# Product Preview

# Multi-Output Clock Synthesizer

#### Description

The PCS1P2860A is a Precision multi–PLL based frequency synthesizer. Six Clock outputs are generated using an inexpensive 25 MHz Crystal or external reference clock. The outputs consist of 25 MHz Refout, 127 MHz and four 125 MHz clocks.  $\overline{SHUTDOWN}$  signal tri–states all the clocks when enabled. The device operates from a Supply Voltage of 3.3 V  $\pm$  5% V. The device is available in a 16–pin TSSOP JEDEC package for an Industrial temperature range.

## **Application**

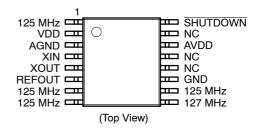
PCS1P2860A is targeted for use in high-end multimedia, communications and consumer applications.

#### **Features**

- Generates Multiple Clock Outputs from an Inexpensive 25 MHz Crystal or External Reference Clock
- Frequency Outputs:
  - ◆ 25 MHz Reference Clock
  - ◆ 125 MHz
  - ◆ 127 MHz
- Zero ppm Frequency Synthesis Error for All CLK Outputs
- $3.3 \text{ V} \pm 5\% \text{ V}$  Supply Voltage
- Low Jitter Design
- Packaged in 16-pin TSSOP
- Industrial Temperature Range
- Compatible with CY22393XC-MZ2
- Advanced Low-power CMOS Process
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.




## ON Semiconductor®

http://onsemi.com



TSSOP-16 T SUFFIX CASE 948AN

#### **PIN CONFIGURATION**



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

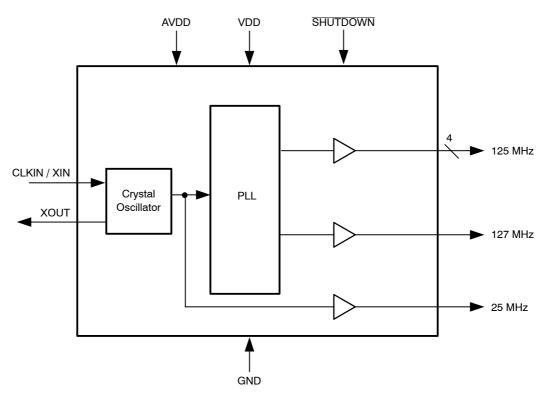



Figure 1. Block Diagram

**Table 1. PIN DESCRIPTION** 

| Pin# | Pin Name | Pin Type | Pin Description                                                                                                     |
|------|----------|----------|---------------------------------------------------------------------------------------------------------------------|
| 1    | 125 MHz  | Output   | 125 MHz Clock Output.                                                                                               |
| 2    | VDD      | Power    | Connect to +3.3 V.                                                                                                  |
| 3    | AGND     | Power    | Connect to ground.                                                                                                  |
| 4    | XIN      | Input    | Crystal connection or external reference frequency input. It can be connected to a 25 MHz Fundamental mode crystal. |
| 5    | XOUT     | Output   | Connection to crystal. If using an external reference clock, this pin must be left unconnected.                     |
| 6    | REFOUT   | Output   | 25 MHz Reference Clock output.                                                                                      |
| 7    | 125 MHz  | Output   | 125 MHz Clock Output.                                                                                               |
| 8    | 125 MHz  | Output   | 125 MHz Clock Output.                                                                                               |
| 9    | 127 MHz  | Output   | 127 MHz Clock Output.                                                                                               |
| 10   | 125 MHz  | Output   | 125 MHz Clock Output.                                                                                               |
| 11   | GND      | Power    | Connect to ground.                                                                                                  |
| 12   | NC       |          | No connection.                                                                                                      |
| 13   | NC       |          | No connection.                                                                                                      |
| 14   | AVDD     | Power    | Connect to +3.3 V.                                                                                                  |
| 15   | NC       |          | No connection.                                                                                                      |
| 16   | SHUTDOWN | Input    | Output Enable bit. When this pin is made HIGH, all clocks are enabled. Tri-states all clocks when this pin is LOW.  |

## **Table 2. ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                             | Rating          | Unit |
|------------------|-------------------------------------------------------|-----------------|------|
| VDD              | Power Supply Voltage relative to Ground               | -0.5 to +4.6    | ٧    |
| V <sub>IN</sub>  | Input Voltage relative to Ground (Input Pins)         | -0.5 to VDD+0.3 |      |
| T <sub>STG</sub> | Storage temperature                                   | −65 to +150     | °C   |
| Ts               | Max. Soldering Temperature (10 sec)                   | 260             | °C   |
| $T_J$            | Junction Temperature                                  | 125             | °C   |
| T <sub>DV</sub>  | Static Discharge Voltage (As per JEDEC STD22- A114-B) | 2               | KV   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

## **Table 3. OPERATING CONDITIONS**

| Parameter       | Description                                 | Min | Тур | Max   | Unit |
|-----------------|---------------------------------------------|-----|-----|-------|------|
| VDD / AVDD      | AVDD Operating Voltage                      |     | 3.3 | 3.465 | V    |
| T <sub>A</sub>  | Operating Temperature (Ambient Temperature) | -40 |     | +85   | °C   |
| C <sub>L</sub>  | Load Capacitance                            |     |     | 15    | pF   |
| C <sub>IN</sub> | Input Capacitance                           |     | 5   |       | pF   |

## **Table 4. DC ELECTRICAL CHARACTERISTICS**

| Symbol           | Parameter                | Conditions                            | Min     | Тур | Max     | Units |
|------------------|--------------------------|---------------------------------------|---------|-----|---------|-------|
| VDD / AVDD       | Operating Voltage        |                                       | 3.135   | 3.3 | 3.465   | V     |
| $V_{IH}$         | Input High Voltage       |                                       | 2.2     |     | VDD+0.3 | V     |
| $V_{IL}$         | Input Low Voltage        |                                       | GND-0.3 |     | 1.0     | V     |
| I <sub>IH</sub>  | Input HIGH current       | VIN = VDD                             |         |     | 30      | μΑ    |
| I <sub>IL</sub>  | Input LOW current        | VIN = GND                             |         |     | 50      | μΑ    |
| V <sub>OH</sub>  | Output High Voltage      | VDD = 3.135, I <sub>OH</sub> = −12 mA | 2.4     |     |         | V     |
| V <sub>OL</sub>  | Output Low Voltage       | VDD = 3.135, I <sub>OL</sub> = 12 mA  |         |     | 0.4     | V     |
| I <sub>OZ</sub>  | Output Leakage Current   | Three-state outputs                   |         |     | 10      | μΑ    |
| I <sub>CC</sub>  | Static Current           | CLKIN and SHUTDOWN<br>Pins pulled low |         |     | 5.5     | mA    |
| I <sub>DD</sub>  | Dynamic Current          | No Load, All Clocks on                |         | 35  |         | mA    |
| Z <sub>OUT</sub> | Nominal output impedance |                                       |         | 30  |         | Ω     |

Table 5. AC ELECTRICAL CHARACTERISTICS

| Symbol                   | Parameter                   |                                                   | Min | Тур | Max | Unit |
|--------------------------|-----------------------------|---------------------------------------------------|-----|-----|-----|------|
| CLKIN / XIN              | Input Frequency             | Input Frequency                                   |     | 25  |     | MHz  |
| CLK OUT                  | Output Frequency            | Output Frequency Pin 6                            |     | 25  |     | MHz  |
|                          |                             | Pin 1,7,8,10                                      |     | 125 |     | 1    |
|                          |                             | Pin 9                                             |     | 127 |     | 1    |
| t <sub>LH</sub> (Note 1) | Rising edge slew rate (Mea  | Rising edge slew rate (Measured from 20% to 80%)  |     | 1.7 |     | V/nS |
| t <sub>HL</sub> (Note 1) | Falling edge slew rate (Me  | Falling edge slew rate (Measured from 80% to 20%) |     | 2   |     | V/nS |
| T <sub>PJ</sub> (Note 1) | Peak-to-peak Period Jitte   | Peak-to-peak Period Jitter @ VDD/2                |     | 300 |     | pS   |
|                          | Synthesis Error (Output Fr  | Synthesis Error (Output Frequency)                |     | 0   |     | ppm  |
| t <sub>D</sub> (Note 1)  | Output Duty Cycle @ VDD/2   |                                                   | 45  | 50  | 55  | %    |
| t <sub>LOCK</sub>        | PLL Lock Time from Power-Up |                                                   |     |     | 3   | mS   |

<sup>1.</sup> CL = 15 pF for outputs < 100 MHz; CL = 10 pF for outputs > 100 MHz;

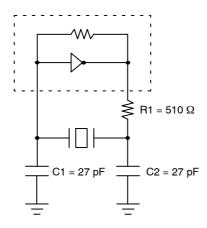
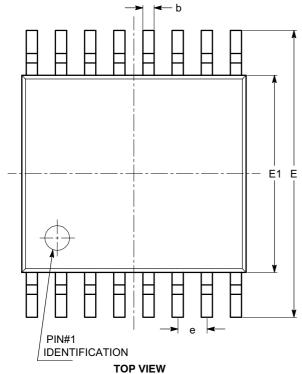
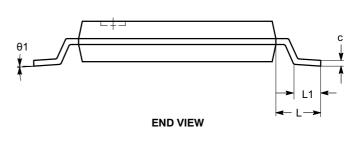



Figure 2. Typical Crystal Oscillator Circuit


**Table 6. TYPICAL CRYSTAL SPECIFICATIONS** 

| Fundamental AT Cut Parallel Resonant Crystal |                           |  |  |  |
|----------------------------------------------|---------------------------|--|--|--|
| Nominal frequency                            | 25 MHz                    |  |  |  |
| Frequency tolerance                          | ±50 ppm or better at 25°C |  |  |  |
| Operating temperature range                  | -25°C to +85°C            |  |  |  |
| Storage temperature                          | -40°C to +85°C            |  |  |  |
| Load capacitance                             | 18 pF                     |  |  |  |
| Shunt capacitance                            | 7 pF maximum              |  |  |  |
| ESR                                          | 25 Ω                      |  |  |  |

# **PACKAGE DIMENSIONS**


# TSSOP16, 4.4x5

CASE 948AN-01 ISSUE O



| SYMBOL | MIN  | NOM      | MAX  |
|--------|------|----------|------|
| Α      |      |          | 1.10 |
| A1     | 0.05 |          | 0.15 |
| A2     | 0.85 |          | 0.95 |
| b      | 0.19 |          | 0.30 |
| С      | 0.13 |          | 0.20 |
| D      | 4.90 |          | 5.10 |
| Е      | 6.30 |          | 6.50 |
| E1     | 4.30 |          | 4.50 |
| е      |      | 0.65 BSC |      |
| L      |      | 1.00 REF |      |
| L1     | 0.45 |          | 0.75 |
| θ      | 0°   |          | 8°   |

A2 A
A1
SIDE VIEW



## Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-153.

#### **Table 7. ORDERING INFORMATION**

| Part Number      | Marking  | Package Type                     | Temperature |
|------------------|----------|----------------------------------|-------------|
| PCS1P2860AG-16TR | 1P2860AG | 16-Pin TSSOP, TAPE & REEL, Green | Commercial  |
| PCS1P2860AG-16TT | 1P2860AG | 16-Pin TSSOP, TUBE, Green        | Commercial  |
| PCS1I2860AG-16TR | 1I2860AG | 16-Pin TSSOP, TAPE & REEL, Green | Industrial  |
| PCS1I2860AG-16TT | 1I2860AG | 16-Pin TSSOP, TUBE, Green        | Industrial  |

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative