Inverting Buffer / CMOS Logic Level Shifter

LSTTL-Compatible Inputs

The MC74VHC1GT04 is a single gate inverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT04 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHC1GT04 to be used to interface 5.0 V circuits to 3.0 V circuits. The output structures also provide protection when $V_{CC} = 0$ V. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $t_{PD} = 3.8$ ns (Typ) at $V_{CC} = 5.0$ V
- Low Power Dissipation: $I_{CC} = 1 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- CMOS–Compatible Outputs: $V_{OH} > 0.8 V_{CC}$; $V_{OL} < 0.1 V_{CC}$ @ Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs = 105; Equivalent Gates = 26
- Pb–Free Packages are Available

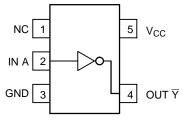
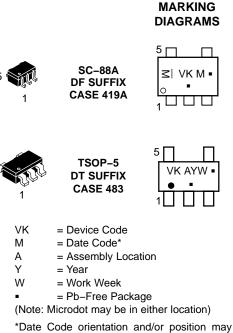



Figure 1. Pinout (Top View)



ON Semiconductor®

http://onsemi.com

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT						
1	NC					
2	IN A					
3	GND					
4	OUT Y					
5	V _{CC}					

FUNCTION TABLE

A Input	Y Output
L	Н
Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol		Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	V _{CC} = 0 High or Low State	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current		-20	mA
I _{OK}	Output Diode Current	V_{OUT} < GND; V_{OUT} > V_{CC}	+20	mA
I _{OUT}	DC Output Current, per Pin		+25	mA
I _{CC}	DC Supply Current, V _{CC} and GNE)	+50	mA
PD	Power dissipation in still air	SC-88A, TSOP-5	200	mW
θ_{JA}	Thermal resistance	SC-88A, TSOP-5	333	°C/W
ΤL	Lead temperature, 1 mm from cas	se for 10 s	260	°C
ТJ	Junction temperature under bias		+150	°C
T _{stg}	Storage temperature		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 1500 > 200 N/A	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 4)	±500	mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A

2. Tested to EIA/JESD22-A115-A

3. Tested to JESD22-C101-A

4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Charac	Min	Max	Unit	
V _{CC}	DC Supply Voltage		3.0	5.5	V
V _{IN}	DC Input Voltage		0.0	5.5	V
V _{OUT}	DC Output Voltage	V _{CC} = 0 High or Low State	0.0 0.0	5.5 V _{CC}	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

Device Junction Temperature versus Time to 0.1% Bond Failures

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

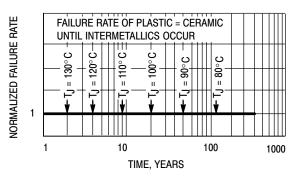
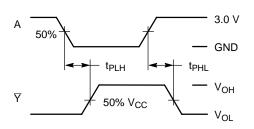


Figure 3. Failure Rate vs. Time Junction Temperature


			v _{cc}	Т	T _A = 25°C		$T_A \le 85^\circ C$		$\textbf{-55} \leq \textbf{T}_{\textbf{A}} \leq \textbf{125}^{\circ}\textbf{C}$		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Max	Min	Max	Unit
V _{IH}	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.4 2.0 2.0			1.4 2.0 2.0		1.4 2.0 2.0		V
V _{IL}	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
V _{OH}	Minimum High–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu\text{A}$	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
Ň	$V_{IN} = V_{IH} \text{ or } V_{IL}$		3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
Output Vo	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu \text{A}$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	V _{IN} = V _{IH} or V _{IL}	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 4.0 \text{ mA} \\ I_{OL} = 8.0 \text{ mA} \end{array}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5 V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			1.0		20		40	μΑ
I _{CCT}	Quiescent Supply Current	Input: V _{IN} = 3.4 V	5.5			1.35		1.50		1.65	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0.0			0.5		5.0		10	μΑ

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS C_{load} = 50 pF, Input t_{f} = t_{f} = 3.0 ns

			Т	$T_A = 25^{\circ}C$ $T_A \le 85^{\circ}C$		85°C	$-55 \leq T_A \leq 125^\circ C$			
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to \overline{Y}	$\begin{array}{ll} V_{CC} = 3.3 \pm 0.3 \ V & C_L = 15 \ \text{pF} \\ & C_L = 50 \ \text{pF} \end{array}$		5.0 6.2	10.0 13.5		11.0 15.0		13.0 17.5	ns
		$\begin{array}{ll} V_{CC} = 5.0 \pm 0.5 \ V & C_L = 15 \ pF \\ C_L = 50 \ pF \end{array}$		3.8 4.2	6.7 7.7		7.5 8.5		8.5 9.5	
C _{IN}	Maximum Input Capacitance			5.0	10		10		10	pF
			Typical @ 25°C, V _{CC} = 5.0 V							
C _{PD}	Power Dissipation Capa	citance (Note 5)	10		pF					

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

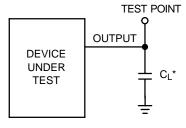


Figure 4. Switching Waveforms

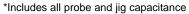
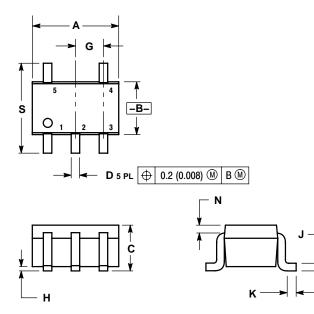


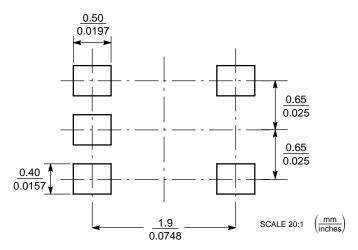
Figure 5. Test Circuit

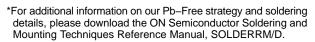

ORDERING INFORMATION

Device Order Number	Package Type	Package [†]
MC74VHC1GT04DFT1	SC-88A	3000 / Tape & Reel 178 mm (7 inch)
M74VHC1GT04DFT1G	SC-88A (Pb-Free)	3000 / Tape & Reel 178 mm (7 inch)
MC74VHC1GT04DFT2	SC-88A	3000 / Tape & Reel 178 mm (7 inch)
M74VHC1GT04DFT2G	SC-88A (Pb-Free)	3000 / Tape & Reel 178 mm (7 inch)
MC74VHC1GT04DTT1	TSOP-5	3000 / Tape & Reel 178 mm (7 inch)
M74VHC1GT04DTT1G	TSOP-5 (Pb-Free)	3000 / Tape & Reel 178 mm (7 inch)

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

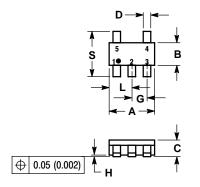
PACKAGE DIMENSIONS


SC-88A / SOT-353 / SC70 CASE 419A-02 **ISSUE H**



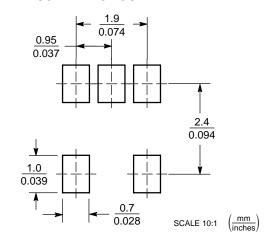
- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071 0.087		1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026	BSC	0.65 BSC		
Н		0.004		0.10	
ſ	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
Ν	0.008	B REF	0.20	REF	
s	0.079	0.087	2.00	2.20	


SOLDERING FOOTPRINT*

PACKAGE DIMENSIONS

TSOP-5 / SOT23-5 / SC59-5 DT SUFFIX CASE 483-02 ISSUE D



NOTES:

- . DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI T14:3M, 1962.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. A AND B DIMENSIONS DO NOT INCLUDE
- A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIN	IETERS	INC	HES
DIM	MIN MAX N		MIN	MAX
Α	2.90	3.10	0.1142	0.1220
В	1.30	1.70	0.0512	0.0669
С	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
н	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
ĸ	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
М	0 °	10 °	0 °	10 °
S	2.50	3.00	0.0985	0.1181

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such apglication the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.