz

The small signal frequency response of the RFSA3714 is improved to 6GHz by added a small tuning circuit to both the input and output side of the DSA on the existing evaluation board.

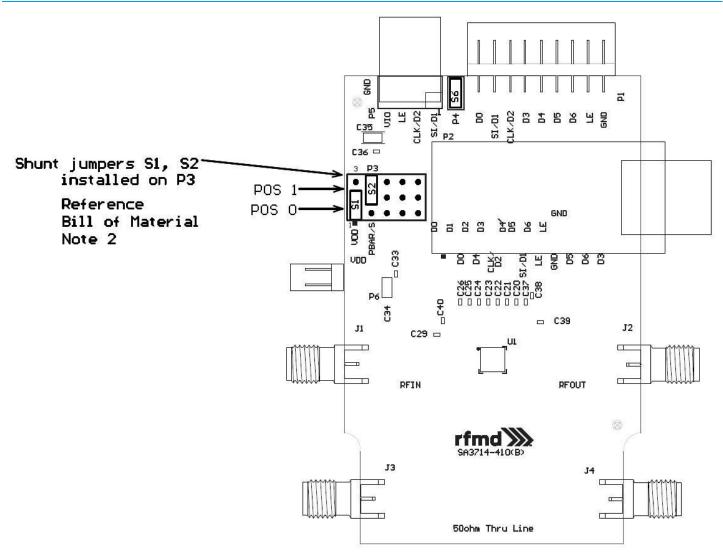
RFSA3714–PCB Evaluation Board with Additional Tuning Capacitors


Notes:

- 1. Distance from Ci right edge to U1 left edge: 95 mils.
- 2. Distance from Co left edge to U1 right edge: 40 mils.

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Performance Plots – Enhanced Return Loss from 4 GHz to 6 GHz


Test conditions unless otherwise noted: V_{DD} = +5.0V, Temp.= +25 °C

RFSA3714

50MHz to 6000MHz, Digital Step Attenuator

Evaluation Board Assembly Drawing

Evaluation Board Jumper Programming

Jumpers	Connector	Signal	Position	U1 Connection	Comment
61			0	VDD (from P6)	
S1	P3	Logic Voltage	1	VIO (from P5)	
60		PBar/S	0	GND	Parallel Mode
S2			1	U1_VDD	Serial Mode
00	D4	LE	OPEN	LE	All Other Modes
S6	P4		Installed	LE (from P5 Pin 3)	Serial Mode Using P5

Notes:

1. Default jumper settings are **BOLD**.

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Evaluation Board Programming Using USB Interface

Serial Mode

All programming jumpers on the evaluation board are set to the default values indicated in the table. Refer to the Control Bit Generator (CBG) Software Reference Manual for detailed instructions on how to setup the software for use. Apply the supply voltage to P6. Select 'RFSA3714' from the RFMD parts list of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurement can be taken.

Latched Parallel Mode

Evaluation board programming jumper S2 is set to '0'. All other programming jumpers are not required and can be set to any position. Refer to the Control Bit Generator Software Reference Manual for detailed instructions on how to set up the software for use. Apply the supply voltage to P6. Select 'RFSA3714-P' from the RFMD part list of the CBG user interface. Set the attenuation value using the CBG user interface. The attenuator is set to the desired state and measurements can be taken.

Evaluation Board Programming Using External Bus

Serial Mode

The configuration allows the user to control the attenuator through the P5 connector using an external harness. Remove the USB interface board if it is currently installed on the evaluation board. Connect a user-supplied harness to the P5 connector. Note that the top row of P5 contains the serial bus signals and the bottom row is ground. Programming jumper S1 is set to '0' and S2 is set to '1'. Jumper S6 is installed and allows the LE signal to be routed from the P5 connector to the attenuator. Apply the supply voltage P6. Send the appropriate signals onto the serial bus lines in accordance with the Serial Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

Latched Parallel Mode

This configuration allows the user to control the attenuator through the P1 connector using an external harness. Remove the USB interface it if is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. The parallel bus signal names for P1 are indicated on the evaluation board. Programming jumper S2 is set to '0' to select parallel mode. All other programming jumpers are not required and can be set to any position. Apply the supply voltage to P6. Send the appropriate signals onto the parallel bus lines in accordance with the Latched Parallel Mode Timing Diagram. The attenuator is set to the desired state and measurements can be taken.

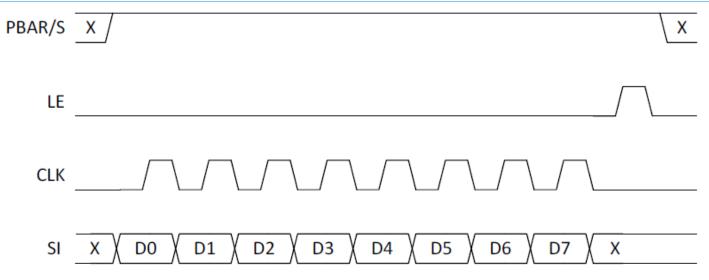
Direct Parallel Mode

This configuration allows the user to control the attenuator through the P1 connector using an external harness. When using this mode the LE signal is held at logic high so that the attenuation will change immediately when there is a change in logic state for any of the parallel bus signals. Remove the USB interface if it is currently installed on the evaluation board. Connect a user-supplied harness to the P1 connector. The parallel bus signal names for P1 are indicated on the evaluation board. Programming jumper S2 is set to '0' to select parallel mode. All other programming jumpers are not required and can be set to any position. Apply the supply voltage to P6. Send the appropriate signals onto the parallel bus lines. The attenuator is set to the desired state and measurements can be taken.

Default Power-up State

The default attenuation state is maximum (31.75dB) when supply voltage is applied to the attenuator in both serial and parallel modes. If a different attenuation state is desired during power up, this can be accomplished by applying signals according to the Parallel Mode Truth Table. The attenuator will power up to the state applied to the parallel bus during turn on. The LE signal must be held to logic '0' during power up.

Pin Configuration and Description

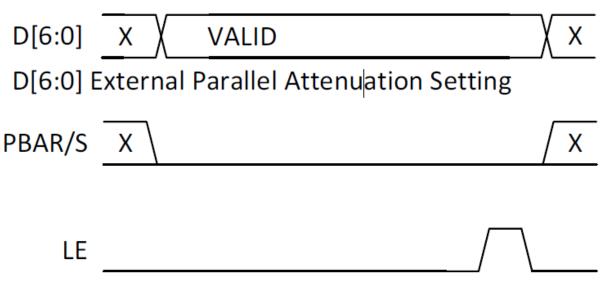

Pad No.	Label	Description
1	C0.25	0.25dB Parallel Control Bit
2	VDD	Supply Voltage
3	PBAR/S	Mode Select Pin Logic Low = Parallel Logic High = Serial
4	GND	Ground Pin
5	RFIN	RF Input Pin, Incident RF power must enter this pin for rated thermal performance and reliability. Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
6	GND	Ground Pin
7	GND	Ground Pin
8	GND	Ground Pin
9	GND	Ground Pin
10	GND	Ground Pin
11	GND	Ground Pin
12	GND	Ground Pin
13	GND	Ground Pin
14	RFOUT	RF Output Pin; Do not apply DC power to this pin. Pin may be DC grounded externally and is grounded thru resistors internal to the part.
15	GND	Ground Pin
16	LE	Latch Enable, The leading edge of signal on LE causes the attenuator to change setting for serial and latched parallel modes. For direct parallel mode keep LE at a logic high level.
17	CLK	Serial Clock Input
18	SI	Serial Data Input
19	C16	16dB Parallel Control Bit
20	C8	8dB Parallel Control Bit
21	C4	4dB Parallel Control Bit
22	C2	2dB Parallel Control Bit
23	C1	1dB Parallel Control Bit
24	C0.5	0.5dB Parallel Control Bit

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Serial Mode Attenuation Word Truth Table

			Attenuat	ion Word			Attenuation State	
D7	D6	D5	D4	D3	D2	D1	D0 (LSB)	Attenuation State
Х	L	L	L	L	L	L	L	0dB / Reference Insertion Loss
Х	L	L	L	L	L	L	Н	0.25dB
Х	L	L	L	L	L	Н	L	0.5dB
Х	L	L	L	L	Н	L	L	1dB
Х	L	L	L	Н	L	L	L	2dB
Х	L	L	Н	L	L	L	L	4dB
Х	L	Н	L	L	L	L	L	8dB
Х	Н	L	L	L	L	L	L	16dB
Х	Н	Н	Н	Н	Н	Н	Н	31.75dB

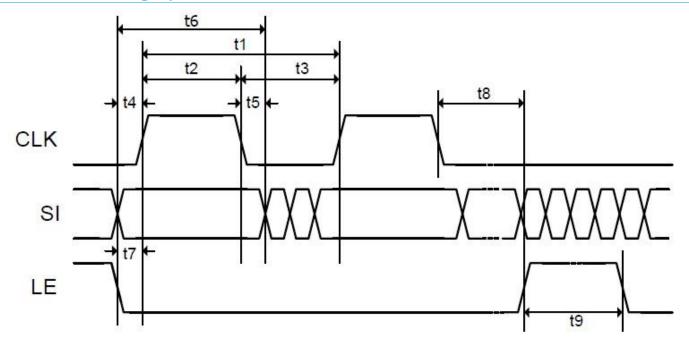
Serial Mode Timing Diagram


Note: Bit D7 is not used and can be set to logic high or low

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

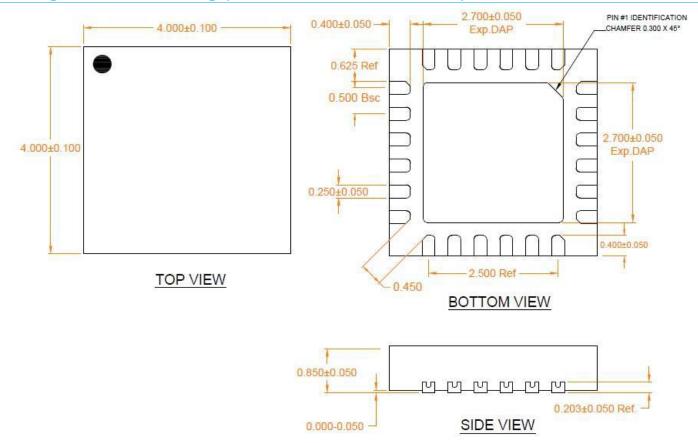
Parallel Mode Truth Table

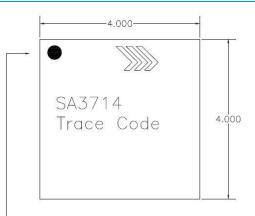
		Parallel I	nput Contr	ol Setting			
D6 (C16)	D5 (C8)	D4 (C4)	D3 (C2)	D2 (C1)	D1 (C0.5)	D0 (C0.25)	Attenuation State
L	L	L	L	L	L	L	0dB / Reference Insertion Loss
L	L	L	L	L	L	Н	0.25dB
L	L	L	L	L	Н	L	0.5dB
L	L	L	L	Н	L	L	1dB
L	L	L	Н	L	L	L	2dB
L	L	Н	L	L	L	L	4dB
L	Н	L	L	L	L	L	8dB
Н	L	L	L	L	L	L	16dB
Н	Н	Н	Н	Н	Н	Н	31.75dB


Latched Parallel Mode Timing Diagram

RFSA3714

50MHz to 6000MHz, Digital Step Attenuator


Serial Bus Timing Specifications


Parameter	Limit	Unit	Comment
t1	25	MHz max	CLK Frequency
t2	20	ns min	CLK High
t3	20	ns min	CLK Low
t4	5	ns min	SI to CLK Setup Time
t5	5	ns min	SI to CLK Hold Time
t6	30	ns min	SI Valid
t7	5	ns min	LE to CLK Setup Time
t8	5	ns min	CLK to LE Setup Time
t9	10	ns min	LE Pulse Width

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Package Outline Drawing (Dimensions in millimeters)

Branding Diagram

Pin 1 Indicator

Trace Code to be assigned by SubCon

RFSA3714 50MHz to 6000MHz, Digital Step Attenuator

Handling Precautions

Parameter	Rating	Standard	Contion
ESD-Human Body Model (HBM)	Class 1C	ESDA/JEDEC JS-001-2012	Caution! ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 1	IPC/JEDEC J-STD-020	LOD-Densitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compliance requirements
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free
- Qorvo Green

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163

Web: www.qorvo.com

Email: customer.support@gorvo.com

For technical questions and application information: Email: appsupport@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2017 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.