LZ4-00RW08 ### **LED ENGIN LuxiGen** Industry most robust high power ceramic package with glass lens for high performance over life. ## **Applications** - CCTV Surveillance Industrial Automation (Machine Controls, Light Barriers, Vision Controls) ### Features: - Package: Ceramic package with integrated glass lens - Chip technology: IR Thinfilm / UX:3 Typ. Radiation: 90° − Color: $λ_{\text{peak}}$ = 940 nm (• infrared (940 nm)); Cx = 0.335, Cy = 0.340 acc. to CIE 1931 (• white) ### LZ4-00RW08 | Ordering Information | n | | |-------------------------|---|---------------| | Туре | Brightness 1) | Ordering Code | | LZ4-00RW08-R755 | | Q65113A0525 | | • infrared (940 nm) | • Φ _E = 1.6 2.4 W (I _F = 700 mA) | | | white | • φ _V = 356 556 lm (I _F = 700 mA) | | | Maximum Ratings | | | | | |---|----------------------|--------------|------------------------------------|------------------------------------| | Parameter | Symbol | | Values
● infrared
(940 nm) | Values
● white | | Operating Temperature | T _{op} | min.
max. | -40 °C
145 °C | -40 °C
145 °C | | Storage Temperature | T _{stg} | min.
max. | -40 °C
145 °C | -40 °C
145 °C | | Junction Temperature 2) | T _j | max. | 145 °C | 145 °C | | Forward Current ²⁾ | I _F | max. | 1500 mA | 1500 mA | | Forward Current pulsed infrared: $t \le 150 \ \mu s$; $D \le 0.1$; $T_c = 25 \ ^{\circ}C$; white: $t \le 10 \ ms$; $D \le 0.1$; $T_c = 25 \ ^{\circ}C$ | I _{F pulse} | max. | 5000 mA | 1500 mA | | ESD withstand voltage acc. ANSI/ESDA/JEDEC JS-001 (HBM, Class 0) | V _{ESD} | | ESD sensitive device | ESD sensitive device | | Reverse voltage 3) | V_R | | Not designed for reverse operation | Not designed for reverse operation | ## **Characteristics** $\rm I_{\rm F}$ = 700 mA; $\rm T_{\rm C}$ = 25 °C; all chips operated in series | Parameter | Symbol | | Values
● infrared
(940 nm) | Values • white | |---|-------------------------|------|------------------------------------|------------------------------------| | Chromaticity Coordinate 4) | Сх | typ. | | 0.335 | | | Су | typ. | | 0.340 | | Total radiant flux 5) | Φ_{E} | typ. | 1.9 W | | | Luminous Flux 5) | Φ_{V} | typ. | | 480 lm | | Peak Wavelength 6) | $\lambda_{\sf peak}$ | min. | 920 nm | | | $I_{F} = 700 \text{ mA}$ | poun | typ. | 940 nm | | | • | | max. | 960 nm | | | Viewing angle at 50% I _v | 2φ | typ. | 95 ° | 95 ° | | Forward Voltage 7)5) | V _F | min. | 5.40 V | 5.60 V | | $I_{\rm F} = 700 \text{mA}$ | · | typ. | 5.60 V | 6.90 V | | • | | max. | 7.40 V | 7.60 V | | Reverse current 3) | I _R | | Not designed for reverse operation | Not designed for reverse operation | | Electrical thermal resistance junction/case Value in the first column relates to full package with all chips operated simultaneously. | R _{thJC elec.} | typ. | 2.8 K / W | | ## **Brightness Groups** all chips operated in series • infrared (940 nm) Group Total radiant flux 1) Total radiant flux 1) $I_{\rm F} = 700 \text{ mA}$ $I_{\rm F} = 700 \text{ mA}$ $\begin{array}{ll} \text{min.} & \text{max.} \\ \boldsymbol{\Phi}_{\text{E}} & \boldsymbol{\Phi}_{\text{E}} \end{array}$ PQ 1.6 W 2.4 W ## **Brightness Groups** all chips operated in series white Group Luminous Flux 1) Luminous Flux 1) $I_{F} = 700 \text{ mA}$ $I_{F} = 700 \text{ mA}$ $\begin{array}{ll} \text{min.} & \text{max.} \\ \boldsymbol{\Phi}_{_{\boldsymbol{V}}} & \boldsymbol{\Phi}_{_{\boldsymbol{V}}} \end{array}$ ST 356 lm 556 lm ## **Wavelength Groups** all chips operated in series • infrared (940 nm) Group Peak Wavelength 6) Peak Wavelength 6) $I_{E} = 700 \text{ mA}$ $I_{E} = 700 \text{ mA}$ $\begin{array}{ll} \text{min.} & \text{max.} \\ \lambda_{\text{peak}} & \lambda_{\text{peak}} \end{array}$ F09 920 nm 960 nm # **Chromaticity Coordinate Groups** # **Chromaticity Coordinate Groups** white | Group | Cx | Су | |-------|--------|--------| | 2V3U | 0.3196 | 0.3602 | | | 0.3480 | 0.3840 | | | 0.3429 | 0.3299 | | | 0.3231 | 0.3120 | ## Relative Spectral Emission 5) $I_{rel} = f(\lambda); I_F = 700 \text{ mA}; T_C = 25 ^{\circ}\text{C}$ # Relative Spectral Emission 5) $I_{rel} = f(\lambda); I_F = 700 \text{ mA}; T_C = 25 ^{\circ}\text{C}$ ## Radiation Characteristics 5) $$I_{rel} = f(\phi); T_C = 25 \, ^{\circ}C$$ ## Forward current 5) $$I_F = f(V_F); T_C = 25 \, ^{\circ}C$$ ## Forward current 5) $$I_F = f(V_F); T_C = 25 \, ^{\circ}C$$ ### Relative Radiant Power 5), 8) $$\Phi_F/\Phi_F(700 \text{ mA}) = f(I_F); T_C = 25 \text{ °C}$$ ### Relative Luminous Flux 5), 8) $$\Phi_v/\Phi_v(700 \text{ mA}) = f(I_F); T_C = 25 \text{ °C}$$ ## Peak Wavelength 5) $$\Delta \lambda_{\text{peak}} = \lambda_{\text{peak}} - \lambda_{\text{peak}} (25 \text{ °C}) = f(T_j); I_F = 700 \text{ mA}$$ ## Chromaticity Coordinate Shift 5) $$\Delta Cx$$, $\Delta Cy = f(I_F)$; $T_C = 25 \, ^{\circ}C$ ## Forward Voltage 5) $$\Delta V_F = V_F - V_F (25 \ ^{\circ}C) = f(T_j); I_F = 700 \ mA$$ ## Forward Voltage 5) $$\Delta V_{_{\rm F}} = V_{_{\rm F}} - V_{_{\rm F}} (25~^{\circ}{\rm C}) = f(T_{_{\rm J}}); \ I_{_{\rm F}} = 700~{\rm mA}$$ ### Relative Radiant Power 5) $$\Phi_{F}/\Phi_{F}(25 \text{ °C}) = f(T_{i}); I_{F} = 700 \text{ mA}$$ ### Relative Luminous Flux 5) $$\Phi_{v}/\Phi_{v}(25 \text{ °C}) = f(T_{i}); I_{F} = 700 \text{ mA}$$ # Peak Wavelength 5) $$\Delta \lambda_{\text{peak}} = \lambda_{\text{peak}} - \lambda_{\text{peak}} (25 \text{ °C}) = f(T_j); I_F = 700 \text{ mA}$$ ## **Chromaticity Coordinate Shift** 5) $$\Delta Cx$$, $\Delta Cy = f(T_j)$; $I_F = 700 \text{ mA}$ ## Max. Permissible Forward Current $I_F = f(T)$; • infrared (940 nm) ## **Dimensional Drawing** 9) General tolerance ±0.1 Pad finish silver C67062-A0375-A18..-01 ### **Further Information:** **Approximate Weight:** 263.0 mg # **Electrical Internal Circuit** | | Pin 0 | ut | |-----|-------|----------| | Pad | Die | Function | | 1 | Α | Anode | | 2 | Α | Cathode | | 3 | В | Anode | | 4 | В | Cathode | | 5 | C | Anode | | 6 | C | Cathode | | 7 | D | Anode | | 8 | D | Cathode | | 9 | n/a | Thermal | | Pin | Description | |------|---------------------------| | 1, 2 | Die A - infrared (940 nm) | | 3, 4 | Die B - white | | 5, 6 | Die C - infrared (940 nm) | | 7, 8 | Die D - white | ### Recommended Solder Pad 9) #### 1,16(4x) 1,25(4x) R2.77(4x) □1.74 (4 x) 0.42×45°(4×) R0.18(8x 0.24 Ø0 75 ø5 Ø2.5 0.87 0,24 4.54 8 02 ### Non-pedestal MCPCB Design foot print # R2.75(4x) □1,5(4 x) 0.43x45°(4x) R0.18(8x) Ø5.1 0.85 4.5 Pedestal MCPCB Design #### Component Location on Pad E062.3010.291-01 - 1. For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. - 2. Package not suitable for ultra sonic cleaning. - 3. Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system thermal resistance. - 4. X-ray sample monitoring for solder voids underneath the emitter thermal slug is recommended. The total area covered by solder voids should be less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to higher failure rates due to thermal over stress. ## **Reflow Soldering Profile** Product complies to MSL Level 1 acc. to JEDEC J-STD-020E | Profile Feature | Symbol | Pb-Free (S | nAgCu) Assembly | | Unit | |--|--------------------------------|------------|-----------------|---------|------| | | | Minimum | Recommendation | Maximum | | | Ramp-up rate to preheat*) | ' | | 2 | 3 | K/s | | 25 °C to 150 °C | | | | | | | Time t _s | t_s | 60 | 100 | 120 | S | | T_{Smin} to T_{Smax} | | | | | | | Ramp-up rate to peak*) | | | 2 | 3 | K/s | | T_{Smax} to T_{P} | | | | | | | Liquidus temperature | T_L | | 217 | | °C | | Time above liquidus temperature | $t_{\scriptscriptstyle \perp}$ | | 80 | 100 | S | | Peak temperature | T_{P} | | 245 | 250 | °C | | Time within 5 °C of the specified peak | t _P | 10 | 20 | 30 | S | | temperature T _P - 5 K | | | | | | | Ramp-down rate* T _P to 100 °C | | | 3 | 4 | K/s | | Time | | | | 480 | S | | 25 °C to T _P | | | | | | All temperatures refer to the center of the package, measured on the top of the component ^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range # Taping 9) C67062-A0375-B4-01 ## Tape and Reel 10) ## **Reel Dimensions** | Α | W | N_{\min} | W ₁ | $W_{2\text{max}}$ | Pieces per PU | |--------|---------------------|------------|----------------|-------------------|---------------| | 180 mm | 16 + 0.3 / - 0.1 mm | 60/100 mm | 16.4 + 2 mm | 22.4 mm | 250 | ## **Barcode-Product-Label (BPL)** **OSRAM** **Opto Semiconductors** Our Brand LED ENGIN (6P) Batch No: 1234567890 (1T) Lot No: 1234567890 (X) Prod No: 12345678 (9D) D/C: 1234 (Q) Qty: 9999 CoO: XX LXX-XXXXX BIN1: XXX-X-X-XXX BIN2: XXX-X-X-XXX XXXXXX BIN3: XX-X-X-XXX RoHS Compliant BIN4: XXX-XXX-X-XXX BIN5: X-XX-X-XXX BIN6: X-XX-X-XXX MP_ST X XXX° X Pack: RXX B_X123_12345.1234 #### **Notes** The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this data sheet fall into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation. Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810. Tapes and reels are shipped in airtight bags in order to reduce the onset of silver tarnish. We recommend bags only be opened when ready to use emitters. Partially used reels or trays should be stored in airtight bags or in storage purged with nitrogen. Based on very short life cycle times in chip technology this component is subject to frequent adaption to the latest chip technology. Changes to the content of this datasheet may occur without further notification. JEDEC 46C constitutes the guideline of the change management for the device specified in this document. For further application related information please visit www.osram-os.com/appnotes #### **Disclaimer** #### Attention please! The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version on the OSRAM OS website. #### **Packing** Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Product and functional safety devices/applications or medical devices/applications OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. OSRAM OS products are not qualified at module and system level for such application. In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer. #### Glossarv - Brightness: Brightness groups are tested at a current pulse duration of 10 ms and a tolerance of ±10 %. - 2) Operating Conditions: Operating conditions according DC-derating (Max. Permissible Forward Current) - 3) Reverse Operation: Not designed for reverse operation. Continuous reverse operation can cause migration and damage of the device. - Chromaticity coordinate groups: Chromaticity coordinate groups are tested at a current pulse duration of 10 ms and a tolerance of ±0.01. - Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. - Peak Wavelength: Wavelengths are tested at a current pulse duration of 10 ms and a tolerance of - Forward Voltage: Forward voltages are tested at a current pulse duration of 10 ms and a tolerance of ±0.1 V. - 8) Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit. - 9) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm. - Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm. #### LZ4-00RW08 | Revision | n History | | |----------|------------|------------| | Version | Date | Change | | 1.1 | 2021-10-25 | New Layout | Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved. 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。