## **Bi-CMOS IC** For Polygon Mirror Motor **3-phase Brushless Motor Driver**



http://onsemi.com

#### Overview

The LV8112V is a 3-phase brushless motor driver for polygon mirror motor driving of LBP.

A circuit needed to drive of polygon mirror motor can be composed of a single-chip. Also, the output transistor is made DMOS by using BiDC process, and by adopting the synchronous rectification method, the lower power consumption (Heat generation) is achieved.

### **Features**

- 3-phase bipolar drive
- Direct PWM drive + synchronous rectification
- IO max1 = 2.5A
- $I_{O} \max 1 = 3.0 \text{A (t} \le 0.1 \text{ms)}$
- Output current control circuit
- PLL speed control circuit
- Phase lock detection output (with mask function)
   Forward / Reverse switching circuit
- Compatible with Hall FG
- Provides a 5V regulator output

- Full complement of on-chip protection circuits, including lock protection, current limiter, under-voltage protection, and thermal shutdown protection circuits
- Circuit to switch slowing down method while stopped (Free run or Short-circuit brake)
- Constraint protection detection signal switching circuit (FG or LD)
- Hall bias pin (Bias current cut in a stopped state)
- SDCC (Speed Detection Current Control) function

## **Specifications**

**Absolute Maximum Ratings** at Ta = 25°C

| Parameter                   | Symbol              | Conditions                      | Ratings     | Unit |
|-----------------------------|---------------------|---------------------------------|-------------|------|
| Supply voltage              | V <sub>CC</sub> max | V <sub>CC</sub> pin             | 37          | V    |
|                             | VG max              | VG pin                          | 42          | V    |
| Output current              | I <sub>O</sub> max1 | *1                              | 2.5         | Α    |
|                             | I <sub>O</sub> max2 | t ≤ 0.1ms *1                    | 3.0         | А    |
| Allowable Power dissipation | Pd max              | Mounted on a specified board *2 | 1.7         | W    |
| Operation temperature       | Topr                |                                 | -25 to +80  | °C   |
| Storage temperature         | Tstg                |                                 | -55 to +150 | °C   |
| Junction temperature        | Tj max              |                                 | 150         | °C   |

<sup>\*1.</sup> Tj max = 150°C must not be exceeded.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability

<sup>\*2.</sup> Specified board: 114.3mm × 76.1mm × 1.6mm, glass epoxy board.

## Allowable Operating Ranges at $Ta = 25^{\circ}C$

| Parameter                          | Symbol           | Conditions | Ratings  | Unit |
|------------------------------------|------------------|------------|----------|------|
| Supply voltage range               | VCC              |            | 10 to 35 | V    |
| 5V constant voltage output current | I <sub>REG</sub> |            | 0 to -30 | mA   |
| LD pin applied voltage             | $V_{LD}$         |            | 0 to 5   | V    |
| LD pin output current              | l <sub>LD</sub>  |            | 0 to 15  | mA   |
| FG pin applied voltage             | V <sub>FG</sub>  |            | 0 to 5   | V    |
| FG pin output current              | I <sub>FG</sub>  |            | 0 to 15  | mA   |
| HB pin output current              | I <sub>HB</sub>  |            | 0 to -30 | mA   |

## **Electrical Characteristics** at Ta = 25°C, $V_{CC} = 24V$

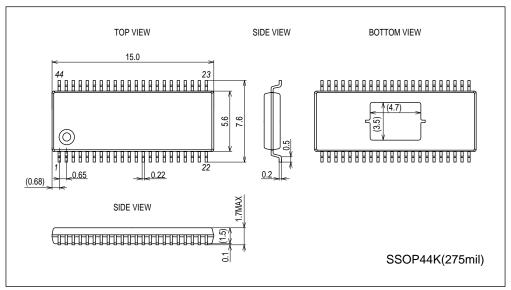
| Output Block         Output ON resistance       RON       IO = 1A, Sum of the lower and upper side outputs       1.         Output leakage current       IOelak       Design target value *       1.         Lower side Diode forward voltage       VD1       ID = -1A       1.         Upper side Diode forward voltage       VD2       ID = 1A       1.         Charge Pump Output (VG pin)         Output voltage       VGOUT       VCC+4.         CP1 pin         Output ON resistance (High level)       VOH(CP1)       ICP1 = -2mA       50         Output ON resistance (Low level)       VOL(CP1)       ICP1 = 2mA       30         Hall Amplifier Block         Input bias current       IHB(HA)       -2       -0.         Common mode input voltage range       VICM       0.5       80         Hysteresis $\Delta$ VI <sub>IN</sub> (HA)       15       2         Input voltage L → H       VSLH       1.       1.         Input voltage H → L       VSHL       1.       1.         Hall Bias (HB pin) P-channel Output         Output voltage ON resistance       VO_(HB)       IHB = -20mA       2         Output leakage current       IL(HB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Unit  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | max      | Onit  |
| 5V Constant Voltage       VREG       4.65       5.         Line regulation       ΔVREG1 $V_{CC}$ = 10 to 35V       2         Load regulation       ΔVREG2 $I_{O}$ = 5 to -20mA       2         Temperature coefficient       ΔVREG3       Design target value *       2         Output Block       Output Block         Output Place       RON $I_{O}$ = 1A, Sum of the lower and upper side outputs       1.         Output leakage current $I_{O}$ leak       Design target value *       1.         Lower side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -1A       1.         Upper side Diode forward voltage $V_{D}$ 1 $I_{D}$ = -2mA       50         Output Voltage Loads (High level) $V_{O}$ 1 $I_{CP1}$ = -2mA       50         Output Di resistance (High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 6.5    | mA    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1.5    | mA    |
| Line regulation $\Delta VREG1$ $V_{CC} = 10 \text{ to } 35 \text{V}$ 2  Load regulation $\Delta VREG2$ $I_{IO} = 5 \text{ to } 20 \text{mA}$ 2  Temperature coefficient $\Delta VREG3$ Design target value *  Output Block  Output Block  Output ON resistance $P_{ON} = 10 \text{ Joe } 10 \text{ Joe }$ |          |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 5.35   | V     |
| Temperature coefficient $\Delta VREG3$ Design target value *  Output Block  Output ON resistance $RON$ $I_O = 1A$ , Sum of the lower and upper side outputs  Output leakage current $I_O = A I_O = A I_O I_O = A I_O I_O I_O I_O I_O I_O I_O I_O I_O I_O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 100    | mV    |
| Output Block         Output ON resistance       RON       IO = 1A, Sum of the lower and upper side outputs       1.         Output leakage current       IOesign target value *       1.         Lower side Diode forward voltage       VD1       ID = -1A       1.         Upper side Diode forward voltage       VD2       ID = 1A       1.         Charge Pump Output (VG pin)         Output voltage       VGOUT       VGOUT       VCC+4.         CP1 pin         Output ON resistance (High level)       VOH(CP1)       ICP1 = -2mA       50         Output ON resistance (Low level)       VOH(CP1)       ICP1 = 2mA       30         Hall Amplifier Block         Input bias current       IHB(HA)       -2       -0.         Common mode input voltage range       VICM       0.5       -0.         Hall input sensitivity       80         Hysteresis $\Delta$ VIN(HA)       15       2         Input voltage L → H       VSLH       -1         Input voltage ON resistance       VOL(HB)       IHB = -20mA       2         Output leakage current       IL(HB)       VO = 0V       -1         FG Ampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 60     | mV    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0        | mV/°C |
| Output leakage current $I_{O}$ leak $I_{O}$ Design target value * $I_{O}$ Lower side Diode forward voltage $I_{O}$ $I_{D}$ = -1A $I_{O}$ .    Upper side Diode forward voltage $I_{O}$ $I_{D}$ = -1A $I_{O}$ .    Charge Pump Output (VG pin)   Output voltage $I_{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 1.9    | Ω     |
| Upper side Diode forward voltage $V_{D2}$ $I_{D}$ = 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10       | μΑ    |
| Charge Pump Output (VG pin)       VGOUT       VCC+4.         Output voltage       VGOUT       VCC+4.         CP1 pin       VOH(CP1)       ICP1 = -2mA       50         Output ON resistance (High level)       VOH(CP1)       ICP1 = 2mA       30         Hall Amplifier Block       Input bias current       IHB(HA)       -2       -0.         Common mode input voltage range       VICM       0.5         Hall input sensitivity       80       80         Hysteresis $\Delta V_{IN}(HA)$ 15       2         Input voltage L → H       VSLH       1.       1.         Input voltage H → L       VSHL       -1.       -1.         Hall Bias (HB pin) P-channel Output       VOL(HB)       IHB = -20mA       2         Output leakage current       IL(HB)       VO = 0V       2         FG Amplifier Schmitt Block (IN1)       Input amplifier gain       GFG       Design target value *       1         Input hysteresis (H → L)       VSHL(FGS)       Input referred, Design target value *       1         Input hysteresis (L → H)       VSLH(FGS)       Input referred, Design target value *       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 1.35   | V     |
| Output voltage       VGOUT       VCC+4.         CP1 pin       Output ON resistance (High level)       VOH(CP1)       ICP1 = -2mA       50         Output ON resistance (Low level)       VOL(CP1)       ICP1 = 2mA       30         Hall Amplifier Block       Input bias current       IHB(HA)       -2       -0.         Common mode input voltage range       VICM       0.5       -0.         Hall input sensitivity       80       -2       -0.         Hysteresis $\Delta$ VIN(HA)       15       2         Input voltage L $\rightarrow$ H       VSLH       1.       1.         Input voltage H $\rightarrow$ L       VSHL       1.       1.         Hall Bias (HB pin) P-channel Output       1.       1.       1.       1.         Output voltage ON resistance       VOL(HB)       IHB = -20mA       2       2         Output leakage current       IL(HB)       VO = 0V       1.       FG Amplifier Schmitt Block (IN1)       1.         Input amplifier gain       GFG       Design target value *       1.       1.         Input hysteresis (L $\rightarrow$ H)       VSHL(FGS)       Input referred, Design target value *       1.         Input hysteresis (L $\rightarrow$ H)       VSLH(FGS)       Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1.35   | V     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9        | V     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 700    | Ω     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 400    | Ω     |
| Common mode input voltage range $V_{ICM}$ 0.5  Hall input sensitivity 80  Hysteresis $\Delta V_{IN}(HA)$ 15 2  Input voltage $L \rightarrow H$ $V_{SLH}$ 1.  Input voltage $H \rightarrow L$ $V_{SHL}$ 1.  Hall Bias (HB pin) P-channel Output  Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20\text{mA}$ 2.  Output leakage current $I_{L}(HB)$ $V_{O} = 0V$ FG Amplifier Schmitt Block (IN1)  Input amplifier gain $G_{FG}$ Design target value *  Input hysteresis $(H \rightarrow L)$ $V_{SHL}(FGS)$ Input referred, Design target value *  Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |
| Hall input sensitivity 80   Hysteresis $\Delta V_{IN}(HA)$ 15  2 Input voltage $L \rightarrow H$ $V_{SLH}$ 1. Input voltage $H \rightarrow L$ $V_{SHL}$ -1.  Hall Bias (HB pin) P-channel Output   Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20 \text{mA}$ 2 Output leakage current $I_{L}(HB)$ $V_{O} = 0V$ FG Amplifier Schmitt Block (IN1) Input amplifier gain $G_{FG}$ Design target value *   Input hysteresis $(H \rightarrow L)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value *   Input hysteresis $(L \rightarrow H)$ $V_{SLH}(LB)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5        | μΑ    |
| Hall input sensitivity       80         Hysteresis $ΔV_{IN}(HA)$ 15         Input voltage L → H $V_{SLH}$ 1.         Input voltage H → L $V_{SHL}$ -1.         Hall Bias (HB pin) P-channel Output         Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20 \text{mA}$ 2         Output leakage current $I_L(HB)$ $V_O = 0V$ 2         FG Amplifier Schmitt Block (IN1)         Input amplifier gain $G_{FG}$ Design target value *       1         Input hysteresis (H → L) $V_{SLH}(FGS)$ Input referred, Design target value *       1         Input hysteresis (L → H) $V_{SLH}(FGS)$ Input referred, Design target value *       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VREG-2.0 | V     |
| Input voltage $L \to H$ $V_{SLH}$ 1.  Input voltage $H \to L$ $V_{SHL}$ -1.  Hall Bias (HB pin) P-channel Output  Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20 \text{mA}$ 2.  Output leakage current $I_{L}(HB)$ $V_{O} = 0V$ FG Amplifier Schmitt Block (IN1)  Input amplifier gain $G_{FG}$ Design target value *  Input hysteresis $(H \to L)$ $V_{SHL}(FGS)$ Input referred, Design target value *  Input hysteresis $(L \to H)$ $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | mVp-p |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 42     | mV    |
| Hall Bias (HB pin) P-channel Output         Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20 \text{mA}$ 2         Output leakage current $I_L(HB)$ $V_O = 0V$ FG Amplifier Schmitt Block (IN1)         Input amplifier gain $G_{FG}$ Design target value *         Input hysteresis (H → L) $V_{SHL}(FGS)$ Input referred, Design target value *         Input hysteresis (L → H) $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        | mV    |
| Hall Bias (HB pin) P-channel Output         Output voltage ON resistance $V_{OL}(HB)$ $I_{HB} = -20 \text{mA}$ 2         Output leakage current $I_L(HB)$ $V_O = 0V$ FG Amplifier Schmitt Block (IN1)         Input amplifier gain $G_{FG}$ Design target value *         Input hysteresis (H → L) $V_{SHL}(FGS)$ Input referred, Design target value *         Input hysteresis (L → H) $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        | mV    |
| Output leakage current $I_L(HB)$ $V_O = 0V$ $FG$ Amplifier Schmitt Block (IN1) Input amplifier gain $G_{FG}$ Design target value * Input hysteresis $(H \rightarrow L)$ $V_{SHL}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ Input referred, Design target value * Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$ $V_{SLH}(FGS)$ Input hysteresis $(L \rightarrow H)$ $V_{SLH}(FGS)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |
| Output leakage current $I_L(HB)$ $V_O = 0V$ $FG$ Amplifier Schmitt Block (IN1) $I_{C}(HB)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 30     | Ω     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10       | μА    |
| Input hysteresis (H $\rightarrow$ L) $V_{SHL}(FGS)$ Input referred, Design target value *  Input hysteresis (L $\rightarrow$ H) $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |
| Input hysteresis (L $\rightarrow$ H) $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | times |
| Input hysteresis (L $\rightarrow$ H) $V_{SLH}(FGS)$ Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | mV    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0        | mV    |
| hysteresis V <sub>FGL</sub> Input referred, Design target value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0        | mV    |

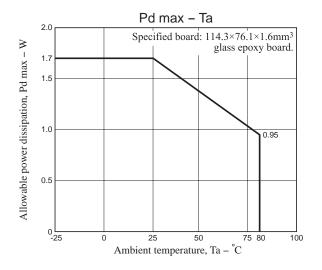
<sup>\*</sup> Design target value, Do not measurement.

Continued from preceding page.

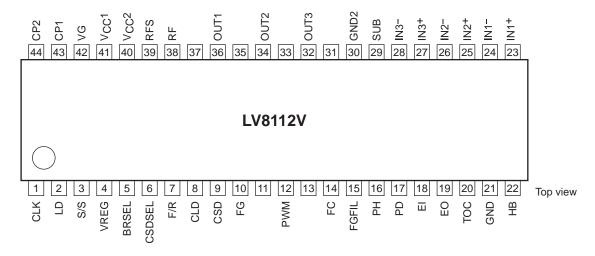
| Parameter                               | Symbol                  | Conditions                                 | Ratings                                 |                   |         | Unit    |
|-----------------------------------------|-------------------------|--------------------------------------------|-----------------------------------------|-------------------|---------|---------|
|                                         | Cymbol                  | Conditions                                 | min                                     | typ               | max     | Offic   |
| FGFIL pin                               | ,                       |                                            | , , , , , , , , , , , , , , , , , , , , |                   |         |         |
| High level output voltage               | V <sub>OH</sub> (FGFIL) |                                            | 2.7                                     | 3.0               | 3.3     | V       |
| Low level output voltage                | V <sub>OL</sub> (FGFIL) |                                            | 0.75                                    | 0.85              | 0.95    | V       |
| External capacitor charge current       | I <sub>CHG</sub> 1      | V <sub>CHG</sub> 1 = 1.5V                  | -5                                      | -4                | -3      | μΑ      |
| External capacitor discharge current    | I <sub>CHG</sub> 2      | $V_{CHG}2 = 1.5V$                          | 3                                       | 4                 | 5       | μΑ      |
| Amplitude                               | V(FGFIL)                |                                            | 1.95                                    | 2.15              | 2.35    | Vp-p    |
| FG Output                               |                         |                                            |                                         |                   |         |         |
| Output ON resistance                    | V <sub>OL</sub> (FG)    | I <sub>FG</sub> = 7mA                      |                                         | 20                | 30      | Ω       |
| Output leakage current                  | I <sub>L</sub> (FG)     | $V_O = 5V$                                 |                                         |                   | 10      | μΑ      |
| PWM Oscillator                          |                         |                                            |                                         |                   |         |         |
| High level output voltage               | V <sub>OH</sub> (PWM)   |                                            | 2.95                                    | 3.2               | 3.45    | V       |
| Low level output voltage                | V <sub>OL</sub> (PWM)   |                                            | 1.3                                     | 1.5               | 1.7     | ٧       |
| External capacitor charge current       | I <sub>CHG</sub> (PWM)  | V <sub>PWM</sub> = 2V                      | -90                                     | -70               | -50     | μΑ      |
| Oscillation frequency                   | f(PWM)                  | C = 150pF                                  | 180                                     | 225               | 270     | kHz     |
| Amplitude                               | V(PWM)                  |                                            | 1.5                                     | 1.7               | 1.9     | Vp-p    |
| Recommended operation frequency range   | fOPR                    |                                            | 15                                      |                   | 300     | kHz     |
| CSD Oscillation Circuit                 | <u> </u>                |                                            | <u> </u>                                |                   |         | 1       |
| High level output voltage               | V <sub>OH</sub> (CSD)   |                                            | 2.7                                     | 3.0               | 3.3     | V       |
| Low level output voltage                | V <sub>OL</sub> (CSD)   |                                            | 0.8                                     | 1.0               | 1.2     | V       |
| Amplitude                               | V(CSD)                  |                                            | 1.75                                    | 2.0               | 2.25    | Vp-p    |
| External capacitor charge current       | ` '                     | V <sub>CHG</sub> 1 = 2.0V                  | -14                                     | -10               | -6      | μА      |
| External Capacitor Discharge Current    | I <sub>CHG</sub> 2(CSD) | V <sub>CHG</sub> 2 = 2.0V                  | 8                                       | 11                | 14      | μА      |
| Oscillation frequency                   | f(CSD)                  | C = 0.068μF, Design target value *         | 30                                      | 40                | 50      | Hz      |
| Phase comparing output                  | .(000)                  |                                            |                                         |                   |         |         |
| Output ON resistance (high level)       | V <sub>PDH</sub>        | I <sub>OH</sub> = -100μA                   |                                         | 500               | 700     | Ω       |
| Output ON resistance (low level)        | V <sub>PDL</sub>        | I <sub>OL</sub> = 100μA                    |                                         | 500               | 700     | Ω       |
| Phase Lock Detection Output             | PDL                     | IOL TOOKS                                  |                                         | 333               |         |         |
| Output ON resistance                    | V <sub>OL</sub> (LD)    | I <sub>LD</sub> = 10mA                     |                                         | 20                | 30      | Ω       |
| Output leakage current                  | I <sub>I</sub> (LD)     | V <sub>O</sub> = 5V                        |                                         | 20                | 10      | μА      |
| Error Amplifier Block                   | IL(LD)                  | VO = 0 V                                   |                                         |                   | 10      | μπ      |
| Input offset voltage                    | V <sub>IO</sub> (ER)    | Design target value *                      | -10                                     |                   | +10     | mV      |
| Input bias current                      | I <sub>B</sub> (ER)     | Design target value                        | -10                                     |                   | +10     | μΑ      |
|                                         | VOH(ER)                 | Jan - 100uA                                | EI+0.7                                  | EI+0.85           |         | μΑ<br>V |
| High level output voltage               | VOH(ER)                 | I <sub>OH</sub> = -100μA                   |                                         | EI+0.85<br>EI-1.6 | El+1.0  | V       |
| Low level output voltage  DC bias level | 02                      | I <sub>OL</sub> = 100μA                    | EI-1.75                                 | VREG/2            | EI-1.45 | V       |
|                                         | V <sub>B</sub> (ER)     |                                            | -5%                                     | VREG/2            | 5%      | V       |
| Current Control Circuit                 | ODE                     | NA/I II II II II II II II                  | 0.5                                     | 0.55              | 0.0     | 45      |
| Drive gain                              | GDF                     | While phase locked                         | 0.5                                     | 0.55              | 0.6     | time    |
| Current Limiter Circuit (pins RF and F  | ·                       |                                            | 0 405                                   | 0.545             | 0.505   | .,      |
| Limiter voltage                         | V <sub>RF</sub>         |                                            | 0.465                                   | 0.515             | 0.565   | V       |
| Under-voltage Protection                | \/OD                    |                                            |                                         | T                 |         |         |
| Operation voltage                       | VSD                     |                                            | 8.3                                     | 8.7               | 9.1     | V       |
| Hyteresis                               | ΔVSD                    |                                            | 0.2                                     | 0.35              | 0.5     | V       |
| CLD Circuit                             | l .                     |                                            |                                         | Т                 |         |         |
| External capacitor charge current       | I <sub>CLD</sub>        | V <sub>CLD</sub> = 0V                      | -4.5                                    | -3.0              | -1.5    | μΑ      |
| Operation voltage                       | V <sub>H</sub> (CLD)    |                                            | 3.25                                    | 3.5               | 3.75    | V       |
| Thermal Shutdown Operation              | 1                       |                                            | , · · · · · · · · · · · · · · · · · · · | <u> </u>          |         |         |
| Thermal shutdown operation temperature  | TSD                     | Design target value (Junction temperature) | 150                                     | 175               |         | °C.     |
| Hysteresis                              | ΔTSD                    | Design target value (Junction temperature) |                                         | 30                |         | °C      |

 $<sup>^{\</sup>star}$  Design target value, Do not measurement.

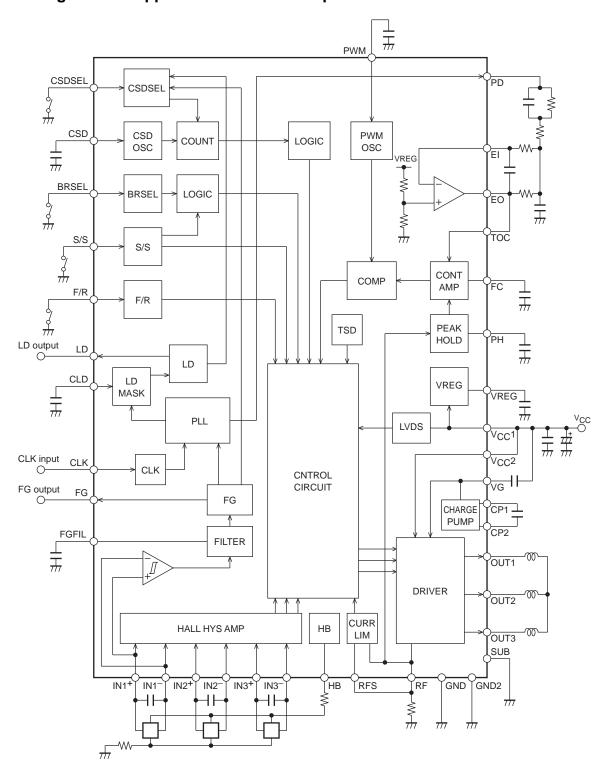

Continued from preceding page.


| Parameter                | Symbol                  | Conditions                |          | Ratings  |      |                |
|--------------------------|-------------------------|---------------------------|----------|----------|------|----------------|
|                          |                         | 1 3, 11                   |          | typ      | max  | Unit           |
| CLK pin                  | 1                       |                           | T        | ı        |      |                |
| External input frequency | f <sub>I</sub> (CLK)    |                           | 0.1      |          | 10   | kHz            |
| High level input voltage | V <sub>IH</sub> (CLK)   |                           | 2.0      |          | VREG | V              |
| Low level input voltage  | V <sub>IL</sub> (CLK)   |                           | 0        |          | 1.0  | V              |
| Input open voltage       | V <sub>IO</sub> (CLK)   |                           | VREG-0.5 |          | VREG | V              |
| Hysteresis               | V <sub>IS</sub> (CLK)   |                           | 0.2      | 0.3      | 0.4  | V              |
| High level input current | I <sub>IH</sub> (CLK)   | V <sub>CLK</sub> = VREG   | -10      | 0        | +10  | μΑ             |
| Low level input current  | I <sub>IL</sub> (CLK)   | V <sub>CLK</sub> = 0V     | -110     | -85      | -60  | μΑ             |
| CSDSEL pin               |                         |                           |          |          |      |                |
| High level input voltage | V <sub>IH</sub> (CSD)   |                           | 2.0      |          | VREG | V              |
| Low level input voltage  | V <sub>IL</sub> (CSD)   |                           | 0        |          | 1.0  | V              |
| Input open voltage       | V <sub>IO</sub> (CSD)   |                           | VREG-0.5 |          | VREG | ٧              |
| High level input current | I <sub>IH</sub> (CSD)   | V <sub>CSD</sub> = VREG   | -10      | 0        | +10  | μΑ             |
| Low level input current  | I <sub>IL</sub> (CSD)   | V <sub>CSD</sub> = 0V     | -110     | -85      | -60  | μΑ             |
| S/S pin                  | '                       |                           | <u> </u> | <u> </u> |      |                |
| High level input voltage | V <sub>IH</sub> (SS)    |                           | 2.0      |          | VREG | V              |
| Low level input voltage  | V <sub>IL</sub> (SS)    |                           | 0        |          | 1.0  | V              |
| Input open voltage       | V <sub>IO</sub> (SS)    |                           | VREG-0.5 |          | VREG | V              |
| Hysteresis               | V <sub>IS</sub> (SS)    |                           | 0.2      | 0.3      | 0.4  | V              |
| High level input current | I <sub>IH</sub> (SS)    | $V_{S/S} = VREG$          | -10      | 0        | +10  | μΑ             |
| Low level input current  | I <sub>IL</sub> (SS)    | V <sub>S/S</sub> =0V      | -110     | -85      | -60  | μΑ             |
| BRSEL pin                | 1                       |                           | <u> </u> | L        |      |                |
| High level input voltage | V <sub>IH</sub> (BRSEL) |                           | 2.0      |          | VREG | V              |
| Low level input voltge   | V <sub>IL</sub> (BRSEL) |                           | 0        |          | 1.0  | V              |
| Input open voltage       | V <sub>IO</sub> (BRSEL) |                           | VREG-0.5 |          | VREG | V              |
| High level input current | I <sub>IH</sub> (BRSEL) | V <sub>BRSEL</sub> = VREG | -10      | 0        | +10  | μΑ             |
| Low level input current  | I <sub>IL</sub> (BRSEL) | V <sub>BRSEL</sub> = 0V   | -110     | -85      | -60  | μΑ             |
| F/R pin                  | 1                       |                           | 1        | I        |      |                |
| High level input voltage | V <sub>IH</sub> (FR)    |                           | 2.0      |          | VREG | V              |
| Low level input voltage  | V <sub>IL</sub> (FR)    |                           | 0        |          | 1.0  | V              |
| Input open voltage       | V <sub>IO</sub> (FR)    |                           | VREG-0.5 |          | VREG | V              |
| High level input current | I <sub>IH</sub> (FR)    | V <sub>F/R</sub> = VREG   | -10      | 0        | +10  | μΑ             |
| Low level input current  | I <sub>IL</sub> (FR)    | V <sub>F/R</sub> = 0V     | -110     | -85      | -60  | <u>.</u><br>μΑ |

## **Package Dimensions**


unit: mm (typ)

3333






## **Pin Assignment**



## **Block Diagram and Application Circuit Example**



## **Pin Function**

| PIN F   | unction  | 1                                                                                                                                     |                                     |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Pin No. | Pin name | Function                                                                                                                              | Equivalent circuit                  |
| 1       | CLK      | Clock input pin (10kHz maximum)                                                                                                       | VREG  5kΩ  10kΩ  10kΩ  10kΩ         |
| 2       | LD       | Phase lock detection output pin. Goes ON during PLL-phase lock. Open drain output.                                                    | VREG 2                              |
| 3       | S/S      | Start/Stop input pin. START with a low-level input. STOP with a high-level input or open input                                        | VREG  555kΩ  10kΩ  10kΩ  10kΩ  10kΩ |
| 4       | VREG     | 5V regulator output pin. (the control circuit power supply) Connect a capacitor between this pin and GND for stabilization.           | V <sub>CC</sub>                     |
| 5       | BRSEL    | Brake selection pin.  By low level, short-circuit braking when the S/S pin is in a stopped state.  (Brake for the inspection process) | VREG  55kΩ  5kΩ 5kΩ 5  5kΩ 5  5kΩ   |
| 6       | CSDSEL   | Motor constraint protection detection signal selection pin.  Select FG with low, and LD with high or in an open state.                | VREG  55kΩ ₹ 55kΩ ₹ 6               |

## Continued from preceding page.

| Pin No. | Pin name | eceding page.  Function                                                                                                                                                                                                                                                                          | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | F/R      | Pin to select Forward / Reverse.                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,       |          | (Pin to select SDCC function)                                                                                                                                                                                                                                                                    | VREG 55kΩ ₹ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8       | CLD      | Pin to set phase lock signal mask time.  Connect a capacitor between this pin and GND.  If there is no need for masking, this pin must be left open.                                                                                                                                             | VREG 500Ω 8 8 2kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9       | CSD      | Pin for both the constraint protection circuit operation time and the initial reset pulse setting.  Connect a capacitor between this pin and GND.  If the motor constraint protection circuit is not used, a capacitor and a resistor must be connected in parallel between the CSD pin and GND. | VREG 500Ω 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10      | FG       | FG Schmitt output pin. Open drain output.                                                                                                                                                                                                                                                        | VREG 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12      | PWM      | Pin to set the oscillation frequency of PWM.  Connect a capacitor between this pin and GND.                                                                                                                                                                                                      | VREG 200Ω 12 2kΩ 3 17 17 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14      | FC       | Frequency characteristics correction pin of the current limiter circuit.  Connect a capacitor between this pin and GND.                                                                                                                                                                          | VREG 500Ω 110kΩ \$ 110 |

## Continued from preceding page.

| Pin No. | Pin name | Function                                                                                                                      | Equivalent circuit  |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 15      | FGFIL    | FG filter pin.  When the noise of the FG signal is a problem, connect a capacitor between this pin and GND for stabilization. | VREG 15kΩ 500Ω (15) |
| 16      | РН       | Pin to stabilize the RF waveform.  Connect a capacitor between this pin and GND.                                              | VREG 5500Ω 16       |
| 17      | PD       | Phase comparison output pin.  The phase error is output by the duty changing of the pulse.                                    | VREG 500Ω 177       |
| 18      | EI       | Error amplifier input pin.                                                                                                    | VREG 50000 18       |
| 19      | EO       | Error amplifier output pin.                                                                                                   | VREG 19             |
| 20      | тос      | Torque command voltage input pin.  Normally, this pin must be connected with the EO pin.                                      | VREG 500Ω 20        |
| 21      | GND      | Ground pin of the control circuit block.                                                                                      |                     |

## Continued from preceding page.

| Pin No.  | Pin name                     | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Equivalent circuit         |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 22       | НВ                           | Hall element bias current pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                          |
| 22       | טוו                          | Goes ON when the S/S pin is in a start state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VREG                       |
|          |                              | Goes OFF when the S/S pin is in an stopped state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|          |                              | Cook of the man dispersion of the man disper |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22)                        |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | │                          |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>///</del> ///         |
| 23       | IN1+                         | Hall amplifier input pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VREG                       |
| 24       | IN1 <sup>-</sup>             | A high level state of logic is recognized when IN+ > IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VILLE                      |
| 25       | IN2+                         | In reverse case is a low-level state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 26       | IN2 <sup>-</sup>             | The input amplitude of 100mVp-p or more (differential) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   *                      |
| 27       | IN3+                         | desirable in the Hall sensor inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                       |
| 28       | IN3 <sup>-</sup>             | If noise on the Hall inputs is a problem, that noise must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 242628 + W 232527          |
|          |                              | excluded by inserting capacitors across the inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ता ताता ताता               |
| 29       | SUB                          | Frame ground pin. This pin is connected with the GND2 pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 30       | GND2                         | Ground pin of the output circuit block.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 32       | OUT3                         | Output pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vcc _                      |
| 34<br>36 | OUT2<br>OUT1                 | As for PWM, Duty control is executed on the upper- side FET.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 30       | 0011                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32(34)(36)                 |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv E$                 |
| 38       | RF                           | Source pin of output MOSFET (lower-side).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
|          |                              | Connect a low resistance (Rf) between this pin and GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (38)                       |
| 39       | RFS                          | Output current detection pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VREG                       |
|          |                              | Connect to RF pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lack lack                  |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5kO                        |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39 - 5κΩ                   |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 40       | V <sub>CC</sub> <sup>2</sup> | Power supply pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|          | 00                           | Connect a capacitor between this pin and GND for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
|          |                              | stabilization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 41       | V <sub>CC</sub> 1            | Power supply pin for control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| 42       | VG                           | Charge pump output pin (Power supply for the upper side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>CC</sub>            |
|          |                              | FET gate).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|          |                              | Connect a capacitor between this pin and V <sub>CC</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>→ → → → → → → → → →</b> |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 ₹                     |
| 43       | CP1                          | Pin to connect a capacitor for charge pump.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 44       | CP2                          | Connect a capacitor between CP1 and CP2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                         |
|          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ""                         |

### **3-phase Logic Truth Table** (IN = "H" indicates the state where in IN<sup>+</sup> > IN<sup>-</sup>)

|     | F/R = H |     | F/R = L |     |     |      | Output |      |
|-----|---------|-----|---------|-----|-----|------|--------|------|
| IN1 | IN2     | IN3 | IN1     | IN2 | IN3 | OUT1 | OUT2   | OUT3 |
| Н   | L       | Н   | L       | Н   | L   | L    | Н      | М    |
| Н   | L       | L   | L       | Н   | Н   | L    | М      | Н    |
| Н   | Н       | L   | L       | L   | Н   | М    | L      | Н    |
| L   | Н       | L   | Н       | L   | Н   | Н    | L      | М    |
| L   | Н       | Н   | Н       | L   | L   | Н    | М      | L    |
| L   | L       | Н   | Н       | Н   | L   | М    | Н      | L    |

### S/S Pin

| Input state  | Mode  |
|--------------|-------|
| High or Open | Stop  |
| Low          | Start |

## BRSEL Pin

| Input state  | While stopped       |
|--------------|---------------------|
| High or Open | Free run            |
| Low          | Short-circuit brake |

#### **CSDSEL Pin**

| Input state  | Mode        |
|--------------|-------------|
| High or Open | LD standard |
| Low          | FG standard |

### **SDCC Select**

| Input state        | Mode         |
|--------------------|--------------|
| F/R = High or Open | Function ON  |
| F/R = Low          | Function OFF |

## **LV8112V Description**

### 1. Speed Control Circuit

This IC can realize a high efficiency, low-jitter, a stable rotation by adopting the PLL speed control method. This the PLL circuit compares the phase difference of the edge between the CLK signal and the FG signal and controls by using the output of error. The FG servo frequency under control becomes congruent with the CLK frequency.

$$f_{FG}$$
 (Servo) =  $f_{CLK}$ 

## 2. Output Drive Circuit

This IC adopts the direct PWM drive method to reduce power loss in the output. Adjusts the driving force of the motor by changing on-duty of output transistor.

The PWM switching of the output is performed by the upper-side output transistor.

Also, this IC has a parasitic diode of the output DMOS as a regeneration route when the PWM switching is off.

But, this IC is cut down the fever than the diode regeneration by performing synchronous rectification.

#### 3. Current Limiter Circuit

This IC limits the (peak) current at the value

 $I = V_{RF} / Rf (V_{RF} = 0.515V \text{ (typical)}, Rf : current detection resister)).$ 

The current limitation operation consists of reducing the PWM output on duty to suppress the current.

To prevent malfunction of the current limitation operation when the reverse recovery current of diode is detected, the operation has a delay (approximately 300ns). In case of a coil resistance of motor is small or small inductance, since the current change at start-up is fast, there is a possibility that the current more than specified current is flowed by this delay.

It is necessary to set the current increases by the delay.

### 4. Power Saving Circuit

This IC becomes the power saving state of decreasing the consumption current in the stop state. The bias current of the majority circuits is cut in the power saving state. Also, 5V regulator output is output in the power saving state.

## 5. Reference Clock

Note that externally-applied clock signal has no noise of chattering. The input circuit has a hysteresis.

But, if noise is a problem, that noise must be excluded by inserting capacitors across the inputs.

If clock input goes to the no input state when the IC is in the start state, the drive is turned off after a few rotation of motor if the motor constrained protection circuit does operate. (Clock disconnection protection)

#### 6. PWM Frequency

The PWM frequency is determined by using a capacitor C (F) connected to the PWM pin.

```
f_{PWM} \approx 1 / (29500 \times C) ... 150pF or more f_{PWM} \approx 1 / (32000 \times C) ... 100pF or more, less than 150pF
```

The frequency is oscillated at about 225kHz when a capacitor of 150pF is connected.

The GND of a capacitor must be placed as close to the control block GND (GND pin ) of the IC as possible to reduce influence of the output.

### 7. Hall Effect Sensor Input Signals

The signal input of the amplitude of hysteresis of 42mV max or more is required in the Hall effect sensor inputs. Also, an input amplitude of over 100mVp-p is desirable in the Hall effect sensor inputs in view of influence of noise. If the output waveform (when the phase changes ) is distorted by noise, that noise must be excluded by inputting capacitors across the inputs.

## 8. FG Signals

The Hall signal of IN1 is used as the FG signal in the IC. If noise is a problem, the noise of the FG signal can be excluded by inserting a capacitor between the FGFIL pin and GND.

Note that normal operation becomes impossible if the value of the capacitor is overlarge. Also, note that the trouble of noise occurs easily when the position of GND of a capacitor is incorrect.

### 9. Constraint Protection Circuit

This IC has an on-chip constraint protection circuit to protect the IC and the motor in motor constraint mode. when the CSDSEL pin is set to the high level or open input, if the LD output remains high (unlocked statement) for a fixed period in the start state, this circuit operates. In the low level setting case, if the FG signal is not switched for a fixed period in the start state, this circuit is operates. Also, the upper-side output transistor is turned off while the constraint protection circuit is operating. This time is set by the capacitance of the capacitor attached to the CSD pin.

The set time (in seconds) is  $102 \times C (\mu F)$ 

When a capacitor of 0.068µF is attached, the protection time becomes about 7.0 seconds.

The set time must be set well in advance for the motor start-up time. When the motor is decelerated by switching the clock frequency, this protection circuit is not operated. To clear the motor constrained state, the S/S pin is switched into a stop state or the power must be turned off and reapplied. Since the CSD pin also functions as the power-on reset pin, if the CSD pin were connected directly to ground, the logic circuit goes to the reset state and the speed cannot be controlled.

Therefore, if the motor constraint protection circuit is not used, a resistor of about  $220k\Omega$  and a capacitor of about 4700pF must be connected in parallel between the CSD pin and GND.

#### 10. Phase Lock Signals

### (1) Phase lock range

This IC has no the speed system counter. The speed error range in the phase lock state is indeterminable only by the characteristics of the IC. (because the accelerations of the change in FG frequency influences.)

When it is necessary to specify for the speed error as a motor, the value obtained while the motor is actually operating must be measured. Since the speed error occurs easily when the accelerations of FG is large, the speed error will be the largest when the IC goes into the lock state during start-up or the unlocked state by switching the clock.

### (2) Phase lock signal mask functions

When the IC goes into the lock state during start-up or the unlocked state by switching the clock, the low signal for a short-time by using the hunting when the IC goes into the locked state is masked. Therefore, the lock signal is output in stable state. But, the mask time duration causes the delay of the lock signal output. The mask time is set by the capacitance of the capacitor attached between the CLD pin and GND.

The mask time (seconds) is  $1.8 \times C (\mu F)$ 

When a capacitor of 0.1 uF is attached, the mask time becomes about 180ms.

If the signals should be masked completely, the mask time must be set well in advance.

When there is no need for masking, the CLD pin must be left open.

### 11. Power Supply Stabilization

Since this IC is used in applications that draw large output currents and adopts the drive method by switching, the power-Supply line is subject to fluctuations. Therefore, capacitors with capacitances adequate to stabilize the power-supply voltage must be connected between the  $V_{CC}$  pin and GND. The ground-side a capacitor must be connected as close to the GND2 pin of power GND as possible. If it is impossible to connect a capacitor (electrolytic capacitor) near the pin, the ceramic capacitor of about  $0.1\mu F$  must be connected as close to the pin as possible. If diodes are inserted in the power-supply line to prevent IC destruction due to reverse power supply connection, Since this makes the power-supply voltage even more subject to fluctuations, even larger capacitors will be required.

#### 12. VREG Stabilization

To stabilize the VREG voltage that is the power supply of the control circuit, connect a capacitor of  $0.1\mu F$  or more. GND of the capacitor must be attached as close to the control block GND (GND1 pin) of the IC as possible.

### 13. Error Amplifier

External components of the error amplifier block must be placed as close to the IC as possible to reduce influence of noise.

Also, these components must be placed as separate from the motor as possible.

#### 14. IC Reverse Metal

To improve heat radiation, the metal part on the reverse of IC is stuck fast to the substrate by using highly-conduction solder.

### 15. SDCC (Speed Detection Current Control) function

The SDCC circuit controls the speed detection current. It limits the current to 87.5% of the specified current to reduce acceleration of the motor when the rotation of the motor exceeds 95% of its target speed. This enables stabilized phase lock pull-in and minimizes the variation in startup time.

The SDCC function is disabled by setting F/R low. It is enabled by setting F/R high or open.

Notes: If the selected state of SDCC does not match the rotational direction of the motor, it is necessary to solve the problem by changing the HALL bias.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa