

na.industrial.panasonic.com

industrial@us.panasonic.com

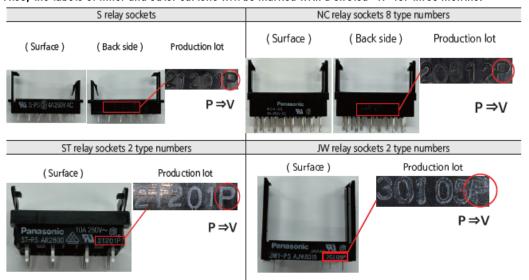
1-800-344-2112

Product Change Notice: S, NC, ST, & JW relay sockets Production Location Change

PCN.PG03.PG04.PG06.03.07.2024

03.07.2024

About This Notice:


We would like to inform that the S, NC, ST, and JW type sockets are all subject to change due to change manufacturing site location to consolidate manufacturing bases and improve production efficiency.

Effective Date:

January 1, 2024.

Change Details:

The 6^{th} digit of the production lot was changed from "P" to "V" as shown below. Also, the labels of inner and outer cartons will be marked with a circled "K" for three months.

Affected Parts:

S-PS

NC2-JPS

NC4-JPS

NC2-SS

NC2-PS

Panasonic INDUSTRY

		na.industrial.panasonic.com	industrial@us.panasonic.com	1-800-344-2112	
	NC2-WS NC4-SS NC4-PS NC4-WS ST-PS ST-SS JW1-PS JW2-PS				
Datasheet(s):	See attached.				
Notes:	The part number, specification	n, and price will remain unch	anged.		

Panasonic PCN.PG03.PG04.PG06.03.07.2024 S, NC, ST, and JW relay sockets Affected Parts List

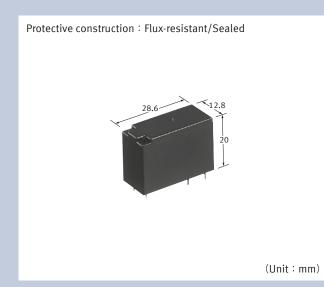
Panasonic PCN.PG03.03.07.2024 S, NC, ST, and JW relay sockets Affected Parts Panasonic PCN.PG04.03.07.2024 S, NC, ST, and JW relay sockets Affected Parts

Panasonic PCN.PG03.03.07.2024 S, NC, ST, and JW relay sockets Affected Parts

Affected Series	Affeceted Part Numbers	Suggested Replacement Series	Suggested Replacement Part Numbers	Comments
S Relay Socket	S-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC2-JPS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC4-JPS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC2-SS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC2-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC2-WS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC4-SS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC4-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
NC Relay Socket	NC4-WS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
ST Relay Socket	ST-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
ST Relay Socket	ST-SS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
JW Relay Socket	JW1-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"
JW Relay Socket	JW2-PS	N/A	N/A	The 6th digit in the production lot code is changed from "P" to "V"

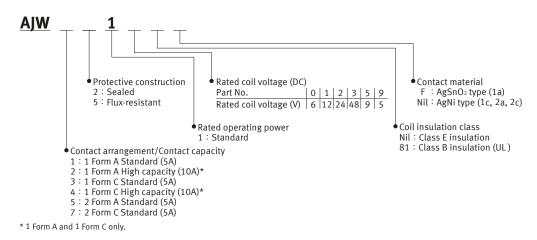
Product Catalog

IN Your Future

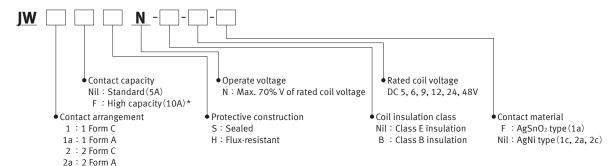


JW RELAYS

1 Form A/1 Form C/2 Form A/2 Form C, 5 A/10 A, Power relays


FEATURES

- Miniature/slim: 12.8 mm (W) \times 28.6 mm (L) \times 20 mm (H)
- Standard type (5 A) and high capacity type (10 A) are available
- PC board sockets are available


TYPICAL APPLICATIONS

- Home appliance
- Office machine
- Industrial equipment

ORDERING INFORMATION (PART NO.: Ordering part number for Japanese market)

ORDERING INFORMATION (TYPE NO.: Ordering part number for non Japanese market)

^{* 1} Form A and 1 Form C only.

TYPES

"Type No. " is ordering part number for non Japanese market. "Part No. " is ordering part number for Japanese market.

• Standard type (5 A)

Contact	Rated coil	Seale	ed	Flux-resi	stant	Standard	d packing
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	5 V DC	JW1aSN-DC5V-F	AJW1219F	JW1aHN-DC5V-F	AJW1519F		
	6 V DC	JW1aSN-DC6V-F	AJW1210F	JW1aHN-DC6V-F	AJW1510F		
1 Form A	9 V DC	JW1aSN-DC9V-F	AJW1215F	JW1aHN-DC9V-F	AJW1515F		
1 Form A	12 V DC	JW1aSN-DC12V-F	AJW1211F	JW1aHN-DC12V-F	AJW1511F		
	24 V DC	JW1aSN-DC24V-F	AJW1212F	JW1aHN-DC24V-F	AJW1512F		
	48 V DC	JW1aSN-DC48V-F	AJW1213F	JW1aHN-DC48V-F	AJW1513F		
	5 V DC	JW1SN-DC5V	AJW3219	JW1HN-DC5V	AJW3519		
	6 V DC	JW1SN-DC6V	AJW3210	JW1HN-DC6V	AJW3510		
1 Form C	9 V DC	JW1SN-DC9V	AJW3215	JW1HN-DC9V	AJW3515	100 pcs. 5	
1 FOITH C	12 V DC	JW1SN-DC12V	AJW3211	JW1HN-DC12V	AJW3511		
	24 V DC	JW1SN-DC24V	AJW3212	JW1HN-DC24V	AJW3512		
	48 V DC	JW1SN-DC48V	AJW3213	JW1HN-DC48V	AJW3513		E00 per
	5 V DC	JW2aSN-DC5V	AJW5219	JW2aHN-DC5V	AJW5519		500 pcs.
	6 V DC	JW2aSN-DC6V	AJW5210	JW2aHN-DC6V	AJW5510		
2 Form A	9 V DC	JW2aSN-DC9V	AJW5215	JW2aHN-DC9V	AJW5515		
2 FOITH A	12 V DC	JW2aSN-DC12V	AJW5211	JW2aHN-DC12V	AJW5511		
	24 V DC	JW2aSN-DC24V	I-DC24V AJW5212 JW2aHN-DC	JW2aHN-DC24V	AJW5512		
	48 V DC	JW2aSN-DC48V	AJW5213	JW2aHN-DC48V	AJW5513		
	5 V DC	JW2SN-DC5V	AJW7219	JW2HN-DC5V	AJW7519		
	6 V DC	JW2SN-DC6V	AJW7210	JW2HN-DC6V	AJW7510		
2 Form C	9 V DC	JW2SN-DC9V	AJW7215	JW2HN-DC9V	AJW7515		
2 FOITH C	12 V DC	JW2SN-DC12V	AJW7211	JW2HN-DC12V	AJW7511		
	24 V DC	JW2SN-DC24V	AJW7212	JW2HN-DC24V	AJW7512		
	48 V DC	JW2SN-DC48V	AJW7213	JW2HN-DC48V	AJW7513		

Note) Class B coil insulation type is available. Ex) AJW121181F

• High capacity type (10 A)

Contact	Rated coil	Seale	ed	Flux-res	stant	Standard packing	
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	5 V DC	JW1aFSN-DC5V-F	AJW2219F	JW1aFHN-DC5V-F	AJW2519F		
	6 V DC	JW1aFSN-DC6V-F	AJW2210F	JW1aFHN-DC6V-F	AJW2510F		
1 Form A	9 V DC	JW1aFSN-DC9V-F	AJW2215F	JW1aFHN-DC9V-F	AJW2515F		
I FOIIII A	12 V DC	JW1aFSN-DC12V-F	AJW2211F	JW1aFHN-DC12V-F	AJW2511F		
	24 V DC	JW1aFSN-DC24V-F	AJW2212F	JW1aFHN-DC24V-F	AJW2512F		
	48 V DC	JW1aFSN-DC48V-F	AJW2213F	JW1aFHN-DC48V-F	AJW2513F	100 pcs.	E00 per
	5 V DC	JW1FSN-DC5V	AJW4219	JW1FHN-DC5V	AJW4519	100 pcs.	500 pcs.
	6 V DC	JW1FSN-DC6V	AJW4210	JW1FHN-DC6V	AJW4510		
1 Form C	9 V DC	JW1FSN-DC9V	AJW4215	JW1FHN-DC9V	AJW4515		
I FOITH C	12 V DC	JW1FSN-DC12V	AJW4211	JW1FHN-DC12V	AJW4511		
	24 V DC	JW1FSN-DC24V	AJW4212	JW1FHN-DC24V	AJW4512		
	48 V DC	JW1FSN-DC48V	AJW4213	JW1FHN-DC48V	AJW4513		

Note) Class B coil insulation type is available. Ex) AJW221181F

For the sockets, please refer to the " JW RELAYS PC board sockets ".

RATING

■ Coil data

- Operating characteristics such as "Operate voltage " and " Release voltage " are influenced by mounting conditions or ambient temperature, etc.
 - Therefore, please use the relay within ± 5 % of rated coil voltage.
- "Initial" means the condition of products at the time of delivery.

Rated coil voltage	Operate voltage*¹ (at 20 ℃)	Release voltage*¹ (at 20 ℃)	Rated operating current (±10 %, at 20 °C)	Coil resistance (±10 %, at 20 ℃)	Rated operating power	Max. allowable voltage
5 V DC			106 mA	47 Ω		120.0/)/
6 V DC			88 mA	68 Ω		130 % V of rated coil voltage
9 V DC	Max. 70 % V of rated coil voltage	Min. 10 % V of rated coil voltage	58 mA	155 Ω	530 mW	(at 60 °C: class E)
12 V DC	(Initial)	(Initial)	44 mA	270 Ω	220 11100	120 % V of rated
24 V DC		,,	22 mA	1,100 Ω		coil voltage (at 85 ℃: class B) *²
48 V DC			11 mA	4,400 Ω		(at 05 C. class b)

^{*1:} square, pulse drive

Specifications

Contact arrangement 1 Form A, 1 Form C, 2 Form A, 2 Form C 1 Form A, 1 Form C		Item	Specif	ications	
Contact material 1 Form A: AgSnO ₂ type 1 Form C: 2 Form A, 2 Form C: AgNi type 2 Contact material 2 Form C, 2 Form A, 2 Form C: AgNi type 3 Form C: AgNi type 4 Form C: AgNi type 5 Form C: AgNi type 5 Form C: AgNi type 6 Form C: AgNi type 7 Form C: AgNi type 7 Form C: AgNi type 8 Form C: AgNi type 9 Form		item	Standard type	High capacity type	
Contact data Contact material 1 Form A: AgSnO: type 1 Form C; 2 Form A, 2 Form C; AgNi type 1 Form C; 2 Form A, 2 Form C; AgNi type 1 Form C; 2 Form A, 2 Form C; AgNi type 1 Form C; 2 Form A, 2 Form C; AgNi type 1 Form C; 2 Form A, 2 Form C; AgNi type 1 Form C; AgNi ty		Contact arrangement	1 Form A, 1 Form C, 2 Form A, 2 Form C	1 Form A, 1 Form C	
Contact data Contact rating Contact rating Contact rating Cresistive) Aux. switching power (resistive) Max. switching voltage Max. switching current Min. switching load (reference value)*1 Dielectric strength (initial) Between open contacts Between contact sets Between contact and coil Surge withstand voltage withstand voltage characteristic (initial) Conditions Conditions Conditions Tenditions Te			Max. 100 m Ω (by voltage drop 6 V DC 1 A)		
Contact data Max. switching power (resistive) 1,250 VA, 150 W 2,500 VA, 300 W Max. switching voltage power (resistive) 250 V AC, 30 V DC Max. switching ourrent Min. switching load (reference value) *** 100 mA 5 V DC Insulation resistance (initial) Min. 1,000 MΩ (at 500 V DC, Measured portion is the same as the case of dielectric strength.) Between open contacts 1,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2 Between contact and coil 5,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2 Doperate time Max. 15 ms (at rated coil voltage, at 20 °C, without bounce) Characteristics (initial) *2 Time characteristics (initial) Operate time Max. 5 ms (at rated coil voltage, at 20 °C, without bounce, without diode) Shock resistance Functional 98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs) Vibration resistance Functional 10 to 55 Hz (at double amplitude of 2 mm) Vibration resistance Conditions for usage, transport and storage* Ambient temperature: -40 to +60 °C (class E), -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)		Contact material			
Power (resistive) 1,250 VA, 150 W 2,500 VA, 300 W Max. switching voltage 250 V AC, 30 V DC Max. switching current 5 A 10 A Min. 1,000 MΩ (at 500 V DC, Measured portion is the same as the case of dielectric strength.) Dielectric strength (initial) Between open contacts 1,000 V rms for 1 min (detection current: 10 mA) Between contact sets 2 Form A, 2 Form C: 3,000 V rms for 1 min (detection current: 10 mA) Between contact sets 2 Form A, 2 Form C: 3,000 V rms for 1 min (detection current: 10 mA) Between contact and coil 5,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2	Contact data		5 A 250 V AC, 5 A 30 V DC	10 A 250 V AC, 10 A 30 V DC	
Max. switching current 5 A 10 A Min. switching load (reference value) *1 100 mA 5 V DC Insulation resistance (initial) Min. 1,000 MΩ (at 500 V DC, Measured portion is the same as the case of dielectric strength.) Dielectric strength (initial) Between open contacts 1,000 V rms for 1 min (detection current: 10 mA) Between contact sets 2 Form A, 2 Form C: 3,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2* Between contact and coil 5,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2* Between contact and coil 10,000 V Surge withstand voltage (initial) *2* Operate time Max. 15 ms (at rated coil voltage, at 20 °C, without bounce) Surge withstand voltage (initial) *2* Release time Max. 5 ms (at rated coil voltage, at 20 °C, without bounce) Shock resistance Punctional Psm /s² (half-sine shock pulse: 11 ms, detection time: 10 µs) Shock resistance Destructive 980 m/s² (half-sine shock pulse: 6 ms) Vibration resistance Functional 10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 µs) Expected life Mechanical life Min. 5 × 10° ope. (switching frequency: at 180 times/min) Conditions			1,250 VA, 150 W	2,500 VA, 300 W	
Min. switching load (reference value) *1 100 mA 5 V DC Insulation resistance (initial) Min. 1,000 MΩ (at 500 V DC, Measured portion is the same as the case of dielectric strength.) Dielectric strength (initial) Between open contacts 1,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2 Between contact and coil 5,000 V rms for 1 min (detection current: 10 mA) Surge withstand voltage (initial) *2 Between contact and coil 10,000 V Time characteristics (initial) Operate time Max. 15 ms (at rated coil voltage, at 20 °C, without bounce) Release time Max. 5 ms (at rated coil voltage, at 20 °C, without bounce, without diode) Shock resistance Functional 98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs) Vibration resistance Functional 10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μs) Expected life Mechanical life Min. 5 × 10° ope. (switching frequency: at 180 times/min) Conditions Conditions for usage, transport and storage*³ Ambient temperature: -40 to +60 °C (class E), -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)		Max. switching voltage	250 V AC, 30 V DC		
Insulation resistance (initial) Min. 1,000 MΩ (at 500 V DC, Measured portion is the same as the case of dielectric strength.			5 A	10 A	
Between open contacts 1,000 V rms for 1 min (detection current: 10 mA)			100 mA 5 V DC		
Dielectric strength (initial) Between contact sets	Insulation resist	ance (initial)	Min. 1,000 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)		
Surge withstand voltage (initial) ** Time characteristics (initial) ** Shock resistance Destructive 980 m/s² (half-sine shock pulse: 6 ms) Vibration resistance Destructive 980 m/s² (at double amplitude of 1.6 mm, detection time: 10 µs) Expected life Mechanical life Min. 5 × 10° ope. (switching frequency: at 180 times/min) Conditions Sets (detection current: 10 mA)		•	1,000 V rms for 1 min (detection current: 10 mA)		
Surge withstand voltage (initial) *2Between contact and coil10,000 VTime characteristics (initial)Operate timeMax. 15 ms (at rated coil voltage, at 20 °C, without bounce)Release timeMax. 5 ms (at rated coil voltage, at 20 °C, without bounce, without diode)Shock resistanceFunctional98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs)Vibration resistanceFunctional10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μs)Vibration resistanceDestructive10 to 55 Hz (at double amplitude of 2 mm)Expected lifeMechanical lifeMin. 5 × 10° ope. (switching frequency: at 180 times/min)ConditionsConditions for usage, transport and storage*³Ambient temperature: -40 to +60 °C (class E) , -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)	strength			_	
withstand voltage (initial) *2Between contact and coil10,000 VTime characteristics (initial)Operate timeMax. 15 ms (at rated coil voltage, at 20 °C, without bounce)Shock resistanceFunctional98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs)Vibration resistanceFunctional980 m/s² (half-sine shock pulse: 6 ms)Vibration resistanceFunctional10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μs)Destructive10 to 55 Hz (at double amplitude of 2 mm)Expected lifeMechanical lifeMin. 5 × 106 ope. (switching frequency: at 180 times/min)ConditionsConditions for usage, transport and storage*3Ambient temperature: -40 to +60 °C (class E) , -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)	(initial)		5,000 V rms for 1 min (detection current: 10 mA)		
characteristics (initial) Release time Max. 5 ms (at rated coil voltage, at 20 °C, without bounce, without diode) Shock resistance Destructive 98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μ s) Punctional 10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μ s) Expected life Mechanical life Min. 5 × 106 ope. (switching frequency: at 180 times/min) Ambient temperature: -40 to +60 °C (class E), -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)	withstand voltage		10,000 V		
(initial)Release timeMax. 5 ms (at rated coil voltage, at 20 °C, without bounce, without diode)Shock resistanceFunctional98 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs)Vibration resistanceFunctional10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μs)Destructive10 to 55 Hz (at double amplitude of 2 mm)Expected lifeMechanical lifeMin. 5 × 106 ope. (switching frequency: at 180 times/min)ConditionsConditions for usage, transport and storage*3Ambient temperature: -40 to +60 °C (class E) , -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)		Operate time	Max. 15 ms (at rated coil voltage, at 20 $^{\circ}$ C, without bounce)		
resistance Destructive 980 m/s² (half-sine shock pulse: 6 ms) Vibration Functional 10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μ s) Destructive 10 to 55 Hz (at double amplitude of 2 mm) Expected life Mechanical life Min. 5×10^6 ope. (switching frequency: at 180 times/min) Conditions Conditions for usage, transport and storage*3 Ambient temperature: -40 to $+60$ °C (class E), -40 to $+85$ °C (class B)*4 Humidity: 5 to 85 % RH (Avoid icing and condensation)		Release time	Max. 5 ms (at rated coil voltage, at 20 ℃, without	out bounce, without diode)	
Vibration resistanceFunctional10 to 55 Hz (at double amplitude of 1.6 mm, detection time: 10 μs)Expected lifeMechanical lifeMin. 5×10^6 ope. (switching frequency: at 180 times/min)ConditionsConditions for usage, transport and storage*3Ambient temperature: -40 to $+60$ °C (class E), -40 to $+85$ °C (class B)*4	Shock	Functional	98 m/s² (half-sine shock pulse: 11 ms, detection	n time: 10 µs)	
resistance Destructive 10 to 55 Hz (at double amplitude of 2 mm) Expected life Mechanical life Min. 5 × 10 ⁶ ope. (switching frequency: at 180 times/min) Conditions Conditions for usage, transport and storage*3 Ambient temperature: -40 to +60 °C (class E), -40 to +85 °C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)	resistance	Destructive	980 m/s² (half-sine shock pulse: 6 ms)		
Expected life Mechanical life Min. 5×10^6 ope. (switching frequency: at 180 times/min) Conditions Conditions for usage, transport and storage*3 Ambient temperature: $-40 \text{ to } +60 \text{ °C}$ (class E), $-40 \text{ to } +85 \text{ °C}$ (class B) *4 Humidity: $5 \text{ to } 85 \text{ °RH}$ (Avoid icing and condensation)	Vibration	Functional	10 to 55 Hz (at double amplitude of 1.6 mm, de	tection time: 10 µs)	
Conditions for usage, transport and storage*3 Conditions for usage, transport and storage*3 Conditions for usage, transport and storage*3 Ambient temperature: $-40 \text{ to } +60 \text{ °C} \text{ (class E) }, -40 \text{ to } +85 \text{ °C} \text{ (class B) *4}$ Humidity: 5 to 85 % RH (Avoid icing and condensation)	resistance	Destructive	10 to 55 Hz (at double amplitude of 2 mm)		
Conditions usage, transport and storage*3 Ambient temperature: -40 to +60 C (class E), -40 to +85 C (class B) *4 Humidity: 5 to 85 % RH (Avoid icing and condensation)	Expected life		Min. 5×10^6 ope. (switching frequency: at 180 t	times/min)	
Unit weight Approx. 13 g	Conditions usage, transport and Ambient temp				
	Unit weight		Approx. 13 g		

^{*1:} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

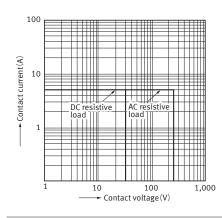
The operate and release voltages rise approximately 0.4 % for every 1 °C given a standard ambient temperature of 20 °C. Therefore, when using relays where the ambient temperature is high, please take into consideration the rise in operate voltage and keep the coil applied voltage within the maximum allowable applied voltage.

^{*2:} Wave is standard shock voltage of $\pm 1.2 \times 50$ µs according to JEC-212-1981

^{*3:} For ambient temperature, please read " GUIDELINES FOR RELAY USAGE ".

*4: The operate and release voltages rise approximately 0.4 % for every 1 °C given a standard ambient temperature of 20 °C. Therefore, when using relays where the ambient temperature is high, please take into consideration the rise in operate voltage and keep the coil applied voltage within the maximum allowable applied voltage.

■ Expected electrical life

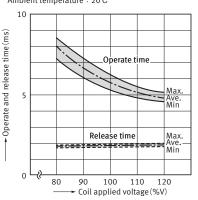

Conditions: Resistive load, at 20 °C, Flux-resistant: at 20 times/min • Sealed: at 6 times/min

Туре	Switching capacity	Number of operations
1 Form A, 1 Form C, 2 Form A, 2 Form C	5 A 250 V AC	Min. 100×10^{3} ope.
(Standard)	5 A 30 V DC	Min. 100×10^3 ope.
1 Form A, 1 Form C	10 A 250 V AC	Min. 100×10^{3} ope.
(High capacity)	10 A 30 V DC	Min. 100×10^3 ope.

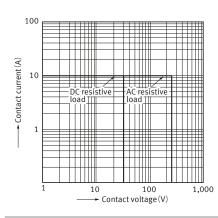
REFERENCE DATA

■ 1 Form A Standard type

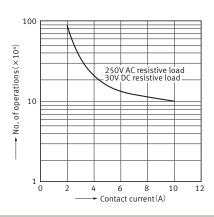
1. Max. switching capacity



2. Switching life curve

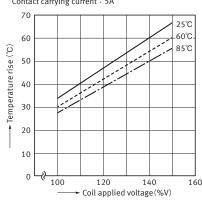

3. Operate and release time characteristics

Tested sample : JW1aSN-DC 12V-F, 10 pcs. Ambient temperature : 20° C

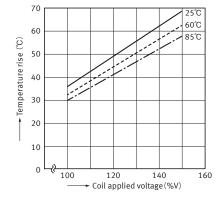


■ 1 Form A High capacity type

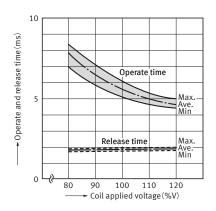
1. Max. switching capacity



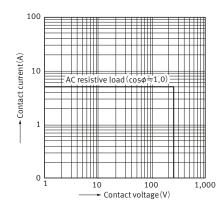
2. Switching life curve


3-1. Coil temperature characteristics (Average)

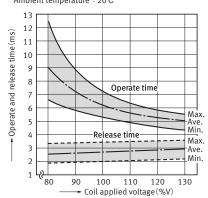
Tested sample: JW1aFSN-DC 12V-F Measured portion: Coil inside Contact carrying current: 5A


3-2. Coil temperature characteristics (Average)

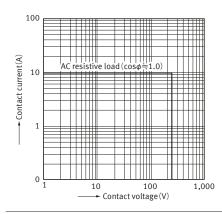
Tested sample: JW1aFSN-DC 12V-F Measured portion: Coil inside Contact carrying current: 10A


4. Operate and release time characteristics

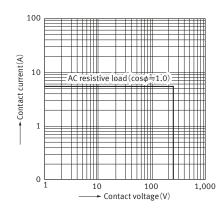
Tested sample : JW1aFSN-DC 12V-F, 10 pcs. Ambient temperature : 20°C


■ 1 Form C Standard type

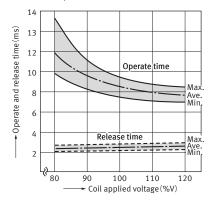
1. Max. switching capacity


2. Operate and release time characteristics

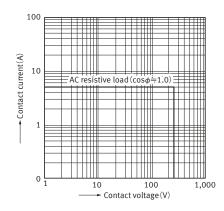
Tested sample : JW1SN-DC 12V, 6 pcs. Ambient temperature : 20°C


■ 1 Form C High capacity type

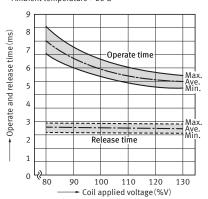
1. Max. switching capacity


■ 2 Form A Standard type

1. Max. switching capacity


2. Operate and release time characteristics

Tested sample : JW2aSN-DC 24V, 6 pcs. Ambient temperature : 20° C


■ 2 Form C Standard type

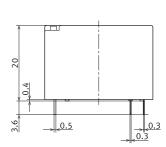
1. Max. switching capacity

2. Operate and release time characteristics

. Tested sample : JW2SN-DC 24V, 6 pcs. Ambient temperature : 20° C

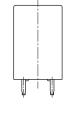
DIMENSIONS (Unit: mm)

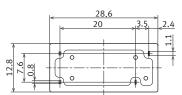
CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.


0

■ 1 Form A

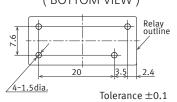
CAD




External dimensions

0

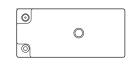
0

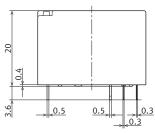


General tolerance Less than 1mm : ± 0.1 Min. 1mm less than 3mm : ± 0.2

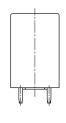
Min. $3mm : \pm 0.3$

Recommended PC board pattern (BOTTOM VIEW)


Schematic (BOTTOM VIEW)

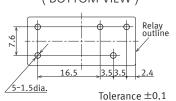

■ 1 Form C

CAD



External dimensions

16.5

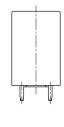


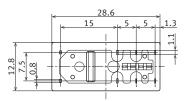
General tolerance

Less than 1mm : ± 0.1 Min. 1mm less than 3mm : ± 0.2 Min. 3mm: ±0.3

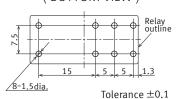
Recommended PC board pattern (BOTTOM VIEW)

Schematic (BOTTOM VIEW)

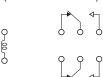

2 Form A, 2 Form C


CAD

External dimensions



General tolerance Less than $1 \text{mm} : \pm 0.1$


Min. 1mm less than 3mm : ± 0.2 Min. 3mm: ±0.3

Note: JW 2 Form A is as shown in the diagram above except the N.C. terminals are not present.

Recommended PC board pattern (BOTTOM VIEW)

Schematic (BOTTOM VIEW)

SAFETY STANDARDS

Each standard may be updated at any time, so please check our Website for the latest information.

■ UL (Approved)

Standard type

1 Form A

File No.	Contact rating
	5 A 277 V AC
F42020	5 A 30 V DC
E43028	1/8 HP 250 V AC
	1/8 HP 125 V AC

1 Form C

File No.	Contact rating
	5 A 277 V AC
F43028	5 A 30 V DC
E43UZ0	1/8 HP 250 V AC
	1/8 HP 125 V AC

High capacity type

1 Form A

File No.	Contact rating
	10 A 277 V AC
E42020	10 A 30 V DC
E43028	¹/₃ HP 250 V AC
	¹/₃ HP 125 V AC

■ CSA (Approved)

Standard type

1 Form A

	File No.	Contact rating
		5 A 277 V AC
	1024714	5 A 30 V DC
		¹ / ₈ HP 250 V AC
		¹ / ₈ HP 125 V AC

1 Form C

File No.	Contact rating
	5 A 277 V AC
1024714	5 A 30 V DC
1024/14	1/8 HP 250 V AC
	1/8 HP 125 V AC

High capacity type

1 Form A

1.0	
File No.	Contact rating
1024714	10 A 277 V AC
	10 A 30 V DC
	¹/₃ HP 250 V AC
	¹/₃ HP 125 V AC

2 Form A

File No.	Contact rating
	5 A 277 V AC
E43028	5 A 30 V DC
	1/8 HP 250 V AC
	1/8 HP 125 V AC

2 Form C

File No.	Contact rating
	5 A 277 V AC
F43028	5 A 30 V DC
£43028	1/8 HP 250 V AC
	¹ / ₈ HP 125 V AC

1 Form C

File No.	Contact rating
	10 A 277 V AC
F43028	10 A 30 V DC
E43028	¹/₃ HP 250 V AC
	¹/₃ HP 125 V AC

2 Form A

File No.	Contact rating
1024714	5 A 277 V AC
	5 A 30 V DC
	1/8 HP 250 V AC
	¹ / ₈ HP 125 V AC

2 Form C

File No.	Contact rating
1024714	5 A 277 V AC
	5 A 30 V DC
	1/8 HP 250 V AC
	1/8 HP 125 V AC

1 Form C

File No.	Contact rating
	10 A 277 V AC
1024714	10 A 30 V DC
	¹/₃ HP 250 V AC
	¹/₃ HP 125 V AC

■ VDE (Approved)

Standard type

1 Form A

File No.	Contact rating
40042054	$5 \text{ A } 250 \text{ V AC } (\cos \phi = 1.0)$
40013854	$3 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

1 Form C

File No.	Contact rating
40013854	$5 \text{ A } 250 \text{ V AC } (\cos \phi = 1.0)$
	5 A 30 V DC (0 ms)
	$3 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

High capacity type

1 Form A

File No.	Contact rating
40013854	10 A 250 V AC ($\cos \phi = 1.0$)
40013654	$7 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

■ CQC (Approved)

2 Form C (JW2SN-DC12V only)

File No.	Contact rating
CQC10002041727	5 A 250 V AC

2 Form A

File No.	Contact rating
	$5 \text{ A } 250 \text{ V AC } (\cos \phi = 1.0)$
40013854	5 A 30 V DC (0 ms)
	$3 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

2 Form C

File No.	Contact rating
	$5 \text{ A } 250 \text{ V AC } (\cos \phi = 1.0)$
40013854	5 A 30 V DC (0 ms)
	$3 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

1 Form C

File No.	Contact rating		
	10 A 250 V AC ($\cos \phi = 1.0$)		
40013854	10 A 30 V DC (0 ms)		
	7 A 250 V AC ($\cos \phi = 0.4$)		

INSULATION CHARACTERISTICS (IEC61810-1)

Item	Characteristics	
Clearance/Creepage distance (IEC61810-1)	Min.5.5/8.0 mm	
Category of protection (IEC61810-1)	RT II, III	
Tracking resistance (IEC60112)	PTI 175	
Insulation material group	III a	
Over voltage category	III	
Rated voltage	250 V	
Pollution degree	3	
Type of insulation (Between contact and coil)	Reinforced insulation	
Type of insulation (Between open contacts)	Micro disconnection	

Note) EN/IEC VDE Approved.

GUIDELINES FOR USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

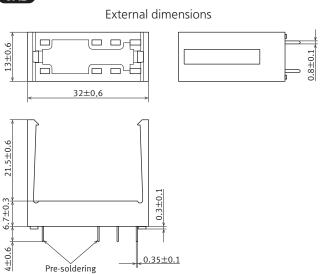
JW RELAYS PC board sockets

SELECTOR CHART

Socket Relay type	JW1 PC board socket	JW2 PC board socket
1 Form A	•	_
1 Form C	•	_
2 Form A	-	•
2 Form C	-	•

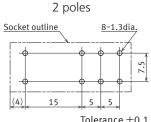
TYPES

Product name	Tuna Na	Part No.	Standard packing	
Product name	Type No.	Part No.	Inner carton	Outer carton
JW1 PC board socket	JW1-PS	AJW8015	10 pcs.	100 pcs.
JW2 PC board socket	JW2-PS	AJW8025	το pcs.	Too pcs.


RATING

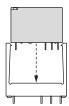
Item	Specifications		
Contact arrangement	1 pole	2 poles	
Dielectric strength (initial)	Between charging portion: 1,500 V rms for 1 min (detection current: 10 mA)		
Insulation resistance (initial)	Between charging portion: Min. 100 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)		
Maximum carrying current	10 A 5 A		
Conditions for usage, transport and storage	Ambient temperature: −50 to +50 °C Humidity: 5 to 85 % RH (Avoid icing and condensation)		

DIMENSIONS (Unit: mm)


CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.

CAD

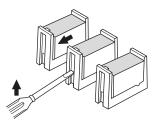
Recommended PC board pattern (Copper side view)



Tolerance ± 0.1

■ Mounting method of relay

1) Match the direction of relay and socket.



2) Both ends of the relay are to be secured firmly so that the socket both hooks on the top surface of the relay.

■ Removing method of relay

- 1) Remove the relay, applying force in the direction as shown in the figure.
- 2) In case there is not enough space to grasp relay with fingers, use screwdrivers in the way as shown in the figure.

3) Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

Precautions for Coil Input

Long term current carrying

A circuit that will be carrying a current continuously for long periods without relay switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself. For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection.

■ DC Coil operating power

Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5 %. However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications.

■ Coil connection

When connecting coils of polarized relays, please check coil polarity (+, -) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time.

Maximum allowable voltage and temperature rise

Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

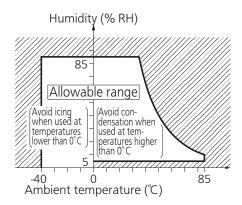
Operate voltage change due to coil temperature rise In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the operate voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4 % for 1 ℃, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the operate voltage and the operate voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

Ambient Environment

■ Usage, Transport, and Storage Conditions

During usage, storage, or transportation, avoid locations subjected to direct sunlight and maintain normal temperature, humidity and pressure conditions.

Temperature/Humidity/Pressure


When transporting or storing relays while they are tube packaged, there are cases the temperature may differ from the allowable range. In this case be sure to check the individual specifications.

Also allowable humidity level is influenced by temperature, please check charts shown below and use relays within mentioned conditions. (Allowable temperature values differ for each relays, please refer to the relay's individual specifications.)

1) Temperature:

The tolerance temperature range differs for each relays, please refer to the relay's individual specifications

2) Humidity: 5 to 85 % RH

3) Pressure: 86 to 106 kPa

Dew condensation

Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by condensation.

The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur.

Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.)

Icina

Condensation or other moisture may freeze on relays when the temperature become lower than 0 °C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by the icing.

The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage.

•Low temperature and low humidity

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

High temperature and high humidity

Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.

Package

In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

Silicon

When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced. This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic sealed types).

NOx Generation

When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid.

This corrodes the internal metal parts and adversely affects operation.

Avoid use at an ambient humidity of 85 % RH or higher (at 20 $^{\circ}$). If use at high humidity is unavoidable, please contact our sales representative.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

Others

Cleaning

- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- Cleaning with the boiling method is recommended (The temperature of cleaning liquid should be 40 °C or lower). Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to ultrasonic energy.

Please refer to "the latest product specifications" when designing your product.

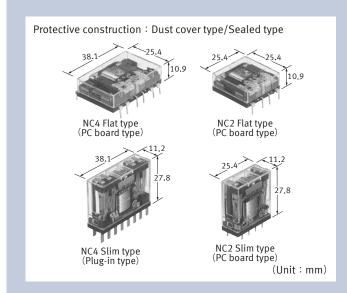
• Requests to customers:

https://industrial.panasonic.com/ac/e/salespolicies/

■ Global Sales Network Information: industrial.panasonic.com/ac/e/salesnetwork Panasonic Industry Co., Ltd. **Panasonic** Electromechanical Control Business Division **INDUSTRY** ■1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

Power Relays (Over 2 A)

NC RELAYS


Product Catalog

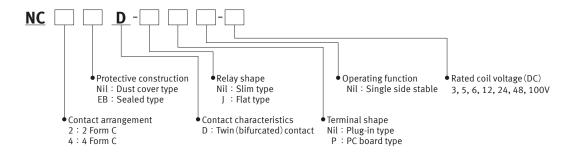
IN Your Future

NC RELAYS

Transistor drive, 2 Form C/4 Form C, 5 A Slim power relays


FEATURES

- Flat type: profile 10.9 mm Slim type: width 11.2 mm
- Twin (bifurcated) contact
- Plug-in terminal/PC board terminal
- Sockets and terminal sockets are available


TYPICAL APPLICATIONS

- Electric power equipment
- Industrial equipment
- Measuring devices

ORDERING INFORMATION (PART NO. : Ordering part number for Japanese market)

ORDERING INFORMATION (TYPE NO.: Ordering part number for non Japanese market)

TYPES

" Type No. " is ordering part number for non Japanese market. " Part No. " is ordering part number for Japanese market.

■ Dust cover type

Flat type

Contact	Rated coil	PC board	l terminal	Standard	d packing
Contact arrangement	voltage	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	NC2D-JP-DC3V	AW8818		
	5 V DC	NC2D-JP-DC5V	AW8819		
	6 V DC	NC2D-JP-DC6V	AW8810		
2 Form C	12 V DC	NC2D-JP-DC12V	AW8811		
	24 V DC	NC2D-JP-DC24V	AW8812		
48 V	48 V DC	NC2D-JP-DC48V	AW8813		
	100 V DC	NC2D-JP-DC100V	AW8814	20 555	200 nes
	3 V DC	NC4D-JP-DC3V	AW8848	20 pcs.	200 pcs.
	5 V DC	NC4D-JP-DC5V	AW8849		
	6 V DC	NC4D-JP-DC6V	AW8840		
4 Form C	12 V DC	NC4D-JP-DC12V	AW8841		
	24 V DC	NC4D-JP-DC24V	AW8842		
	48 V DC	NC4D-JP-DC48V	AW8843		
	100 V DC	NC4D-JP-DC100V	AW8844		

Slim type

Contact	Rated coil	Plug-in terminal		PC board terminal		Standard packing	
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	NC2D-DC3V	AW8218	NC2D-P-DC3V	AW8418		
	5 V DC	NC2D-DC5V	AW8219	NC2D-P-DC5V	AW8419		
	6 V DC	NC2D-DC6V	AW8210	NC2D-P-DC6V	AW8410		
2 Form C	12 V DC	NC2D-DC12V	AW8211	NC2D-P-DC12V	AW8411		
	24 V DC	NC2D-DC24V	AW8212	NC2D-P-DC24V	AW8412		
	48 V DC	NC2D-DC48V	AW8213	NC2D-P-DC48V	AW8413		
	100 V DC	NC2D-DC100V	AW8214	NC2D-P-DC100V	AW8414	20 555	200 255
	3 V DC	NC4D-DC3V	AW8248	NC4D-P-DC3V	AW8448	20 pcs.	200 pcs.
	5 V DC	NC4D-DC5V	AW8249	NC4D-P-DC5V	AW8449		
	6 V DC	NC4D-DC6V	AW8240	NC4D-P-DC6V	AW8440		
4 Form C	12 V DC	NC4D-DC12V	AW8241	NC4D-P-DC12V	AW8441		
	24 V DC	NC4D-DC24V	AW8242	NC4D-P-DC24V	AW8442	1	
	48 V DC	NC4D-DC48V	AW8243	NC4D-P-DC48V	AW8443		
	100 V DC	NC4D-DC100V	AW8244	NC4D-P-DC100V	AW8444		

■ Sealed type

Flat type

Contact	Rated coil	PC board	l terminal	Standard	d packing
Contact arrangement	voltage	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	NC2EBD-JP-DC3V	AW881860		
	5 V DC	NC2EBD-JP-DC5V	AW881960		
	6 V DC	NC2EBD-JP-DC6V	AW881060		
2 Form C	12 V DC	NC2EBD-JP-DC12V	AW881160		
	24 V DC	NC2EBD-JP-DC24V	AW881260		
	48 V DC	NC2EBD-JP-DC48V	AW881360		
	100 V DC	NC2EBD-JP-DC100V	AW881460	20 nss	200 nss
	3 V DC	NC4EBD-JP-DC3V	AW884860	20 pcs.	200 pcs.
	5 V DC	NC4EBD-JP-DC5V	AW884960		
	6 V DC	NC4EBD-JP-DC6V	AW884060		
4 Form C	12 V DC	NC4EBD-JP-DC12V	AW884160		
	24 V DC	NC4EBD-JP-DC24V	AW884260		
	48 V DC	NC4EBD-JP-DC48V	AW884360		
	100 V DC	NC4EBD-JP-DC100V	AW884460		

Slim type

Contact	Rated coil	Plug-in t	terminal	PC board terminal		Standard packing	
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	NC2EBD-DC3V	AW821860	NC2EBD-P-DC3V	AW841860		
	5 V DC	NC2EBD-DC5V	AW821960	NC2EBD-P-DC5V	AW841960		
	6 V DC	NC2EBD-DC6V	AW821060	NC2EBD-P-DC6V	AW841060		
2 Form C	12 V DC	NC2EBD-DC12V	AW821160	NC2EBD-P-DC12V	AW841160		
	24 V DC 48 V DC	NC2EBD-DC24V	AW821260	NC2EBD-P-DC24V	AW841260		
		NC2EBD-DC48V	AW821360	NC2EBD-P-DC48V	AW841360		
	100 V DC	NC2EBD-DC100V	AW821460	NC2EBD-P-DC100V	AW841460	20 ncc	200 nss
	3 V DC	NC4EBD-DC3V	AW824860	NC4EBD-P-DC3V	AW844860	20 pcs.	200 pcs.
	5 V DC	NC4EBD-DC5V	AW824960	NC4EBD-P-DC5V	AW844960		
	6 V DC	NC4EBD-DC6V	AW824060	NC4EBD-P-DC6V	AW844060		
4 Form C	12 V DC	NC4EBD-DC12V	AW824160	NC4EBD-P-DC12V	AW844160		
	24 V DC	NC4EBD-DC24V	AW824260	NC4EBD-P-DC24V	AW844260		
	48 V DC	NC4EBD-DC48V	AW824360	NC4EBD-P-DC48V	AW844360		
	100 V DC	NC4EBD-DC100V	AW824460	NC4EBD-P-DC100V	AW844460		

For the sockets, please refer to the "Sockets/DIN terminal sockets".

RATING

■ Coil data

- Operating characteristics such as "Operate voltage" and "Release voltage" are influenced by mounting conditions or ambient temperature, etc.
 - Therefore, please use the relay within ± 5 % of rated coil voltage.
- "Initial" means the condition of products at the time of delivery.

Contact arrangement	Rated coil voltage	Operate voltage*¹ (at 20 ℃)	Release voltage*¹ (at 20 ℃)	Rated operating current (±10 %, at 20 ℃)	Coil resistance (±10 %, at 20 ℃)	Rated operating power	Max. allowable voltage (at 50 °C) *²		
	3 V DC			120 mA	25 Ω				
	5 V DC			72 mA	69.4 Ω				
	6 V DC	N4 00 0/ \/	Min. 10 % V of rated coil voltage (Initial)	60 mA	100 Ω	360 mW	135 % V of rated coil		
	12 V DC	Max. 80 % V of rated coil		30 mA	400 Ω	300 11100	voltage		
2 Form C	24 V DC	voltage		15 mA	1,600 Ω				
	48 V DC	(Initial)		7.5 mA	6,400 Ω				
	100 V DC			7.4 mA	13,500 Ω	740 mW	110 %V of rated coil voltage		
	3 V DC			240 mA	12.5 Ω				
	5 V DC					144 mA	34.7 Ω		
	6 V DC	Max. 80 % V of	Min. 10 % V	120 mA	50 Ω	720 mW	110 % V of		
4 Form C	12 V DC	rated coil voltage	of rated coil voltage (Initial)	60 mA	200 Ω	720 IIIVV	rated coil		
	24 V DC	(Initial)		30 mA	800 Ω		voltage		
	48 V DC			15 mA	3,200 Ω				
	100 V DC			7.4 mA	13,500 Ω	740 mW			

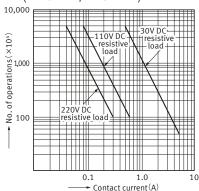
^{*1:} Square, pulse drive *2: At 20°C (Sealed type)

■ Specifications

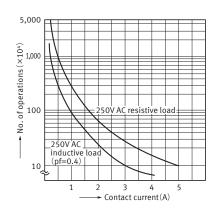
	Item	Specifi	cations		
	Contact arrangement	2 Form C	4 Form C		
	Contact resistance (initial)	Max. 50 m Ω (by voltage drop 6 V DC 1 A)			
	Contact material	Au-clad, AgNi type			
	Contact rating (resistive)	Dust cover: 5 A 250 V AC, 5 A 30 V DC Sealed : 3 A 250 V AC, 5 A 30 V DC	Dust cover: 4 A 250 V AC, 5 A 30 V DC Sealed : 2 A 250 V AC, 5 A 30 V DC		
Contact data	Max. switching power (resistive)	Dust cover: 1,250 VA, 150 W Sealed : 750 VA, 150 W	Dust cover: 1,000 VA, 150 W Sealed : 500 VA, 150 W		
	Max. switching voltage	250 V AC, 220 V DC			
	Max. switching current	Dust cover: 5 A (AC, DC) Sealed : 3 A (AC), 5 A (DC)	Dust cover: 4 A (AC), 5 A (DC) Sealed : 2 A (AC), 5 A (DC)		
	Min. switching load (reference value)*1				
Insulation resist	ance (initial)	Min. 100 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)			
Dielectric	Between open contacts	1,000 Vrms for 1 min (detection current: 10 mA)			
strength (initial)	Between contact sets	1,000 Vrms for 1 min (detection current: 10 mA)			
(iiiidai)	Between contact and coil	2,000 Vrms for 1 min (detection current: 10 mA)			
Time	Operate time	Max. 20 ms at rated coil voltage (at 20 $^{\circ}$ C, without	bounce)		
characteristics (initial)	Release time	Max. 10 ms at rated coil voltage (at 20 $^{\circ}$ C, without	bounce, without diode)		
Shock	Functional	98 m/s² (half-sine shock pulse: 11 ms, detection tir	ne: 10 µs)		
resistance	Destructive	980 m/s² (half-sine shock pulse: 6 ms)			
Vibration	Functional	10 to 55 Hz (at double amplitude of 1 mm, detecti	on time: 10 µs)		
resistance	Destructive	10 to 55 Hz (at double amplitude of 2 mm)			
Expected life	Mechanical life	Min.50 $ imes$ 10 6 ope. (switching frequency: at 180 tir	mes/min)		
Conditions	Conditions for usage, transport and storage*2	Ambient temperature: -40 to $+70$ °C (Max. 48 V DC), -40 to $+55$ °C (Min. 100 V DC) Humidity: 5 to 85 % RH (Avoid icing and condensation)			
Unit weight		Approx. 16 g	Slim type: Approx. 19 g Flat type: Approx. 18 g		

^{*1:} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the

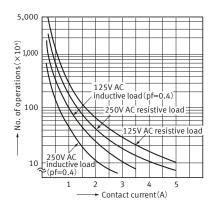
■ Expected electrical life

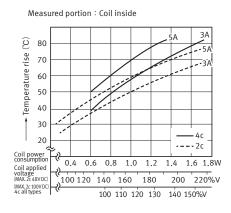

Conditions: Resistive load, switching frequency at 20 times/min

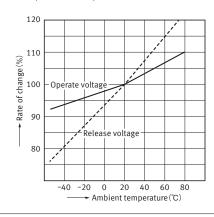
Type		Switching capacity	Number of operations	
	Dust cover	5 A 30 V DC	Min. 500×10^3 ope.	
2 Farm C	Dust cover	5 A 250 V AC	Min. 100×10^3 ope.	
2 Form C	Sealed	5 A 30 V DC	Min. 500×10^3 ope.	
		3 A 250 V AC	Min. 100×10^3 ope.	
4 Form C	Dust cover	5 A 30 V DC	Min. 500×10^3 ope.	
		4 A 250 V AC	Min. 100×10^3 ope.	
	Sealed	5 A 30 V DC	Min. 500 × 10³ ope.	
		2 A 250 V AC	Min. 100×10^3 ope.	

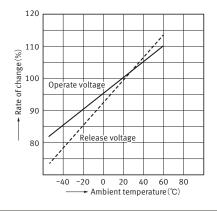

^{*2:} For ambient temperature, please read " GUIDELINES FOR RELAY USAGE ".

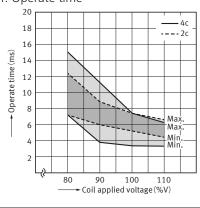
REFERENCE DATA

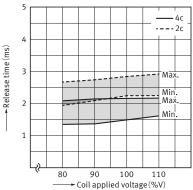

1-1. Switching life curve (2 Form C, 4 Form C)


1-2. Switching life curve (2 Form C)

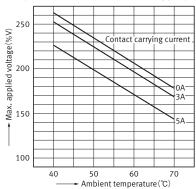

1-3. Switching life curve (4 Form C)


2. Coil temperature characteristics


(2 Form C)

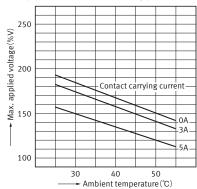

3-1. Ambient temperature characteristics 3-2. Ambient temperature characteristics (4 Form C)

4. Operate time



5. Release time

6-1. Ambient temperature vs Max. applied voltage

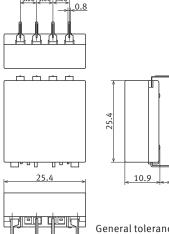

(2 Form C: 3 to 48 V DC type)

6-2. Ambient temperature vs Max.

applied voltage

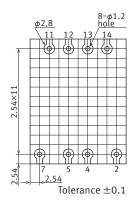
(2 Form C: 100 V DC type, 4 Form C)

DIMENSIONS (Unit: mm)


CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.

■ Dust cover: Flat type

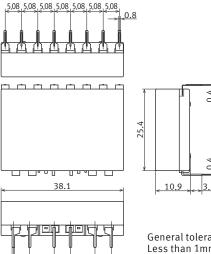
PC board terminal: 2 Form C



General tolerance Less than $1mm:\pm0.2$ Min. 1mm less than 3mm: ±0.3 Min. 3mm: ±0.5

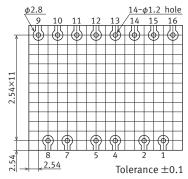
Recommended PC board pattern (BOTTOM VIEW)

Schematic (TOP VIEW) (De-energize)



PC board terminal: 4 Form C

CAD



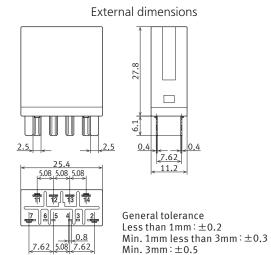
External dimensions

5.08 7.62 5.08

Recommended PC board pattern (BOTTOM VIEW)

Schematic (TOP VIEW) (De-energize)

General tolerance Less than 1mm: ± 0.2


Min. 1mm less than 3mm: ± 0.3

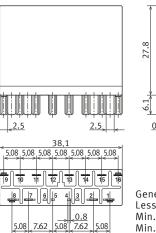
Min. $3mm:\pm0.5$

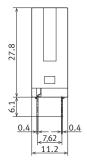
- Dust cover: Slim type
- Plug-in terminal: 2 Form C

CAD

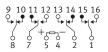


Schematic (BOTTOM VIEW) (De-energize)




Plug-in terminal: 4 Form C

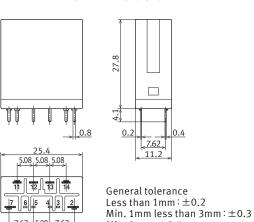
CAD



General tolerance Less than 1mm: ±0.2 Min. 1mm less than 3mm: ± 0.3

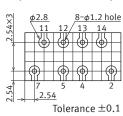
Min. $3mm: \pm 0.5$

Schematic (BOTTOM VIEW) (De-energize)



PC board terminal: 2 Form C

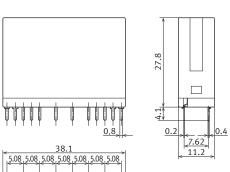
CAD

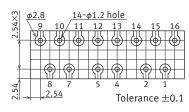


External dimensions

Min. $3mm:\pm0.5$

Recommended PC board pattern (BOTTOM VIEW)


Schematic (BOTTOM VIEW) (De-energize)


PC board terminal: 4 Form C

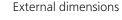
CAD

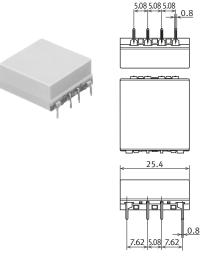
External dimensions

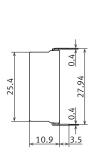
Recommended PC board pattern (BOTTOM VIEW)

Schematic (BOTTOM VIEW) (De-energize)

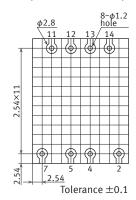
General tolerance Less than 1mm: ±0.2


Min. 1mm less than 3mm: ± 0.3


Min. $3mm:\pm0.5$


■ Sealed: Flat type

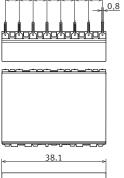
PC board terminal: 2 Form C



External dimensions

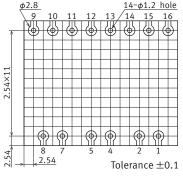
General tolerance Less than 1mm: ± 0.2 Min. 1mm less than 3mm: ± 0.3 Min.3mm: ± 0.5

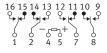
Recommended PC board pattern (BOTTOM VIEW)



Schematic (TOP VIEW) (De-energize)

PC board terminal: 4 Form C



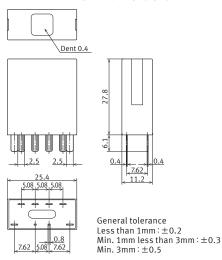

5.08,5.08,5.08,5.08,5.08,5.08,5.08

Recommended PC board pattern (BOTTOM VIEW)

Schematic (TOP VIEW) (De-energize)

General tolerance Less than 1mm: ± 0.2

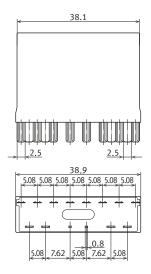
Min. 1mm less than 3mm: ± 0.3

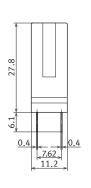

Min. 3mm: ±0.5

- Sealed: Slim type
- Plug-in terminal: 2 Form C

External dimensions

Schematic (BOTTOM VIEW) (De-energize)



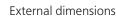

Plug-in terminal: 4 Form C

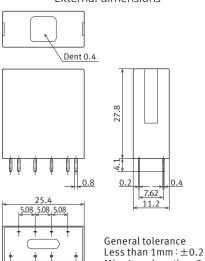
CAD

External dimensions

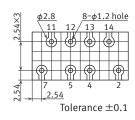
Schematic

General tolerance Less than 1mm: ± 0.2


Min. 1mm less than 3mm: ±0.3

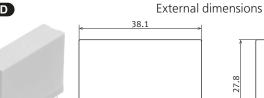

Min. 3mm: ±0.5

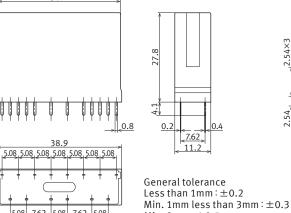
PC board terminal: 2 Form C



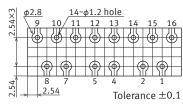
Recommended PC board pattern (BOTTOM VIEW)

Schematic (BOTTOM VIEW) (De-energize)


7.62 5.08 7.62


Min. 1mm less than 3mm: ± 0.3

Min.3mm: ± 0.5


PC board terminal: 4 Form C

CAD

Recommended PC board pattern (BOTTOM VIEW)

Schematic (BOTTOM VIEW) (De-energize)

SAFETY STANDARDS

Each standard may be updated at any time, so please check our Website for the latest information.

Min.3mm: ± 0.5

■ UL (Approved)

Dust cover

2 Form C

File No.	Contact rating	Operations	
	5 A 250 V AC	100 × 10 ³	
E43028	5 A 30 V DC	100 × 10 ³	
	1/10 HP 125, 250 V AC	_	

4 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100×10^{3}	
E43028	4 A 250 V AC	100×10^{3}	
	⅓₀ HP 125, 250 V AC	_	

■ CSA (Approved)

Dust cover

2 Form C

File No.	Contact rating	Operations	
	5 A 250 V AC	100 × 10 ³	
1440474	5 A 30 V DC	100 × 10 ³	
	⅓₀ HP 125, 250 V AC	_	

4 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100×10^{3}	
1440474	4 A 250 V AC	100 × 10 ³	
	1/10 HP 125, 250 V AC	_	

Sealed

2 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100×10^{3}	
E43028	3 A 250 V AC	100 × 10 ³	
	⅓₀ HP 125, 250 V AC	_	

4 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100 × 10 ³	
E43028	2 A 250 V AC	100 × 10 ³	
	1/20 HP 125, 250 V AC	_	

Sealed

2 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100×10^{3}	
1440474	3 A 250 V AC	100 × 10 ³	
	½0 HP 125, 250 V AC	_	

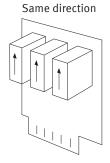
4 Form C

File No.	Contact rating	Operations	
	5 A 30 V DC	100 × 10 ³	
1440474	2 A 250 V AC	100 × 10 ³	
	½ HP 125, 250 V AC	_	

GUIDELINES FOR USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

■ Cautions for usage of NC relay


- Because the NC relay is polarized, the positive (+) and negative (-) connections to the coil should be done as indicated on the wiring diagram. If connected incorrectly, it may malfunction or fail to operate.
- When designing top and bottom view schematic diagrams, note that:
 - 1) "Top view "wiring diagram is indicated for the flat type because terminals can be seen from above.

2) "Bottom view " schematic diagram is indicated for the slim type because terminals cannot be seen from above.

- While NC relays can be used with any transmission-wave current to their operation, due to slight weakening of the force of magnetic attraction, decreased resistance to vibration and shock should be taken into account.
- Cautions for close proximity mounting
 When using slim series in close proximity, mount all relays
 facing the same direction. Different mounting directions
 may cause change in the relay characteristics because NC
 relays are polarized.

- 11 —

©Panasonic Industry Co., Ltd. 2023

ASCTB12E 202306

Sockets/DIN terminal sockets

NC2 Flat type socket

NC4 Flat type

sockeť

NC2 Slim type socket

NC4 Slim type socket

DIN terminal socket

TYPES

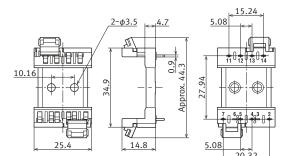
		Terminal			Main Part No.	Standard packing	
Type	Product name	connection method	Type No.	Part No.	to be installed	Inner carton	Outer carton
Flat tuna saskat	NC2-flat type PC board socket	PC board	NC2-JPS	AW4920	AW881 series	20 555	200 000
Flat type socket	NC4-flat type PC board socket	PC board	NC4-JPS	AW4940	AW884 series	20 pcs.	200 pcs.
Slim type DIN terminal socket	NC2-DIN terminal socket	DIN rail	NC2-SFD	AW4928	AW821 series	20 pcs.	100 pcs.
Slim type socket	NC2-slim type soldering socket	Solder terminal	NC2-SS	AW4922	AW821 series	20	200 pcs.
	NC2-slim type PC board socket	PC board	NC2-PS	AW4924			
	NC2-slim type wrapping socket	Lead wire	NC2-WS	AW4926			
	NC4-slim type soldering socket	Solder terminal	NC4-SS	AW4942		20 pcs.	
	NC4-slim type PC board socket	PC board	NC4-PS	AW4944	AW824 series		
	NC4-slim type wrapping socket	Lead wire	NC4-WS	AW4946			

RATING

Item	Specifications
Dielectric strength (initial)	Each between terminals: 2,000 Vrms for 1 min (detection current: 10 mA)
Insulation resistance (initial)	Each between terminals: Min. 100 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)
Max. continuous carrying current	Slim type: 5 A 250 V AC Flat type : 5 A 250 V AC
Conditions for usage, transport and storage	Ambient temperature: -50 to $+50$ °C (AW4924, AW4926, AW4928, AW4944, AW4946) -40 to $+70$ °C (AW4920, AW4922, AW4940, AW4942) Humidity: 5 to 85 % RH (Avoid icing and condensation)

— 12 **—**

DIMENSIONS (Unit: mm)

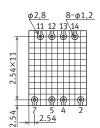

CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.

■ Flat type PC board socket

NC2 (AW4920)

External dimensions

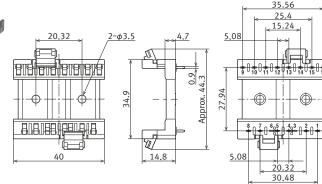
General tolerance ± 0.5


General tolerance ± 0.5

Terminal portion dimensions

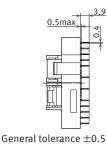
General tolerance ± 0.5

Recommended PC board pattern

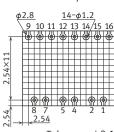


Tolerance ±0.1

NC4 (AW4940)


CAD

External dimensions



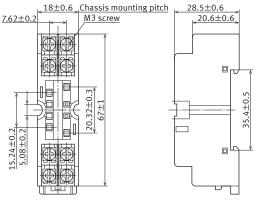
dimensions

Terminal portion

Recommended PC board pattern

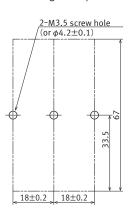
Tolerance ± 0.1

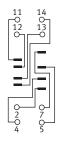
■ Slim type DIN terminal socket


NC2 (AW4928)

CAD

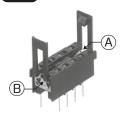
Note: Fastening brackets are included with the DIN terminal socket.

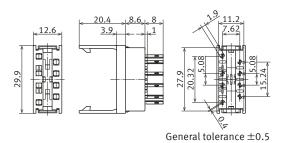

External dimensions


note: To prevent damage or distortion, when tightening fixing screws, the optimum torque range should be 0.49 to 0.69 N·m, (5 to 7 kgf·cm).

General tolerance Less than 1mm: ±0.2 Min. 1mm less than 3mm: ± 0.3 Min. $3mm:\pm0.5$

Mounting hole pattern


Schematic

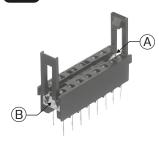

Slim type soldering socket

NC2 (AW4922)

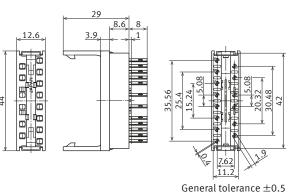
CAD

External dimensions

Chassis cutout



Notes:
1.Suitable chassis thickness is 1.0 to 2.0mm.
2.Once the socket is inserted from above into the mounting holes, the relay will snap in to clips rising from either side at (A) and (B) by pushing.


Tolerance ±0.1

NC4 (AW4942)

CAD

External dimensions

Chassis cutout

Notes:
1.Suitable chassis thickness is 1.0 to 2.0mm.
2.Once the socket is inserted from above into the mounting holes, the relay will snap in to clips rising from either side at (A) and (B) by pushing.

Tolerance ± 0.1

■ Slim type PC board socket

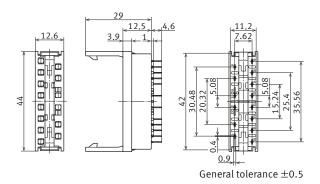
● NC2 (AW4924)

CAD

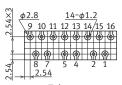
External dimensions

General tolerance ± 0.5

Recommended PC board pattern

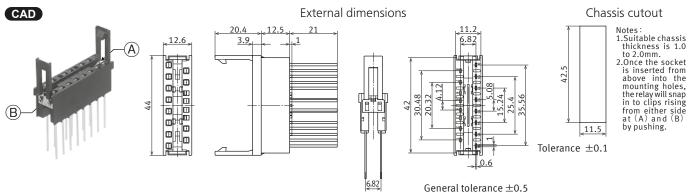

Tolerance ±0.1

NC4 (AW4944)


CAD

External dimensions

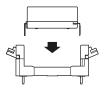

Recommended PC board pattern


Tolerance ±0.1

■ Slim type wrapping socket

NC2 (AW4926)

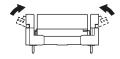
NC4 (AW4946)



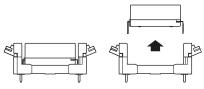
HANDLING

■ Flat type socket

Mounting method of relay


1) Match the direction of relay and socket.

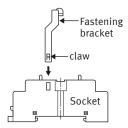
2) Insert both ends of the relay firmly, all the way in.



3) Press the hooks in the direction of the arrows to attach the relay securely

Removing method of relay

1) Pull out the relay after fully releasing both hooks.

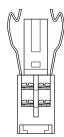

2) Take care not to push or spread the hooks more than necessary when installing or removing the relay, because doing so may cause deformation which will prevent the hooks from engaging with the relay, or the hooks may break.

■ Slim type DIN terminal socket

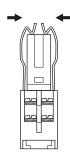
Install the fastening bracket before mounting the relay.

Mounting method of fastening bracket

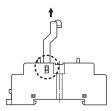
• Press the fastening bracket into the terminal socket until it stops and check that the claw has engaged with the terminal socket.



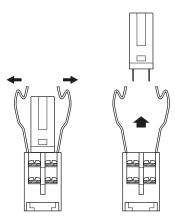
Mounting method of relay


1) Match the direction of relay and terminal socket.

2) Insert both ends of the relay firmly, all the way in.



3) With the included fastening bracket, securely attach the relay.

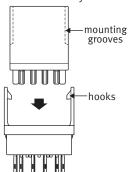

Removing method of fastening bracket

• Pull out the fastening bracket while pressing the tab with a screwdriver or similar.

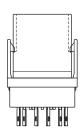
Removing method of relay

1) Pull out the relay after fully releasing fastening bracket.

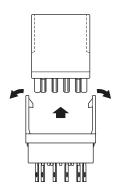
2) Take care not to push or spread the hooks more than necessary when installing or removing the relay, because doing so may cause deformation which will prevent the hooks from engaging with the relay, or the hooks may break.


©Panasonic Industry Co., Ltd. 2023

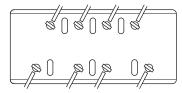
ASCTB12E 202306


- 16 —

Power Relays (Over 2 A) NC RELAYS


- Slim type socket
- Mounting method of relay
 - 1) Match the direction of relay and socket.

2) Insert both ends of the relay securely and all the way until both hooks engage with the mounting grooves.


- Removing method of relay
 - 1) Pull out the relay while pressing and spreading the hooks.

2) Take care not to push or spread the hooks more than necessary when installing or removing the relay, because doing so may cause deformation which will prevent the hooks from engaging with the relay, or the hooks may break.

GUIDELINES FOR USAGE

• For solder terminal types, connect terminals as shown in the diagram to maintain insulation distance.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

Precautions for Coil Input

Long term current carrying

A circuit that will be carrying a current continuously for long periods without relay switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself. For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection.

■ DC Coil operating power

Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5 %. However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications.

■ Coil connection

When connecting coils of polarized relays, please check coil polarity (+, -) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time.

Maximum allowable voltage and temperature rise

Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

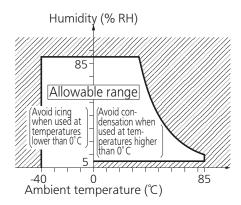
Operate voltage change due to coil temperature rise In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the operate voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4 % for 1 ℃, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the operate voltage and the operate voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

Ambient Environment

■ Usage, Transport, and Storage Conditions

During usage, storage, or transportation, avoid locations subjected to direct sunlight and maintain normal temperature, humidity and pressure conditions.

Temperature/Humidity/Pressure


When transporting or storing relays while they are tube packaged, there are cases the temperature may differ from the allowable range. In this case be sure to check the individual specifications.

Also allowable humidity level is influenced by temperature, please check charts shown below and use relays within mentioned conditions. (Allowable temperature values differ for each relays, please refer to the relay's individual specifications.)

1) Temperature:

The tolerance temperature range differs for each relays, please refer to the relay's individual specifications

2) Humidity: 5 to 85 % RH

3) Pressure: 86 to 106 kPa

Dew condensation

Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by condensation.

The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur.

Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.)

Icing

Condensation or other moisture may freeze on relays when the temperature become lower than 0 °C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by the icing.

The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage.

•Low temperature and low humidity

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

High temperature and high humidity

Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.

Package

In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

Silicon

When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced. This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic sealed types).

NOx Generation

When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid.

This corrodes the internal metal parts and adversely affects operation.

Avoid use at an ambient humidity of 85 % RH or higher (at 20 $^{\circ}$). If use at high humidity is unavoidable, please contact our sales representative.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

Others

Cleaning

- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- Cleaning with the boiling method is recommended (The temperature of cleaning liquid should be 40 ℃ or lower). Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to ultrasonic energy.

Please refer to "the latest product specifications" when designing your product.

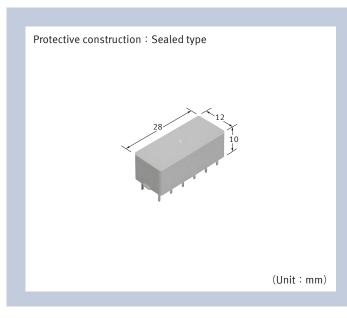
• Requests to customers:

https://industrial.panasonic.com/ac/e/salespolicies/

■ Global Sales Network Information: industrial.panasonic.com/ac/e/salesnetwork Panasonic Industry Co., Ltd. **Panasonic** Electromechanical Control Business Division **INDUSTRY** ■1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

Power Relays (Over 2 A)

S RELAYS


Product Catalog

IN Your Future

S RELAYS

2 Form A 2 Form B/3 Form A 1 Form B/4 Form A /4 A Polarized power relays

FEATURES

- Four-pole, multi-contact arrangement (2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A)
- Low thermal electromotive force: Approx.
 3 μV
- Twin (bifurcated) contacts
- Latching types available
- PC board sockets are available

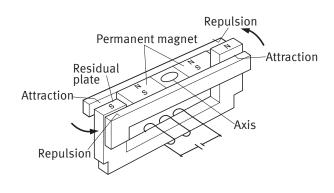
TYPICAL APPLICATIONS

Measuring equipment

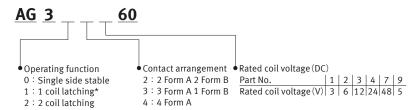
4-GAP BALANCED ARMATURE MECHANISM

■ Balanced armature mechanism has excellent resistance to vibration and shock

The armature structure enables free rotation around the armature center of gravity. Because the mass is maintained in balance at the fulcrum of the axis of rotation, large rotational forces do not occur even if acceleration is applied along any vector. The mechanism has proven to have excellent resistance to vibration and shock. All our S relays are based on this balanced armature mechanism, which is able to further provide many other characteristics.

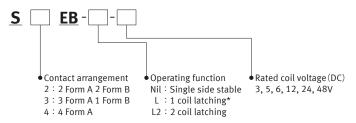

■ High sensitivity and reliability provided by 4-gap balanced armature mechanism

As a (polarized) balanced armature, the S relay armature itself has two permanent magnets. Presenting four interfaces, the armature has a 4-gap structure. As a result, the rotational axis at either end of the armature is symmetrical and, in an energized into a polarized state, the twin magnetic armature interfaces are subject to repulsion on one side and attraction on the other.


Our original mechanism provides a highly efficient polarized magnetic circuit structure that is both highly sensitive and has a small form factor. Moreover, suitability for provision with many types of contact array and other advantages promise to make it possible to provide many of the various characteristics that are coming to be demanded of relays.

HOW IT WORKS (single side stable type)

- 1) When current is passed through the coil, the yoke becomes magnetic and polarized.
- 2) At either pole of the armature, repulsion on one side and attraction on the other side is caused by the interaction of the poles and the permanent magnets of the armature.
- 3) At this time, opening and closing operates owing to the action of the simultaneously molded balanced armature mechanism, so that when the force of the contact breaker spring closes the contact on one side, on the other side, the balanced armature opens the contact (2 Form A 2 Form B).



ORDERING INFORMATION (PART NO. : Ordering part number for Japanese market)

^{* 1} coil latching type are manufactured by lot upon receipt of order.

ORDERING INFORMATION (TYPE NO.: Ordering part number for non Japanese market)

 $^{^{\}star}$ 1 coil latching type are manufactured by lot upon receipt of order.

TYPES

" Type No. " is ordering part number for non Japanese market. " Part No. " is ordering part number for Japanese market.

Contact	Rated coil	Single si	de stable	2 coil la	Standard packing		
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	S2EB-3V	AG302160	S2EB-L2-3V	AG322160		
	5 V DC	S2EB-5V	AG302960	S2EB-L2-5V	AG322960		
2 Form A 2 Form B	6 V DC	S2EB-6V	AG302260	S2EB-L2-6V	AG322260		
2 FORM A 2 FORM B	12 V DC	S2EB-12V	AG302360	S2EB-L2-12V	AG322360		
	24 V DC	S2EB-24V	AG302460	S2EB-L2-24V	AG322460		500 pcs.
	48 V DC	S2EB-48V	AG302760	S2EB-L2-48V	AG322760		
	3 V DC	S3EB-3V	AG303160	S3EB-L2-3V	AG323160		
	5 V DC	S3EB-5V	AG303960	S3EB-L2-5V	AG323960		
3 Form A 1 Form B	6 V DC	S3EB-6V	AG303260	S3EB-L2-6V	AG323260	FO nes	
3 FOITH A I FOITH B	12 V DC	S3EB-12V	AG303360	S3EB-L2-12V	AG323360	50 pcs.	
	24 V DC	S3EB-24V	AG303460	S3EB-L2-24V	AG323460		
	48 V DC	S3EB-48V	AG303760	S3EB-L2-48V	AG323760		
	3 V DC	S4EB-3V	AG304160	S4EB-L2-3V	AG324160		
	5 V DC	S4EB-5V	AG304960	S4EB-L2-5V	AG324960	1	
4 Form A	6 V DC	S4EB-6V	AG304260	S4EB-L2-6V	AG324260	1	
4 FORM A	12 V DC	S4EB-12V	AG304360	S4EB-L2-12V	AG324360	1	
	24 V DC	S4EB-24V	AG304460	S4EB-L2-24V	AG324460	1	
	48 V DC	S4EB-48V	AG304760	S4EB-L2-48V	AG324760	1	

For the sockets, please refer to the " PC board sockets ".

RATING

■ Coil data

- Operating characteristics such as "Operate voltage" and "Release voltage" are influenced by mounting conditions or ambient temperature, etc.
 - Therefore, please use the relay within ± 5 % of rated coil voltage.
- "Initial" means the condition of products at the time of delivery.

Single side stable

	Rated coil voltage	Operate voltage* (at 20 ℃)	Release voltage* (at 20 ℃)	Rated operating current (±10 %, at 20 ℃)	Coil resistance (±10 %, at 20 ℃)	Rated operating power	Max. allowable voltage (at 40 ℃)	
	3 V DC			66.7 mA	45 Ω	200 mW		
Ī	5 V DC			38.5 mA	130 Ω	192 mW	180 % V of rated coil	
	6 V DC	Max. 70 % V	Min. 10 % V	33.3 mA	180 Ω	200 mW		
	12 V DC	of rated coil voltage	of rated coil voltage	16.7 mA	720 Ω	200 mW	voltage	
	24 V DC	(Initial)	(Initial)	8.4 mA	2,850 Ω	202 mW		
	48 V DC			5.6 mA	8,500 Ω	271 mW	156 % V of rated coil voltage	

^{*} Square, pulse drive

2 coil latching

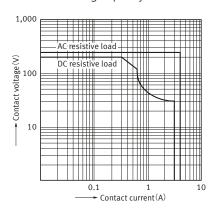
Rated coil voltage	Set voltage* (at 20 °C)			Reset voltage* (at 20 ℃) Rated operating current (±10 %, at 20 ℃)		Coil resistance (±10 %, at 20 ℃)		Rated operating power		Max. allowable voltage	
voltage	(at 20 C)	(at 20 C)	Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	(at 40 °C)		
3 V DC			66.7 mA	66.7 mA	45 Ω	45 Ω	200 mW	200 mW			
5 V DC			38.5 mA	38.5 mA	130 Ω	130 Ω	192 mW	192 mW	180 % V of		
6 V DC	Max. 70 % V		33.3 mA	33.3 mA	180 Ω	180 Ω	200 mW	200 mW	rated coil		
12 V DC	of rated coil voltage	of rated coil voltage	16.7 mA	16.7 mA	720 Ω	720 Ω	200 mW	200 mW	voltage		
24 V DC	(Initial)	(Initial)	8.4 mA	8.4 mA	2,850 Ω	2,850 Ω	202 mW	202 mW			
48 V DC		,	7.4 mA	7.4 mA	6,500 Ω	6,500 Ω	355 mW	355 mW	135 % V of rated coil voltage		

^{*} Square, pulse drive

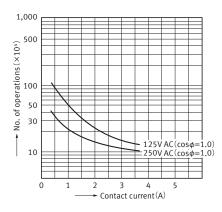
■ Specifications

	Item	Specifications				
	Contact arrangement	2 Form A 2 Form B, 3 Form A 1 Form B, 4 Form A				
	Contact resistance (initial)	Max. 50 m Ω (by voltage drop 6 V DC 1 A)				
	Contact material	AgNi-AgSnO₂ type, Au clad on double-layer contact				
	Contact rating (resistive)	4 A 250 V AC, 3 A 30 V DC				
Contact data	Max. switching power (resistive)	1,000 VA, 90 W				
	Max. switching voltage	250 V AC, 48 V DC				
	Max. switching current	4 A (AC) , 3 A (DC) (30 to 48 V DC at less than 0.5 A)				
	Min. switching load (reference value) *1	100 μA 100 mV DC				
Insulation resista	ance (initial)	10,000 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)				
Dielectric	Between open contacts	750 V rms for 1 min (detection current: 10 mA)				
strength	Between contact sets	1,000 V rms for 1 min (detection current: 10 mA)				
(initial)	Between contact and coil	1,500 V rms for 1 min (detection current: 10 mA)				
Time characteristics	Operate (Set) time	Max. 15 ms (Max. 15 ms) at rated coil voltage (at 20 $^{\circ}$ C, without bounce)				
(initial)	Release (Reset) time	Max. 10 ms (Max. 15 ms) at rated coil voltage (at 20 ℃, without bounce, without diode)				
Shock	Functional	490 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs)				
resistance	Destructive	980 m/s² (half-sine shock pulse: 6 ms)				
Vibration	Functional	10 to 55 Hz (at double amplitude of 3 mm, detection time: 10 μs)				
resistance Destructive		10 to 55 Hz (at double amplitude of 4 mm)				
Expected life	Mechanical life	Min. 100×10^6 ope. (switching frequency: at 50 times/min)				
Conditions Conditions for usage, transport and storage*2		Ambient temperature: -55 to $+65$ $^{\circ}$ C, Humidity: 5 to 85 $^{\circ}$ RH (Avoid icing and condensation)				
Unit weight		Approx. 8 g				

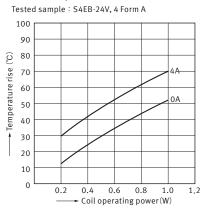
^{*1:} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2: For ambient temperature, please read " GUIDELINES FOR RELAY USAGE ".


Expected electrical life

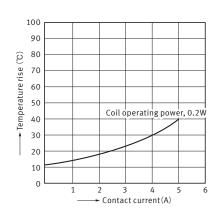
Conditions: Resistive load, switching frequency at 20 times/min


Туре	Switching capacity	Number of operations		
2 Form A 2 Form B, 3 Form A 1 Form B,	3 A 30 V DC	Min. 200×10^3 ope.		
4 Form A	4 A 250 V AC	Min. 100×10^3 ope.		

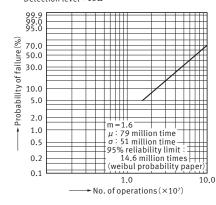
REFERENCE DATA


1. Max. switching capacity

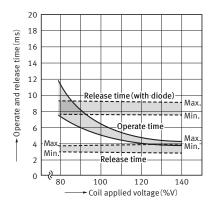
2. Switching life curve

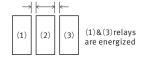


3-1. Coil temperature characteristics

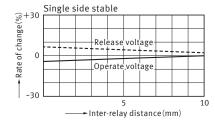

3-2. Coil temperature characteristics

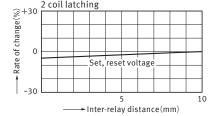
Tested sample: S4EB-24V, 4 Form A


4. Contact reliability test

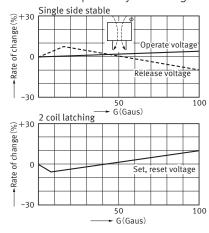


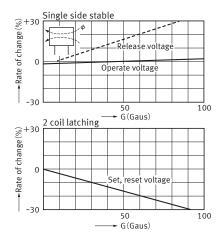
5. Operate and release time (Single side stable)


Tested sample: S4EB-24V, 10pcs.



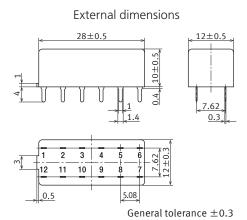
6. Influence of proximity mounting

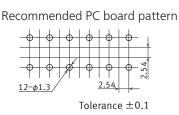

Note: When installing an S-relay near another, and there is no effect from an external magnetic field, be sure to leave at least 10mm between relays in order to achieve the performance listed in the catalog.

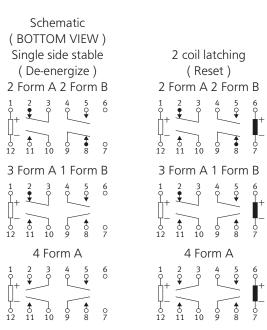


Power Relays (Over 2 A) S RELAYS

7. Influence of proximity mounting






DIMENSIONS (Unit: mm)

CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.

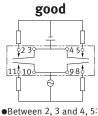
SAFETY STANDARDS

Each standard may be updated at any time, so please check our Website for the latest information.

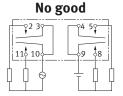
■ UL (Approved)

File No.	Contact rating
	4 A 250 V AC
E43028	3 A 30 V DC
E43UZ0	¹ / ₂₀ HP 125 V AC (FLA 1.5 A)
	¹ / ₂₀ HP 250 V AC (FLA 0.75 A)

■ CSA (Approved)


File No.	Contact rating
	4 A 250 V AC
2367221	3 A 30 V DC
230/221	¹ / ₂₀ HP 125 V AC
	1/20 HP 250 V AC

GUIDELINES FOR USAGE


■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

■ Cautions for usage of S relays

• Based on regulations regarding insulation distance, there is a restriction on same-channel load connections between terminals No. 2, 3 and 4, 5, as well as between No. 8, 9 and 10, 11.

- •Between 2, 3 and 4, 5: same channels, therefore possible
- Between 10, 11 and 8, 9: same channels, therefore possible

- •Between 2, 3 and 4, 5: different channels, therefore not possible
- •Between 10, 11 and 8, 9: different channels, therefore not possible

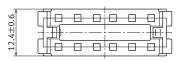
- Please note that when this relay (2 Form A 2 Form B type, 3 Form A 1 Form B type) operates and releases, N.O. and N.C. may go ON at the same time
- If using under conditions in which the relay will be continually powered, we recommend the latching type.

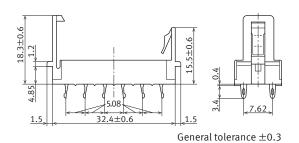
PC board socket

TYPES

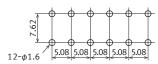
Product name	Type No.	Part No.	Standard packing		
Froduct Hairie	туре но.	raitino.	Inner carton	Outer carton	
PC board socket	S - PS	AG3801	50 pcs.	500 pcs.	

RATING

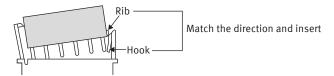

Item	Specifications
Dielectric strength (initial)	Each between terminals: 1,500 V rms for 1 min (detection current: 10 mA)
Insulation resistance (initial)	Each between terminals: Min. 100 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)
Maximum carrying current	4 A
Conditions for usage, transport and storage	Ambient temperature: -40 to $+65$ $^{\circ}$ C Humidity: 5 to 85 $^{\circ}$ RH (Avoid icing and condensation)


DIMENSIONS (Unit: mm)

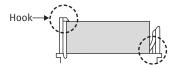
CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.


CAD

Recommended PC board pattern

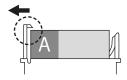


Tolerance ±0.1

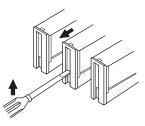

HANDLING

■ Mounting method of relay

1) Match the direction of relay and socket.



2) Insert both ends of the relay securely all the way until both hooks engage.



■ Removing method of relay

1) Remove the relay, applying force in the direction. (Use your fingers to grab section A and remove the relay.)

2) In case there is not enough space to grasp relay with fingers, use screwdrivers in the way as shown in the figure.

3) Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur.

©Panasonic Industry Co., Ltd. 2023 ASCTB207E 202306

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

Precautions for Coil Input

Long term current carrying

A circuit that will be carrying a current continuously for long periods without relay switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself. For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection.

■ DC Coil operating power

Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5 %. However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications.

■ Coil connection

When connecting coils of polarized relays, please check coil polarity (+, -) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time.

Maximum allowable voltage and temperature rise

Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

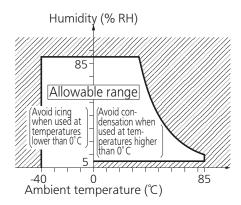
Operate voltage change due to coil temperature rise In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the operate voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4 % for 1 ℃, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the operate voltage and the operate voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

Ambient Environment

■ Usage, Transport, and Storage Conditions

During usage, storage, or transportation, avoid locations subjected to direct sunlight and maintain normal temperature, humidity and pressure conditions.

Temperature/Humidity/Pressure


When transporting or storing relays while they are tube packaged, there are cases the temperature may differ from the allowable range. In this case be sure to check the individual specifications.

Also allowable humidity level is influenced by temperature, please check charts shown below and use relays within mentioned conditions. (Allowable temperature values differ for each relays, please refer to the relay's individual specifications.)

1) Temperature:

The tolerance temperature range differs for each relays, please refer to the relay's individual specifications

2) Humidity: 5 to 85 % RH

3) Pressure: 86 to 106 kPa

Dew condensation

Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by condensation.

The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur.

Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.)

Icina

Condensation or other moisture may freeze on relays when the temperature become lower than 0 °C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by the icing.

The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage.

•Low temperature and low humidity

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

High temperature and high humidity

Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.

Package

In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

Silicon

When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced. This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic sealed types).

NOx Generation

When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid.

This corrodes the internal metal parts and adversely affects operation.

Avoid use at an ambient humidity of 85 % RH or higher (at 20 $^{\circ}$). If use at high humidity is unavoidable, please contact our sales representative.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

Others

■ Cleaning

- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- Cleaning with the boiling method is recommended (The temperature of cleaning liquid should be 40 °C or lower). Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to ultrasonic energy.

Please refer to "the latest product specifications" when designing your product.

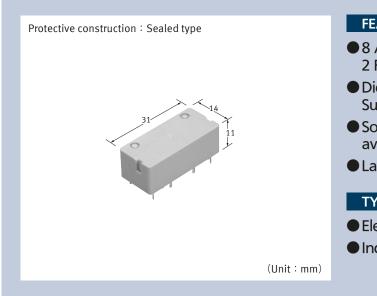
• Requests to customers:

https://industrial.panasonic.com/ac/e/salespolicies/

■ Global Sales Network Information: industrial.panasonic.com/ac/e/salesnetwork Panasonic Industry Co., Ltd. **Panasonic** Electromechanical Control Business Division **INDUSTRY** ■1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/

Power Relays (Over 2 A)

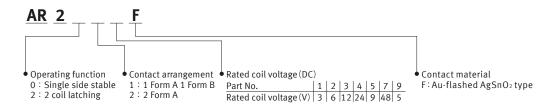
ST RELAYS


Product Catalog

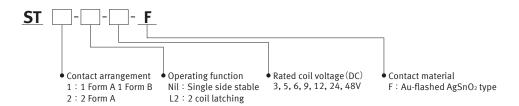
IN Your Future

ST RELAYS

1 Form A 1 Form B/2 Form A, 8 A, Polarized power relays


FEATURES

- 8 A, Multi-channel, 1 Form A 1 Form B/ 2 Form A contact relay
- Dielectric strength: 3,750 V rms
 Surge withstand voltage: 6,000 V
- Sockets for PC board and soldering are available
- Latching types available


TYPICAL APPLICATIONS

- Electric power equipment
- Industrial machines

ORDERING INFORMATION (PART NO.: Ordering part number for Japanese market)

ORDERING INFORMATION (TYPE NO.: Ordering part number for non Japanese market)

TYPES

" Type No. " is ordering part number for non Japanese market. " Part No. " is ordering part number for Japanese market.

Contact	Rated coil	Single si	de stable	2 coil la	atching	Standard packing	
arrangement	voltage	Type No.	Part No.	Type No.	Part No.	Inner carton	Outer carton
	3 V DC	ST1-DC3V-F	AR2011F	ST1-L2-DC3V-F	AR2211F		
	5 V DC	ST1-DC5V-F	AR2019F	ST1-L2-DC5V-F	AR2219F		
4.5	6 V DC	ST1-DC6V-F	AR2012F	ST1-L2-DC6V-F	AR2212F		500 pcs.
1 Form A 1 Form B	9 V DC 12 V DC 24 V DC	ST1-DC9V-F	AR2015F	ST1-L2-DC9V-F	AR2215F		
TTOITIB		ST1-DC12V-F	AR2013F	ST1-L2-DC12V-F	AR2213F		
		ST1-DC24V-F	AR2014F	ST1-L2-DC24V-F	AR2214F		
	48 V DC	ST1-DC48V-F	AR2017F	ST1-L2-DC48V-F	AR2217F	EO per	
	3 V DC	ST2-DC3V-F	AR2021F	ST2-L2-DC3V-F	AR2221F	50 pcs.	
	5 V DC	ST2-DC5V-F	AR2029F	ST2-L2-DC5V-F	AR2229F		
	6 V DC	ST2-DC6V-F	AR2022F	ST2-L2-DC6V-F	AR2222F		
2 Form A	9 V DC	ST2-DC9V-F	AR2025F	ST2-L2-DC9V-F	AR2225F		
	12 V DC	ST2-DC12V-F	AR2023F	ST2-L2-DC12V-F	AR2223F		
	24 V DC	ST2-DC24V-F	AR2024F	ST2-L2-DC24V-F	AR2224F		
	48 V DC	ST2-DC48V-F	AR2027F	ST2-L2-DC48V-F	AR2227F		

For the sockets, please refer to the " PC board socket/Soldering socket ".

RATING

■ Coil data

• Operating characteristics such as "Operate voltage" and "Release voltage" are influenced by mounting conditions or ambient temperature, etc.

Therefore, please use the relay within ± 5 % of rated coil voltage.

• "Initial" means the condition of products at the time of delivery.

Single side stable

Rated coil voltage	Operate voltage* (at 20 ℃)	Release voltage* (at 20 ℃)	Rated operating current (± 10 %, at 20 $^{\circ}$)	Coil resistance (±10 %, at 20 ℃)	Rated operating power	Max. allowable voltage (at 20 ℃)
3 V DC			78.9 mA	38 Ω		150 % V of rated coil
5 V DC	1		47.6 mA	105 Ω		
6 V DC	Max. 80 % V	Min. 10 % V	40 mA	150 Ω		
9 V DC	of rated coil voltage	of rated coil voltage	25 mA	360 Ω	Approx. 240 mW	
12 V DC	(Initial)	(Initial)	20 mA	600 Ω		voltage
24 V DC			10 mA	2,400 Ω		
48 V DC		5.3 mA	9,000 Ω			

^{*} Square, pulse drive

2 coil latching

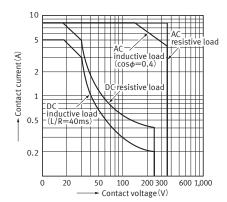
Rated coil voltage	Set voltage* (at 20 ℃)	Reset voltage* (at 20 ℃)	Rated operating current (± 10 %, at 20 °C)		Coil resistance (±10 %, at 20 ℃)		Rated operating power		Max. allowable voltage (at 20 ℃)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	(at 20 C)
3 V DC			75 mA	75 mA	40 Ω	40 Ω	Approx. 240 mW	Approx. 240 mW	150 % V of
5 V DC			45 mA	45 mA	110 Ω	110 Ω			
6 V DC	Max. 80 % V	Max. 80 % V	37.5 mA	37.5 mA	155 Ω	155 Ω			
9 V DC	of rated coil voltage	of rated coil voltage	25 mA	25 mA	360 Ω	360 Ω			rated coil
12 V DC	(Initial)	(Initial)	18.8 mA	18.8 mA	640 Ω	640 Ω			voltage
24 V DC		,	10 mA	10 mA	2,400 Ω	2,400 Ω			
48 V DC			4.7 mA	4.7 mA	10,200 Ω	10,200 Ω			

^{*} Square, pulse drive

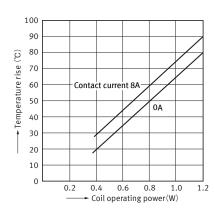
■ Specifications

1	tem	Specifications
	Contact arrangement	1 Form A 1 Form B, 2 Form A
	Contact resistance (initial)	Max. 30 m Ω (by voltage drop 6 V DC 1 A)
	Contact material	Au-flashed AgSnO₂ type
	Contact rating (resistive)	8 A 250 V AC, 5 A 30 V DC
Contact data	Max. switching power (resistive)	2,000 VA, 150 W
	Max. switching voltage	250 V AC, 30 V DC
	Max. switching current	8 A (AC) , 5 A (DC)
	Min. switching load (reference value) *1	100 mA 5 V DC
Insulation resistance	e (initial)	Min. 1,000 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)
511	Between open contacts	1,200 V rms for 1 min (detection current: 10 mA)
Dielectric strength (initial)	Between contact sets	2,000 V rms for 1 min (detection current: 10 mA)
(IIIIIai)	Between contact and coil	3,750 V rms for 1 min (detection current: 10 mA)
Surge withstand voltage (initial) *2	Between contact and coil	6,000 V
Time	Operate (Set) time	Max. 15 ms (Max. 15 ms) at rated coil voltage (at 20 $^{\circ}$ C, without bounce)
characteristics (initial)	Release (Reset) time	Max. 10 ms (Max. 15 ms) at rated coil voltage (at 20 ℃, without bounce, without diode)
Shock	Functional	196 m/s² (half-sine shock pulse: 11 ms, detection time: 10 μs)
resistance	Destructive	980 m/s² (half-sine shock pulse: 6 ms)
Vibration	Functional	10 to 55 Hz (at double amplitude of 2 mm, detection time: 10 μs)
resistance	Destructive	10 to 55 Hz (at double amplitude of 3 mm)
Expected life	Mechanical life	Min. 10×10^6 ope. (switching frequency: at 180 times/min)
Conditions	Conditions for usage, transport and storage*2	Ambient temperature: -40 to $+60$ °C, Humidity: 5 to 85 % RH (Avoid icing and condensation)
Unit weight		Approx. 10 g

^{*1:} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the


■ Expected electrical life

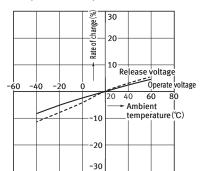
Conditions: Resistive load, switching frequency ON: OFF = 1 s: 5 s


Туре	Switching capacity	Number of operations
1 Form A 1 Form B, 2 Form A	8 A 250 V AC	Min. 100×10^3 ope.

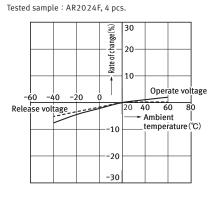
REFERENCE DATA

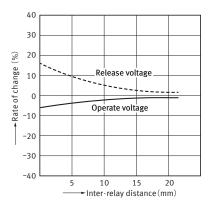
1. Max. switching capacity

2. Coil temperature characteristics



actual load. *2: Wave is standard shock voltage of $\pm 1.2 \times 50~\mu s$ according to JEC-212-1981 *3: For ambient temperature, please read " GUIDELINES FOR RELAY USAGE ".

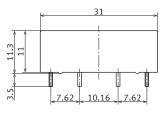

Power Relays (Over 2 A) ST RELAYS

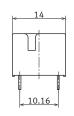

3-1. Ambient temperature characteristics 3-2. Ambient temperature characteristics 4. Influence of proximity mounting (1 Form A 1 Form B: Average)

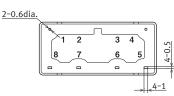
Tested sample: AR2013F, 4 pcs.

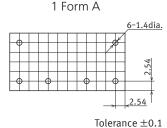
(2 Form A: Average)

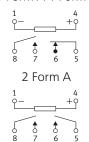
DIMENSIONS (Unit: mm)


CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.


■ Single side stable



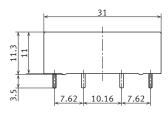


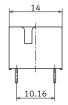


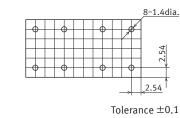
General tolerance ± 0.5

Recommended PC board pattern (BOTTOM VIEW)

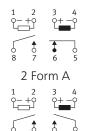
Schematic (BOTTOM VIEW) (De-energize) 1 Form A 1 Form B




■ 2 coil latching


CAD

External dimensions


Recommended

PC board pattern

(BOTTOM VIEW)

1 Form A

Schematic (BOTTOM VIEW) (Reset) 1 Form A 1 Form B

2-0.6dia

SAFETY STANDARDS

Each standard may be updated at any time, so please check our Website for the latest information.

■ UL (Approved)

File No.	Contact rating	
	8 A 250 V AC	
E43028	5 A 30 V DC	
	1/4 HP 125, 250 V AC	

CSA (Approved)

File No.	Contact rating
	8 A 250 V AC
2369519	5 A 30 V DC
	1/4 HP 125, 250 V AC

■ VDE (Approved)

File N	No.	Contact rating
	8 A 250 V AC ($\cos \phi = 1.0$)	
40017740		5 A 30 V DC (0 ms)
		$4 \text{ A } 250 \text{ V AC } (\cos \phi = 0.4)$

■ TV rating

File No.	Contact rating
UL: E43028	TV-3
CSA: 2369519	TV-3

INSULATION CHARACTERISTICS (IEC61810-1)

ltem	Characteristics
Clearance/Creepage distance (IEC61810-1)	Min. 1.5/2.5 mm
Category of protection (IEC61810-1)	RT III
Tracking resistance (IEC60112)	PTI 100
Insulation material group	III a
Over voltage category	II
Rated voltage	250 V
Pollution degree	2
Type of insulation (Between contact and coil)	Basic insulation
Type of insulation (Between open contacts)	Micro disconnection

Note) EN/IEC VDE Certified.

GUIDELINES FOR USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

■ Cautions for usage of ST relays

- The standard values of operate (set) and release (reset) voltage are for when the relay is installed with the terminals oriented downward.
- When using, please be aware that the N.C. and N.O. sides of 1 Form A 1 Form B type may go on simultaneously at operate time and release time.

Set and reset pulse time

Regarding the set and reset pulse time of the latching type, for the purpose of reliable operation under ambient temperature fluctuations and different operating conditions, we recommend setting the coil applied set and reset pulse time to 50 ms or more at the rated coil voltage.

PC board socket/Soldering socket

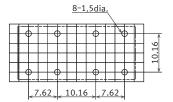
Terminal socket for soldering

TYPES

Product name	Type No.	Part No.	Standard packing	
			Inner carton	Outer carton
PC board socket	ST-PS	AR2800	EO nas	F00 ncc
Soldering socket	ST-SS	AR2806	50 pcs.	500 pcs.

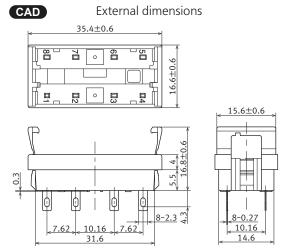
RATING

Item	Specifications
Dielectric strength (initial)	Between contact and coil: 4,000 V rms for 1 min (detection current: 10 mA) Between contact and terminal: 2,000 V rms for 1 min (detection current: 10 mA)
Insulation resistance (initial)	Between terminals: Min. 1,000 M Ω (at 500 V DC, Measured portion is the same as the case of dielectric strength.)
Maximum carrying current	10 A
Conditions for usage, transport and storage	Ambient temperature: -40 to $+60$ °C Humidity: 5 to 85 % RH (Avoid icing and condensation)

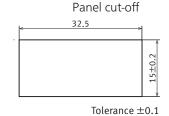

DIMENSIONS (Unit: mm)

CAD The CAD data of the products with a " CAD " mark can be downloaded from our Website.

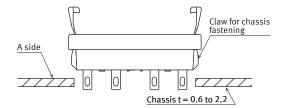
■ PC board Socket


External dimensions 35.4±0.6 35.4±0.6 35.4±0.6 35.4±0.6 35.6±0.6 35.6±0.6 35.6±0.6 General tolerance ±0.5

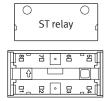
Recommended PC board pattern (BOTTOM VIEW)



Tolerance ±0.1


■ Soldering socket

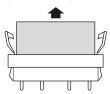
General tolerance ± 0.5

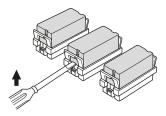

The range for chassis thickness is 0.6 to 2.2 mm.
 If the chassis hole is punched with a press, set so the release R on the front side (A side).

HANDLING

■ Mounting method of relay

1) Align the direction of relay and socket.


- 2) Insert the relay all the way in, so it is securely in place.
- 3) Press the hook section in the direction of the arrow and firmly secure the relay with the hook.


 $(Before\ fastening)\ \ (Fastening\ complete)$

■ Removing method of relay

1) When removing the relay, completely release the hooks on both sides and pull the relay out.

2) In case there is not enough space to grasp relay with fingers, after completely removing both hooks, use screwdrivers in the way shown.

3) Exercise care when removing relays. If greater than necessary force is applied at the socket hooks, deformation may alter the dimensions so that the hook will no longer catch, and other damage may also occur.

©Panasonic Industry Co., Ltd. 2023 ASCTB210E 202304

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

■ For cautions for use, please read " GUIDELINES FOR RELAY USAGE ". https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp

Precautions for Coil Input

Long term current carrying

A circuit that will be carrying a current continuously for long periods without relay switching operation. (circuits for emergency lamps, alarm devices and error inspection that, for example, revert only during malfunction and output warnings with form B contacts) Continuous, long-term current to the coil will facilitate deterioration of coil insulation and characteristics due to heating of the coil itself. For circuits such as these, please use a magnetic-hold type latching relay. If you need to use a single stable relay, use a sealed type relay that is not easily affected by ambient conditions and make a failsafe circuit design that considers the possibility of contact failure or disconnection.

■ DC Coil operating power

Steady state DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5 %. However, please check with the actual circuit since the electrical characteristics may vary. The rated coil voltage should be applied to the coil and the set/reset pulse time of latching type relay differs for each relays, please refer to the relay's individual specifications.

■ Coil connection

When connecting coils of polarized relays, please check coil polarity (+, -) at the internal connection diagram (Schematic). If any wrong connection is made, it may cause unexpected malfunction, like abnormal heat, fire and so on, and circuit do not work. Avoid impressing voltages to the set coil and reset coil at the same time.

Maximum allowable voltage and temperature rise

Proper usage requires that the rated coil voltage be impressed on the coil. Note, however, that if a voltage greater than or equal to the maximum continuous voltage is impressed on the coil, the coil may burn or its layers short due to the temperature rise. Furthermore, do not exceed the usable ambient temperature range listed in the catalog.

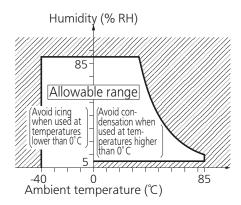
Operate voltage change due to coil temperature rise In DC relays, after continuous passage of current in the coil, if the current is turned OFF, then immediately turned ON again, due to the temperature rise in the coil, the operate voltage will become somewhat higher. Also, it will be the same as using it in a higher temperature atmosphere. The resistance/temperature relationship for copper wire is about 0.4 % for 1 ℃, and with this ratio the coil resistance increases. That is, in order to operate of the relay, it is necessary that the voltage be higher than the operate voltage and the operate voltage rises in accordance with the increase in the resistance value. However, for some polarized relays, this rate of change is considerably smaller.

Ambient Environment

■ Usage, Transport, and Storage Conditions

During usage, storage, or transportation, avoid locations subjected to direct sunlight and maintain normal temperature, humidity and pressure conditions.

Temperature/Humidity/Pressure


When transporting or storing relays while they are tube packaged, there are cases the temperature may differ from the allowable range. In this case be sure to check the individual specifications.

Also allowable humidity level is influenced by temperature, please check charts shown below and use relays within mentioned conditions. (Allowable temperature values differ for each relays, please refer to the relay's individual specifications.)

1) Temperature:

The tolerance temperature range differs for each relays, please refer to the relay's individual specifications

2) Humidity: 5 to 85 % RH

3) Pressure: 86 to 106 kPa

Dew condensation

Condensation occurs when the ambient temperature drops suddenly from a high temperature and humidity, or the relay is suddenly transferred from a low ambient temperature to a high temperature and humidity. Condensation causes the failures like insulation deterioration, wire disconnection and rust etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by condensation.

The heat conduction by the equipment may accelerate the cooling of device itself, and the condensation may occur.

Please conduct product evaluations in the worst condition of the actual usage. (Special attention should be paid when high temperature heating parts are close to the device. Also please consider the condensation may occur inside of the device.)

Icina

Condensation or other moisture may freeze on relays when the temperature become lower than 0 °C. This icing causes the sticking of movable portion, the operation delay and the contact conduction failure etc. Panasonic Industry Co., Ltd. does not guarantee the failures caused by the icing.

The heat conduction by the equipment may accelerate the cooling of relay itself and the icing may occur. Please conduct product evaluations in the worst condition of the actual usage.

•Low temperature and low humidity

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

High temperature and high humidity

Storage for extended periods of time (including transportation periods) at high temperature or high humidity levels or in atmospheres with organic gases or sulfide gases may cause a sulfide film or oxide film to form on the surfaces of the contacts and/or it may interfere with the functions. Check out the atmosphere in which the units are to be stored and transported.

Package

In terms of the packing format used, make every effort to keep the effects of moisture, organic gases and sulfide gases to the absolute minimum.

Silicon

When a source of silicone substances (silicone rubber, silicone oil, silicone coating materials and silicone filling materials etc.) is used around the relay, the silicone gas (low molecular siloxane etc.) may be produced. This silicone gas may penetrate into the inside of the relay. When the relay is kept and used in this condition, silicone compound may adhere to the relay contacts which may cause the contact failure. Do not use any sources of silicone gas around the relay (Including plastic sealed types).

NOx Generation

When relay is used in an atmosphere high in humidity to switch a load which easily produces an arc, the NOx created by the arc and the water absorbed from outside the relay combine to produce nitric acid.

This corrodes the internal metal parts and adversely affects operation.

Avoid use at an ambient humidity of 85 % RH or higher (at 20 $^{\circ}$). If use at high humidity is unavoidable, please contact our sales representative.

GUIDELINES FOR POWER, HIGH-CAPACITY DC CUT OFF AND SAFETY RELAYS USAGE

Others

■ Cleaning

- Although the environmentally sealed type relay (plastic sealed type, etc.) can be cleaned, avoid immersing the relay into cold liquid (such as cleaning solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
- Cleaning with the boiling method is recommended (The temperature of cleaning liquid should be 40 °C or lower). Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to ultrasonic energy.

Please refer to "the latest product specifications" when designing your product.

• Requests to customers:

https://industrial.panasonic.com/ac/e/salespolicies/

■ Global Sales Network Information: industrial.panasonic.com/ac/e/salesnetwork Panasonic Industry Co., Ltd. **Panasonic** Electromechanical Control Business Division **INDUSTRY** ■1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan industrial.panasonic.com/ac/e/