NTNS3190NZ

Advance Information **Small Signal MOSFET** 20 V, 230 mA, Single N-Channel, 0.62 x 0.62 x 0.4 mm XLLGA3 Package

Features

- Single N-Channel MOSFET
- Ultra Small and Thin Package (0.62 x 0.62 x 0.4 mm)
- Low R_{DS(on)} Solution in 0.62 x 0.62 mm Package
- 1.5 V Gate Voltage Rating
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Small Signal Load Switch
- Analog Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Products

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

()			,			
Parameter		Symbol	Value	Units		
Drain-to-Source Voltage		V _{DSS}	20	V		
Gate-to-Source Voltage		V _{GS}	±8.0	V		
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	Ι _D	230	mA	
Current (Note 1)		$T_A = 85^{\circ}C$		165		
	t ≤ 5 s	$T_A = 25^{\circ}C$		296		
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	125	mW	
	t ≤ 5 s	T _A = 25°C	1	208		
Pulsed Drain Current $t_p = 10 \ \mu s$		I _{DM}	688	mA		
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to 150	°C		
Source Current (Body Diode) (Note 2)		۱ _S	125	mA		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		

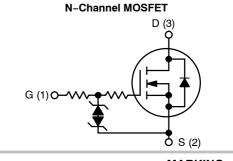
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient – Steady State (Note 1)	$R_{ extsf{ heta}JA}$	1000	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)	R _{θJA}	600	

1. Surface Mounted on FR4 Board using the minimum recommended pad size, (or 2 mm²), 1 oz Cu.

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor®

http://onsemi.com

MOSFET				
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
	1.4 Ω @ 4.5 V			
20 V	1.9 Ω @ 2.5 V	230 mA		
20 1	2.2 Ω @ 1.8 V	200 11/1		
	4.3 Ω @ 1.5 V			

MARKING DIAGRAM

X = Specific Device Code

M = Date Code

ORDERING INFORMATION

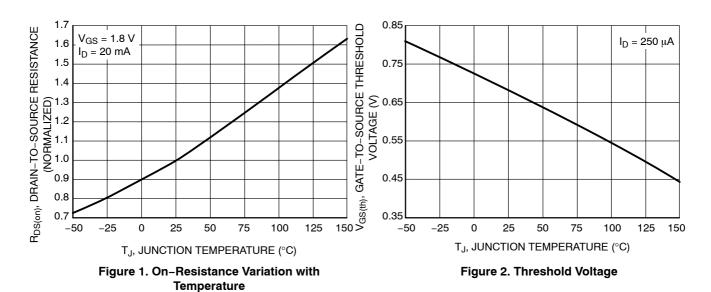
Device	Package	Shipping [†]		
NTNS3190NZT5G	XLLGA3 (Pb-Free)	8000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTNS3190NZ

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

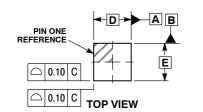
Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS		-			-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		20			V
Zero Gate Voltage Drain Current	I _{DSS}	$\begin{array}{c} V_{GS} = 0 \ V, \\ V_{DS} = 20 \ V \end{array} \qquad \qquad T_J = 25^\circ C \\ \end{array} \label{eq:gs}$				1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8.0 V$				±2.0	μA
ON CHARACTERISTICS (Note 3)					-	-	-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		0.4		1.0	V
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 100 mA V_{GS} = 2.5 V, I _D = 50 mA			0.75	1.4	Ω
					1.0	1.9	
		V_{GS} = 1.8 V, I _D = 20 mA			1.3	2.2	
		V_{GS} = 1.5 V, I _D = 10 mA			1.6	4.3	
Source-Drain Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 mA			0.7	1.0	V
CHARGES, CAPACITANCES & GATE	RESISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			15.8		pF
Output Capacitance	C _{OSS}				4.6		
Reverse Transfer Capacitance	C _{RSS}				3.3		
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 15 V, I_{D} = 200 mA, R_{G} = 2 Ω			20		ns
Rise Time	t _r				45		
Turn-Off Delay Time	t _{d(OFF)}				240		1

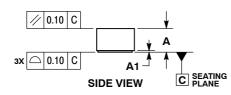

3. Switching characteristics are independent of operating junction temperatures.

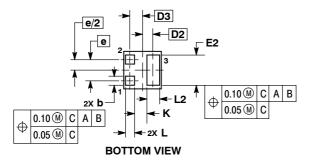
t_f

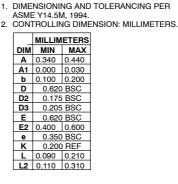
Fall Time

TYPICAL CHARACTERISTICS

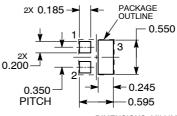

140




NTNS3190NZ


PACKAGE DIMENSIONS

XLLGA3, 0.62x0.62, 0.35P CASE 713AA ISSUE A



NOTES:

RECOMMENDED SOLDER FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative