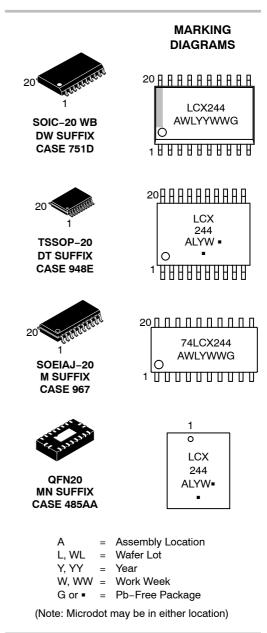
Low-Voltage CMOS Octal Buffer

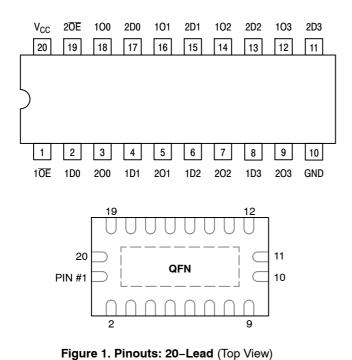
With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

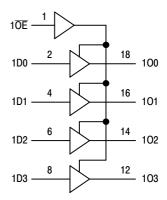
The MC74LCX244 is a high performance, non-inverting octal buffer operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX244 inputs to be safely driven from 5 V devices. The MC74LCX244 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

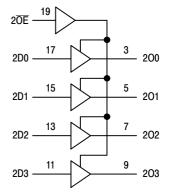
Current drive capability is 24 mA at the outputs. The Output Enable (\overline{OE}) input, when HIGH, disables the output by placing them in a HIGH Z condition.


Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - Machine Model >200 V
- These Devices are Pb-Free and are RoHS Compliant


ON Semiconductor®


http://onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PINS	FUNCTION	
nOE	Output Enable Inputs	
1Dn, 2Dn	Data Inputs	
10n, 20n	3-State Outputs	

TRUTH TABLE

PIN NAMES

INP	UTS	OUTPUTS
1 <u>0E</u> 20E	1Dn 2Dn	10n, 20n
L	L	L
L	Н	Н
Н	Х	Z

H = High Voltage Level L = Low Voltage Level

Z = High Impedance State

X = High or Low Voltage Level and Transitions are Acceptable

For I_{CC} reasons, DO NOT FLOAT Inputs

Figure 2. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Condition	Value	Units
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \leq V_l \leq +7.0$	V
Vo	DC Output Voltage	Output in 3-State	$-0.5 \leq V_O \leq +7.0$	V
		Output in HIGH or LOW State (Note 1)	$-0.5 \le V_O \le V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
Ι _{ΟΚ}	DC Output Diode Current	V _O < GND	-50	mA
		V _O > V _{CC}	+50	mA
lo	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current Per Supply Pin		±100	mA
I _{GND}	DC Ground Current Per Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage HIGH or LOW State 3-State	0 0		V _{CC} 5.5	V
I _{ОН}	$ HIGH Level Output Current \\ V_{CC} = 3.0 V - 3.6 V \\ V_{CC} = 2.7 V - 3.0 V $			-24 -12	mA
I _{OL}	$ LOW Level Output Current \\ V_{CC} = 3.0 V - 3.6 V \\ V_{CC} = 2.7 V - 3.0 V $			24 12	mA
T _A	Operating Free-Air Temperature	-55		+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

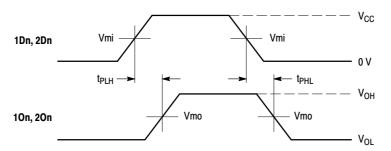
			T _A = −55°C	to +125°C	
Symbol	Characteristic	Condition	Min	Мах	Units
V_{IH}	HIGH Level Input Voltage (Note 2)	$2.3~\text{V} \leq \text{V}_{CC} \leq 2.7~\text{V}$	1.7		V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	2.0		
VIL	LOW Level Input Voltage (Note 2)	$2.3 \text{ V} \leq \text{V}_{CC} \leq 2.7 \text{ V}$		0.7	V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$		0.8	
V _{OH}	HIGH Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA	V _{CC} – 0.2		V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.8		
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		
V _{OL}	LOW Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		$V_{CC} = 2.7 \text{ V}; I_{OL} = 12 \text{ mA}$		0.4	
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 16 \text{ mA}$		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
lj	Input Leakage Current	$2.3~\text{V} \leq \text{V}_{CC} \leq 3.6~\text{V};~0~\text{V} \leq \text{V}_{I} \leq 5.5~\text{V}$		±5	μΑ
I _{OZ}	3-State Output Current	$\begin{array}{c} 2.3 \leq V_{CC} \leq 3.6 \text{ V}; \text{ 0 } \text{V} \leq V_{O} \leq 5.5 \text{ V}; \\ \text{V}_{I} = \text{V}_{IH} \text{ or V}_{IL} \end{array}$		±5	μΑ
I _{OFF}	Power-Off Leakage Current	V_{CC} = 0 V; V _I or V _O = 5.5 V		10	μA
I _{CC}	Quiescent Supply Current	$2.3 \leq V_{CC} \leq 3.6$ V; V_I = GND or V_{CC}		10	μA
		$2.3 \leq V_{CC} \leq 3.6$ V; $3.6 \leq V_{I}$ or $V_{O} \leq 5.5$ V		±10	
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6$ V; V_{IH} = V_{CC} – 0.6 V		500	μA

2. These values of V_{I} are used to test DC electrical characteristics only.

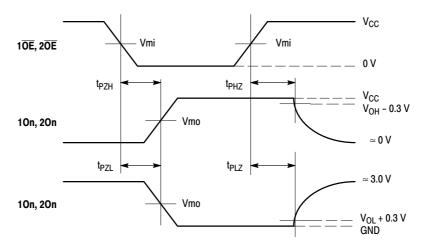
AC CHARACTERISTICS (t_R = t_F = 2.5 ns; R_L = 500 Ω)

					Lim	nits			
					$T_A = -55^{\circ}C$	to +125°C]
			V _{CC} = 3.0	V to 3.6 V	V _{CC} =	2.7 V	V _{CC} = 2.	5 V ± 0.2	1
			C _L = 5	50 pF	C _L = \$	50 pF	C _L = 3	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	6.5 6.5	1.5 1.5	7.5 7.5	1.5 1.5	7.8 7.8	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.0 8.0	1.5 1.5	9.0 9.0	1.5 1.5	10 10	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	7.0 7.0	1.5 1.5	8.0 8.0	1.5 1.5	8.4 8.4	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0					ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

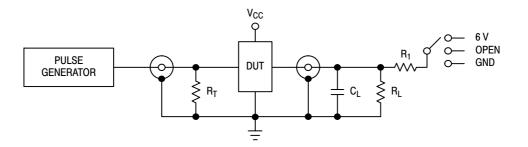

DYNAMIC SWITCHING CHARACTERISTICS

			Т	A = +25°C	2	
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)			0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)			-0.8 -0.6		V


4. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF


WAVEFORM 1 – PROPAGATION DELAYS $t_{R} = t_{F} = 2.5 \text{ ns}, 10\% \text{ to } 90\%; \text{ f} = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$

WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES t_R = t_F = 2.5 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

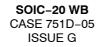
Figure 3. AC Waveforms

	V _{cc}		
Symbol	3.3 V \pm 0.3 V	2.7 V	2.5 V \pm 0.2 V
Vmi	1.5 V	1.5 V	V _{CC} /2
Vmo	1.5 V	1.5 V	V _{CC} /2
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V
V_{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 015 V

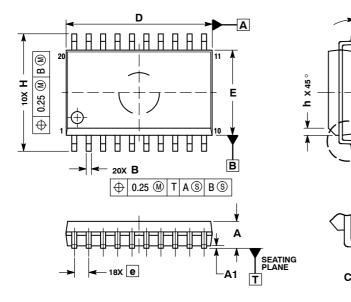
TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	$\begin{array}{l} 6 \text{ V at } V_{CC} = \ 3.3 \pm 0.3 \text{ V} \\ 6 \text{ V at } V_{CC} = \ 2.5 \pm 0.2 \text{ V} \end{array}$
Open Collector/Drain t_{PLH} and t_{PHL}	6 V
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF at V_{CC} = 3.3 ± 0.3 V or equivalent (includes jig and probe capacitance) C_L = 30 pF at V_{CC} = 2.5 ± 0.2 V or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)


Figure 4. Test Circuit

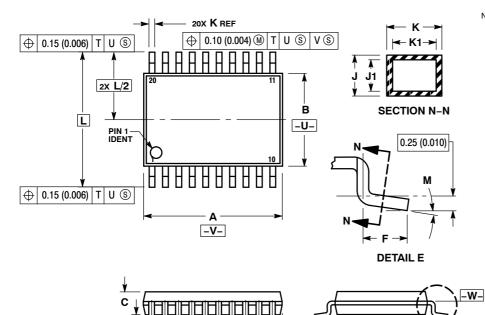
ORDERING INFORMATION


Device	Package	Shipping [†]
MC74LCX244DWG	SOIC-20 WB (Pb-Free)	38 Units / Rail
MC74LCX244DWR2G	SOIC-20 WB (Pb-Free)	1000 / Tape & Reel
MC74LCX244DTG	TSSOP-20*	75 Units / Rail
MC74LCX244DTR2G	TSSOP-20*	2500 / Tape & Reel
MC74LCX244MELG	SOEIAJ-20 (Pb-Free)	2000 / Tape & Reel
MC74LCX244MNTWG	QFN20 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.


f



NOTES:

- NOTES:
 DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
С	0.23	0.32	
D	12.65	12.95	
E	7.40	7.60	
е	1.27	BSC	
н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

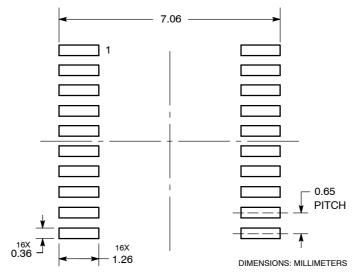
- G

н - NOTES:

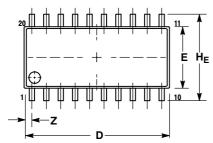
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010 PER SIDE. SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL

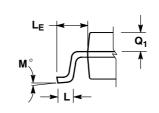
CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR

REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

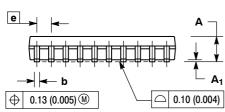

<u>DETERMINED AT DATUM PLANE -W</u>					
	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0°	8°	0°	8°	

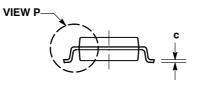
○ 0.100 (0.004)

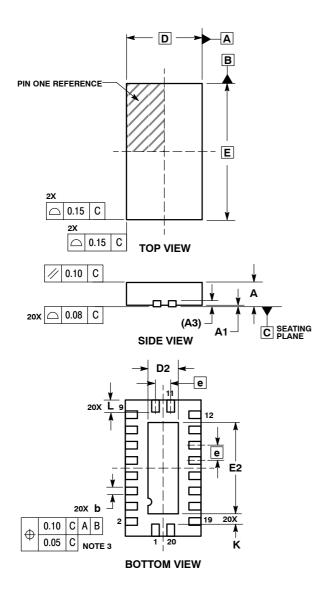

D


SOLDERING FOOTPRINT

DETAIL E




SOEIAJ-20 CASE 967-01 **ISSUE A**


NOTES:

- OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.15	0.25	0.006	0.010
D	12.35	12.80	0.486	0.504
Е	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
Μ	0 °	10 °	0 °	10 °
Q1	0.70	0.90	0.028	0.035
Ζ		0.81		0.032

QFN20, 2.5x4.5 MM

CASE 485AA-01 **ISSUE B**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. 2 DIMENSIONS b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN з
- 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED 4
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
A3	0.20 REF		
b	0.20	0.30	
D	2.50 BSC		
D2	0.85	1.15	
E	4.50 BSC		
E2	2.85	3.15	
е	0.50 BSC		
К	0.20		
L	0.35	0.45	

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative